
Evaluating Signal Processing and Multimedia Applications on
SIMD, VLIW and Superscalar Architectures

Deependra Talla, Lizy K. John, Viktor Lapinskii, and Brian L. Evans

Department of Electrical and Computer Engineering
The University of Texas, Austin, TX 78712

{deepu, ljohn, lapinski, bevans}@ece.utexas.edu

Abstract

This paper aims to provide a quantitative understanding
of the performance of DSP and multimedia applications
on very long instruction word (VLIW), single instruction
multiple data (SIMD), and superscalar processors. We
evaluate the performance of the VLIW paradigm using
Texas Instruments Inc.’s TMS320C62xx processor and
the SIMD paradigm using Intel’s Pentium II processor
(with MMX) on a set of DSP and media benchmarks.
Tradeoffs in superscalar performance are evaluated with
a combination of measurements on Pentium II and simu-
lation experiments on the SimpleScalar simulator. Our
benchmark suite includes kernels (filtering, autocorrela-
tion, and dot product) and applications (audio effects,
G.711 speech coding, and speech compression). Opti-
mized assembly libraries and compiler intrinsics were
used to create the SIMD and VLIW code. We used the
hardware performance counters on the Pentium II and the
stand-alone simulator for the C62xx to obtain the execu-
tion cycle counts. In comparison to non-SIMD Pentium II
performance, the SIMD version exhibits a speedup rang-
ing from 1.0 to 5.5 while the speedup of the VLIW version
ranges from 0.63 to 9.0. The benchmarks are seen to
contain large amounts of available parallelism, however,
most of it is inter-iteration parallelism. Out-of-order exe-
cution and branch prediction are observed to be ex-
tremely important to exploit such parallelism in media
applications.

1. Introduction

Digital signal processing (DSP) and multimedia appli-
cations are becoming increasingly important for computer
systems as a dominant computing workload [1] [2]. The

 L. John is supported in part by the State of Texas Advanced Technology
program grant #403, the National Science Foundation under grants CCR-
9796098 and EIA-9807112, and by Dell, Intel, Microsoft, and IBM.

importance of multimedia technology, services and appli-
cations is widely recognized by microprocessor designers.
Special-purpose multimedia processors such as the
Trimedia processor from Philips, Mpact from Chromatics
research, Mitsubishi’s multimedia processor and the Mul-
timedia signal processor from Samsung usually have
hardware assists in the form of peripherals for one or
more of the multimedia decoding functions. The market
for such special-purpose multimedia processors is pri-
marily in low-cost embedded applications such as set-top
boxes, wireless terminals, digital TVs, and stand-alone
entertainment devices like DVD players. On the other
hand, general-purpose CPUs accelerate audio and video
processing through multimedia extensions.

The architecture of choice for general-purpose media
extensions has been the Single Instruction Multiple Data
(SIMD) paradigm. The Sun UltraSPARC processor en-
hanced with the “Visual Instruction Set” (VIS) [16], the
“MultiMedia eXtensions” (MMX) and streaming-SIMD
instructions from Intel [17], the 3DNow! extension from
AMD [18], and AltiVec technology from Motorola [19]
are examples of SIMD signal processing instruction set
extensions on general-purpose processors. Such CPUs
will likely take over the multimedia functions like
audio/video decoding and encoding, modem, telephony
functions, and network access functions on a
PC/workstation platform, along with the general-purpose
computing they currently perform.

Another paradigm to exploit the fine- and coarse-
grained parallelism of DSP applications is the very long
instruction word (VLIW) architecture. VLIW processors
rely on software to identify the parallelism and assemble
wide instruction packets. VLIW architectures can exploit
instruction-level parallelism (ILP) in programs even if
vector style data-level parallelism does not exist. A high-
end DSP processor, the Texas Instruments TMS320-
C62xx uses the VLIW approach.

DSP and media applications involve vectors and SIMD
style processing is intuitively suited for these applications.
Many of the DSP and multimedia applications can use

vectors of packed 8-, 16- and 32-bit integers and floating-
point numbers that allow potential benefits of SIMD ar-
chitectures like the MMX and VIS. Most of these appli-
cations are very structured and predictable, and parallel-
ism is potentially identifiable at compile-time, favoring
statically scheduled architectures compared to complex
dynamically scheduled processors such as state-of-the-art
superscalar processors. However, superscalar out-of-order
processors have been commercially very successful, and
favored by many over architectures that heavily depend
on efficient compilers.

Although SIMD and VLIW techniques present oppor-
tunity for performance increase, to our knowledge no in-
dependent evaluations of applications comparing the two
architectural paradigms are reported in literature. Are the
aforementioned paradigms equivalent or is any approach
particularly favorable for DSP and media applications?
This paper is an attempt to understand this issue based on
a few media applications and several kernels. First we
evaluate the effectiveness of VLIW and SIMD processors
for signal processing and multimedia applications choos-
ing one modern representative commodity processor from
each category – Texas Instruments Inc.’s TMS320C62xx
processor as the VLIW representative and Intel’s Pentium
II with MMX as the SIMD representative. The Pentium II
evaluation utilized the on-chip performance monitoring
counters, while the evaluation of the TMS320C62xx
processor was done with a simulator from Texas Instru-
ments. Although the C62xx processor is comparable to
state of the art general-purpose microprocessors in ma-
chine level parallelism, no performance comparison is
available except for BDTI’s rating, which portrays
C62xx’s BDTImark to be twice as that of the Pentium-
MMX’s score [9]. The BDTI rating is based on kernels
only.

In addition to the major contribution of evaluating
SIMD and VLIW architectures, we also perform an
analysis of the performance of these applications on su-
perscalar processors. The Pentium II is a superscalar
processor and is used as the baseline (non-SIMD) for
comparing SIMD and VLIW architectures. However,
since we are working with actual hardware and hardware
monitoring counters, we cannot change the processor con-
figuration or perform analysis of tradeoffs. Hence we use
the SimpleScalar simulator tools [29] to evaluate the im-
pact of dynamic scheduling on media applications.

Compilers for SIMD and VLIW paradigms are still in
their infancy, and the burden of generating optimized
code for these processors is still largely on the developers
of an application. Achieving the largest performance in-
crease would involve tailoring the source code for each
specific kernel or application, often utilizing generic
SIMD and VLIW libraries for common algorithms and
kernels that can be accessed via function calls. Both Intel
and TI provide a suite of optimized assembly libraries on

their Web sites [20][21], and both Intel’s C/C++ compiler
[22] and TI’s C62xx compiler [23] allow the use of ‘in-
trinsics’. The MMX and VLIW technology intrinsics are
coded with the syntax of C language, but trigger the com-
piler to generate corresponding MMX instructions and
optimized VLIW code, respectively. Using assembly lan-
guage libraries and compiler intrinsics, we create SIMD
and VLIW versions of our benchmark suite of kernels and
applications and analyze the performance impact of media
applications on these paradigms. We found that the SIMD
versions of our benchmarks exhibited a speedup ranging
from 1.0 to 5.5 (over non-SIMD), while the speedup of
the VLIW version ranges from 0.63 to 9.0. We also ob-
serve that out-of-order execution techniques are extremely
important to exploit data parallelism in media applica-
tions.

Several efforts have analyzed the benefits of SIMD
extensions on general-purpose processors [3][4][5][6][7]
[8]. An evaluation of MMX on a Pentium processor on
kernels and applications was presented in [3]. However,
such an analysis on a modern out-of-order speculative
machine like the Pentium II is not reported in literature.
Performance of image and video processing with VIS ex-
tensions was analyzed in [4] and benefits of VIS were re-
ported. It was shown that conventional ILP techniques
provided 2x to 4x performance improvements and media
extensions provided an additional 1.1x to 4.2x perform-
ance improvements. However, our work includes the
VLIW paradigm as well. A performance increase by us-
ing AltiVec technology for DSP and multimedia kernels
was reported in [6]. Performance analysis of MMX tech-
nology for an H.263 video encoder was presented in [8].
A number of commercial general-purpose and DSP proc-
essors have been benchmarked by BDTI [9] on a suite of
11 kernels. However, only a single performance metric
denoting the execution time is released in the public do-
main for all of the benchmarks together. Moreover, the
Pentium II has not been evaluated in their work. In addi-
tion their benchmark suite includes only kernels and no
applications.

A reasonable benchmark suite was presented in [10],
but there are no SIMD or optimized VLIW versions of the
benchmarks. Available parallelism in video workloads
was measured in [11] with a VLIW architecture. But they
assume infinite number of functional units and a powerful
compiler with 100% accurate prediction capabilities. In-
stead, our approach was to use state-of-the-art SIMD and
VLIW commodity processors and realistic commercial
compilers. An implementation of MPEG-2 video decoder
on a C62xx was presented in [12] and they also compare
the performance of the various MPEG components with
MMX, HP MAX [7], and VIS. Several DSP processors
and compilers were benchmarked in the DSPstone meth-
odology [13], but only one application is benchmarked. A
recent industrial consortium is the EEMBC effort [14] for

benchmarking commercial processors for embedded ap-
plications. However, source code is not available in the
public domain. Effectiveness of Intel’s Native Signal
Processing (NSP) libraries was evaluated in [15]. Per-
formance of a C62xx versus a Pentium II with MMX on
DSP kernels is also reported. However, no applications
are incorporated. Jouppi and Wall [30] demonstrated the
approximate equivalence of superscalar and superpipe-
lined architectures, however, a decade and several ILP
and SIMD processors later, we still do not have adequate
quantitative studies comparing the performance of the
various paradigms.

The rest of the paper is organized as follows. Section 2
describes the architectures modeled and Section 3 de-
scribes the benchmarks and the experimental methodol-
ogy, and Section 4 analyzes the results. Section 5 con-
cludes the paper.

2. Architectures

In this section, we describe the commodity processors
chosen for this study – a Pentium II processor with MMX
as a SIMD representative and the C62xx as a VLIW rep-
resentative. The popularity of MMX, the availability of
performance monitoring counters and tools, coupled with
the availability of Intel media-specific libraries made
MMX a natural choice for the SIMD paradigm. Also, the
major features of MMX technology are representative of
other SIMD-style media processing extensions as well.
The C62xx is the highest performance VLIW DSP proc-
essor available. (Although it is a DSP processor, it is often
classified as a general-purpose DSP processor). The rest
of this section describes the architectures.

2.1 Pentium II (with MMX)

The Intel Pentium II processor is a three-way super-
scalar architecture (capable of retiring up to three micro-
instructions per cycle). It implements dynamic execution
using an out-of-order, speculative execution engine, with
register renaming of integer, floating-point and flag vari-
ables, carefully controlled memory access reordering, and
multiprocessing bus support [25]. Two integer units, two
floating-point units, and one memory-interface unit allow
up to five micro-ops to be scheduled per clock cycle. In
addition, it provides the MMX execution unit. In our
analysis, we used a 300 MHz Pentium II with 16 KB of
L1 instruction and data caches and 512 KB of L2 cache.

The MMX technology allows SIMD style computa-
tions by packing many pieces of data into one 64-bit
MMX register [26]. For example, image processing appli-
cations typically manipulate matrices of 8-bit data. Eight
pieces of this data could be packed into a MMX register,
arithmetic or logical operations could be performed on the
pixels in parallel, and the results could be written to a

register. Saturation and wrap-around arithmetic are also
supported. Multiply-accumulate (MAC), is a fundamental
operation in vector dot product, which is common in sig-
nal processing, graphics, and imaging applications, and is
part of the instruction set extension. Data widths of 8 and
16 bits are sufficient for speech, image, audio, and video
processing applications as well as 3D graphics. MMX
registers and state are aliased onto the floating-point reg-
isters and state, so no new registers or states are intro-
duced by MMX. Maintaining this compatibility places
limitations on MMX. The MMX registers are limited to
the width of the floating-point registers (MMX SIMD
data type uses 64 of the 80 available bits) and mixing of
floating-point and MMX code becomes costly because of
potential overhead when switching modes (up to a 50 cy-
cle penalty for switching from MMX to floating-point).

2.2 TMS320C62xx

Texas Instruments TMS320C62xx, the first general-
purpose VLIW DSP processor, is a 32-bit fixed-point
chip. It is capable of executing up to eight 32-bit instruc-
tions per cycle. The C62xx processor is designed around
eight functional units that are grouped into two identical
sets of four units each, and two register files, as shown in
Fig. 1. The functional units are the D unit for memory
load/store and add/subtract operations; the M unit for
multiplication; the L unit for addition/subtraction, logical
and comparison operations; and the S unit for shifts in ad-
dition to add/subtract and logical operations. Each set of
four functional units has its own register file, and a cross
path is provided for accessing both register files by either
set of functional units.

Figure 1. CPU core of C62xx (courtesy of TI)

The pipeline phases are divided into three stages – the
fetch stage having four phases, the decode stage being
two phases, and an execute stage that requires one to five
phases. In the fetch stage of the pipeline, first the program
address is generated followed by sending this address to
memory, reading the memory and receiving the fetch
packet at the CPU. Instructions are always fetched eight at
a time and they constitute a fetch packet.

A new fetch packet is not executed until the last in-
struction in the earlier fetch packet is executed. A fetch
packet can take 1 cycle (fully parallel execution), 8 cycles
(fully serial execution), or 2 to 7 cycles (partially serial).

Table 1. Summary of benchmark kernels and applications

Kernels

Dot product (dotp)
Dot product of a randomly initialized 1024-element array repeated several times. Executes 362
million instructions.

Autocorrelation (auto)
Autocorrelation of a 4096-element vector with a lag of 256 repeated several times. Executes
444 million instructions.

Finite Impulse Response
Filter (fir)

Low-pass filter of length 32 operating on a buffer of 256 elements repeated several times. Exe-
cutes 693 million instructions.

Applications

Audio Effects (aud)
Adding successive echo signals, signal mixing, and filtering on 128-block data repeated several
times. Executes 4 billion instructions.

G.711 speech coding (g711) A-law to µ-law conversion and vice versa as specified by ITU-T standard on a block of 512
elements repeated several times. 163 million instructions.

ADPCM speech compression
(adpcm)

16-bit to 4-bit compression of a speech signal (obtained from Intel) on a 1024-element buffer
repeated several times. Executes 448 million instructions.

In the first phase of the decode stage of the pipeline,
the fetch packets are split into execute packets. Execute
packets may consist of one instruction or from two to
eight parallel instructions. The instructions in an execute
packet are assigned to the appropriate functional units.
During the second phase of the decode stage, the source
registers, destination registers, and associated paths are
decoded for the execution of the instructions in the func-
tional units. The execute stage of the pipeline is subdi-
vided into five stages and different types of instructions
require different numbers of these phases to complete
their execution. Delay slots are associated with several
types of instructions. A multiply instruction has one delay
slot, a load instruction has four delay slots, and a branch
instruction has five delay slots. Most ALU instructions
and store instructions have no delay slots. The interested
reader is referred to [27] for a comprehensive description
of the C62xx CPU and instruction set. The C62xx has a
4KB L1 direct-mapped cache for instruction and a 4KB 2-
way set associative cache for data. It also has an L2 mem-
ory of 64 KB that is divided into four banks. Each of the
L2 banks can be configured to be either a cache or RAM.

3. Experimental methodology

3.1 Benchmarks

We profile the three signal processing and multimedia
kernels and three applications described Table 1. The ker-
nels and applications in our benchmark suite form signifi-
cant components of several real-world current and future
workloads. All of the benchmarks are implemented using
16-bit fixed-point data except the g711 speech coding
benchmark that operates on 8-bit data. The rest of this
section provides some details on the benchmarks. The in-
struction counts shown in Table1 correspond to the non-
SIMD Pentium II execution

To study the effects of DSP and multimedia applica-
tions on VLIW and SIMD architectures, we created sev-
eral versions of each of our benchmarks. The baseline

non-SIMD versions of the benchmarks are created in the
C language. Optimized SIMD and VLIW version were
then created utilizing both assembly libraries and com-
piler intrinsics. We largely developed the non-SIMD code
from public sources such as speech coding resources [24].
We compile the non-SIMD version of the benchmarks
using Intel C/C++ compiler [22] for the Pentium II (run-
ning Windows NT 4.0) with the maximum optimization –
“Maximize for Speed”.

In the process of creating our benchmark versions, we
made efforts to ensure that we were comparing equivalent
sections of code. Each of the three versions (non-SIMD,
SIMD and VLIW) was verified to be functionally
equivalent to give the same results after execution. In all
the cases, we buffer the data and monitor only the reading
from the buffer and not the I/O. We do not monitor the
initialization, setup routines, operating system work, or
file I/O for any of the programs. Operating system com-
ponent of these workloads has been showed to be negligi-
ble, and is not expected to skew the results of this study.

Several other kernels such as convolution, Infinite Im-
pulse Response (IIR) response, Discrete Cosine Trans-
form (DCT), and the Fast Fourier Transform (FFT) were
also studied, but due to space constraints, we report re-
sults for only three kernels. In addition, we prefer to em-
phasize on applications rather than kernels. The rest of
this section describes the code development for SIMD and
VLIW versions, tools used and the metrics of perform-
ance evaluation.

3.2 Using Assembly Libraries

Intel’s assembly libraries [20] provide versions of
many common signal processing, vector arithmetic, and
image processing kernels that can be called as C func-
tions. However, some signal processing library calls re-
quire library-specific data structures to be created and ini-
tialized before calling kernels such as fir. Using assembly
libraries is thus restricted and we used Intel’s libraries
only for the dot product and the autocorrelation bench-

marks (since only these two benchmarks have the same
calling sequence for the C and library functions and the
library versions do not use any extra data structures). Un-
less the code developer can replace a complete function
call in C with a call to the library function, the benefit of
assembly libraries cannot be utilized completely. There is
no loss of accuracy by using MMX because all versions
of the benchmarks operate on 16-bit data (except the g711
speech coding that uses 8-bit data). Another issue with the
use of Intel’s libraries is that they are generally robust and
intuitive, but employ a lot of error checking code to guar-
antee functional correctness that can potentially increase
execution time. Also overhead of using MMX instructions
(misalignment-related instructions, and packing & un-
packing data related instructions) should be less than the
potential benefit of MMX.

TI provides optimized assembly code for the C62xx in
[21]. These assembly libraries are C callable and also
have the same calling sequence as the C-code counterpart.
We used assembly function calls in three of the six
benchmarks – auto, fir, and aud. Several restrictions ap-
ply for using these C62xx optimized VLIW assembly
codes – the fir code requires that the number of filter co-
efficients must be a multiple of 4 and length of auto vec-
tor must be a multiple of 8.

3.3 Using Compiler Intrinsics

Both Intel and TI libraries are useful only if we can re-
place an entire function written in C with an equivalent C-
callable assembly function call. But in many applications
such easily replaceable functions are difficult to find, es-
pecially for applications that does not use any of the ker-
nels such as the g711 speech coding and adpcm bench-
marks in our case. Also as mentioned using Intel’s librar-
ies for creating SIMD versions of the code introduces
special data structures and overhead (fir). The Intel
C/C++ compiler [22] and the C62xx compiler [23] pro-
vide intrinsics that inline MMX and C62xx assembly in-
structions respectively. The compilers allow the use of C
variables instead of hardware registers and also schedule
the instructions to maximize performance.

For creating the SIMD versions of the benchmarks, we
profiled the benchmarks to identify key procedures that
can incorporate MMX instructions. The major computa-
tion was then replaced with an equivalent set of MMX in-
structions with original functionality maintained. We un-
rolled the loops manually to isolate multiple iterations of
the loop body and then replaced with equivalent intrin-
sics. Both non-SIMD and SIMD versions of the bench-
marks have the same calling sequence and parameters.
The SIMD version that uses intrinsics does an internal
conversion to the required SIMD data type (MMX data
type with 64-bits), operate on the four data elements in
parallel (each data being 16-bits wide except the g711 that

uses bytes) and write the results in 16-bit words. For ap-
plications that use intrinsics, the overhead of using MMX
should be less than the benefits gained using MMX in-
structions. We incorporated the intrinsics into fir, g711
and aud benchmarks. The adpcm could not use any intrin-
sics.

The C62xx compiler similarly provides intrinsics for
inlining assembly instructions into the C code. Some of
the compiler intrinsics provided are “multiply two num-
bers, shift, and saturate”, “approximate reciprocal square
root”, “subtract lower and upper halves of two registers”.
All of the compiler intrinsics and their detailed descrip-
tions can be obtained from [23]. We used the C62xx
compiler intrinsics for creating the dotp VLIW version of
the benchmark suite. We could not use intrinsics for the
g711 speech coding and adpcm benchmarks and rely
solely on the compiler to generate optimized code. While
generating code using the C62xx compiler, the maximum
optimization flag (-o3) was used. This level of optimiza-
tion performs various optimizations including software
pipelining, function inlining, loop unrolling, etc.

3.4 Tools

We used VTune [20] and the on-chip performance
counters for the case of the Pentium II and the stand-alone
simulator for the C62xx processor. VTune is Intel’s per-
formance analysis tool that can be used to get the com-
plete instruction mix (assembly instructions) of the code,
and is designed for analyzing “hot spots” in the code and
optimizing them. We used VTune to profile static in-
structions (for the case of non-SIMD and SIMD). Hard-
ware performance counters present in the Pentium family
of processors are used for gathering the execution char-
acteristics of both the non-SIMD and SIMD versions of
the benchmarks. Gathering information from the counters
is simple and non-obtrusive (the benchmark is allowed to
execute at normal speed). In addition to the execution
clock cycles, the performance counters can be used to
obtain the instruction mix and many runtime execution
characteristics of the application. For the case of the
VLIW code, the execution cycle counts were obtained
from the stand-alone simulator that is especially useful for
quick simulation of pieces of code [22]. The “clock()”
function provided in the simulator returns the execution
times of the benchmarks.

3.5 Performance Measures

We use the execution time of the application as the
primary performance measure for this study. Speedup is
quantified as the ratio of the execution clock cycles of the
SIMD and VLIW versions with respect to the non-SIMD
C code. Execution time is expressed in clock cycles and
not in absolute units of time as the clock speeds of the two

processors differ and because this paper is a comparison
between SIMD and VLIW processing capabilities rather
than a comparison of the Pentium II versus the C62xx
processor. For the case of SIMD processing, we also col-
lected statistics such as effect of SIMD on CPI, micro-
operations, and branch frequencies. While measuring the
execution cycle counts of each version of our bench-
marks, we only monitor the processing of data already
pre-loaded into memory. Input data for DSP and multi-
media applications typically come from sources like
sound cards, video cards, network cards, or analog-to-
digital converters.

The amount of L1 and L2 caches is different between
the SIMD and the VLIW processor (16 KB L1 for SIMD
& 4KB L1 for VLIW and 512 KB L2 for SIMD & 64 KB
for VLIW). We configured the 64 KB memory for the
C62xx to be used as RAM and not as cache. We try to fit
our data sets as much as possible on the L1 cache to
eliminate the effects of memory latencies and use the
fastest possible memory for each processor.

4. Analysis of Results

4.1 Comparison of SIMD and VLIW perform-
ance

Fig. 2 illustrates the performance of SIMD and VLIW
codes over the non-SIMD version. The execution time is
presented in Table 2. While interpreting the results, it
should be remembered that the baseline (non-SIMD) per-
formance is derived from a 3-way superscalar processor
that performs dynamic scheduling to exploit ILP.

0

2

4

6

8

10

dotp auto fir aud adpcm g711

S
p

ee
d

u
p

Non-SIMD SIMD VLIW

Figure 2. Ratios of execution times

Table 2. Execution clock cycles

Benchmark
Non-SIMD

(cycles)
SIMD

(cycles)
VLIW
(cycles)

Dot Product 181242573 32804388 26600107

Autocorrelation 222023315 44738100 24577801

FIR filter 374628170 208238181 41370004

Audio Effects 2191761094 1148164486 494700006

ADPCM 381143255 381143255 281980004

G.711 109593602 85404734 173190004

4.1.1 Performance of Kernels

Significant speedup is achieved for both SIMD and
VLIW versions over the non-SIMD code for the three
kernels. The dotp kernel shows an improvement of ap-
proximately 5.5 times for the SIMD version over the non-
SIMD version, despite using 16-bit data. Super-linear
speedup is possible due to the presence of the pipelined
multiply-accumulate instruction in MMX (latency of 3
cycles). For the non-SIMD case, the integer multiply op-
eration takes 4 cycles. Over 80% of the dynamic instruc-
tions in the case of the SIMD version have been found to
be MMX-related instructions. The performance of the
VLIW version of dotp is even better than the SIMD ver-
sion, with a speedup close to 7. The VLIW code is capa-
ble of executing two data elements per clock cycle (in the
case of a 1-way scalar processor it would take at least 5
clock cycles for each data element – two for loads, one
multiply, one add and one store). Moreover, the C62xx
code takes advantage of software pipelining to prefetch
data three iterations before it is used. For the dotp bench-
mark, the VLIW code is able to utilize all the eight func-
tional units for the kernel execution as shown in Fig. 3.

Opcode Unit Registers Comment
LOOP:
LDW

.D1 *A4++, A0
Load 32-bit word from mem-
ory (Two 16-bit words)

LDW .D2 *B4++, B0 Load 32-bit word from mem-
ory (Two 16-bit words)

MPY .M1X A0, B0, A1 Multiply two lower 16-bits

MPYH .M2X A0, B0, B1 Multiply two upper 16-bits

ADD .L1 A1, A5, A5 Accumulate

ADD .L2 B1, B5, B5 Accumulate

[A2] SUB .S1 A2, 2, A2 Decrement Loop Counter

[A2] B .S2 LOOP Branch to LOOP

Figure 3. Dot product kernel in one VLIW instruc-
tion packet (courtesy of TI)

The auto kernel also shows similar performance in-
crease for both the SIMD and VLIW versions. As in the
case of the dotp, auto uses several multiply and accumu-
lates. For the SIMD case, 88% of the dynamic instruc-
tions are MMX-related instructions. In the case of the
VLIW processor, over 90% of the fetch packets have only
one execute packet (indicating eight instructions are able
to execute in parallel) and a majority of the remaining
10% of the fetch packets have only two execute packets
(indicating an average of four instructions in parallel).

The fir benchmark shows a modest performance in-
crease (1.8 speedup) for the SIMD version over the non-
SIMD code when compared to the other two kernels. The
amount of MMX related instructions in the overall dy-
namic stream is far less than the other two kernels (29%).
Also, the SIMD version needs four copies of filter coeffi-
cients to avoid data misalignment. The Intel library ver-
sion of the fir filter actually exhibited a speedup of only

1.6. This was due to additional data structures that had to
be defined and error checking code that can potentially
decrease performance at improved robustness. The VLIW
version exhibits stronger performance boost than the
SIMD version. Again as was in the case of dot product
and autocorrelation, over 95% of the fetch packets had
only one execute packet with all eight instructions exe-
cuting in parallel. The VLIW kernel codes were hand op-
timized and presented as assembly libraries. Moreover,
the VLIW code had constraints such as the number of fil-
ter coefficients should be a multiple of 4 and the size of
the auto vector should be a multiple of 8.

4.1.2 Results from Applications

Overall, the results of the VLIW versions of the appli-
cations are disappointing (when compared to performance
improvements obtained in kernels). Both g711 and adpcm
involve significant control dependent data dependencies,
wherein execution is based either on table lookup or con-
ditional branch statements based on immediately preced-
ing computations. The aud application was the only one
where any appreciable parallelism could be exploited by
the VLIW environment. The VLIW version of the aud
application exhibits a speedup close to 4.5 over the non-
SIMD version. The echo effects and signal mixing com-
ponents of the VLIW version were unrolled manually
eight times. The speedup achieved by the VLIW version
of the aud application is almost half that of the kernels.
This is because the C62xx version was primarily devel-
oped in C code and only the filtering component utilized
optimized assembly code. The compiler generates the
echo effects and signal mixing components. The “in-
terlist” utility of the C62xx compiler provides the user
with the ability to interweave original C source code with
compiler-generated assembly code. The compiler-
generated assembly code for the echo effects and signal
mixing components indicates that the compiler is unable
to fill all the pipeline slots (several execute packets in
each fetch packet). The compiler was unable to software
pipeline the echo effects component. This effectively in-
troduced 3 NOPs after every load, which degraded per-
formance. Moreover, even with a loop unrolling of 8, for
each one of the eight computations the result was the
same with 3 NOPs after every load. Since there is no out-
of-order execution in the VLIW processor, loop unrolling
in this instance contributes to no performance increase in
terms of speed but only increases code size.

The VLIW code for adpcm shows a speedup of 1.35
over the non-SIMD and SIMD cases. In this application,
the C62xx compiler did not perform any loop unrolling or
software pipelining. Since there is no parallelism to be
exploited, unrolling will drastically increase the code size
with little or any performance increase. Software pipe-
lining was difficult because loads in this application de-

pended on the execution of the conditional branch state-
ments. Thus the compiler-generated assembly code is
non-optimal with several branches that are followed by 5
NOPs and loads followed by four NOPs. Most of the
fetch packets have eight execute packets (serial as op-
posed to the desired parallel execution).

The VLIW version of g711 shows a slowdown (0.63)
over the non-SIMD code. However, analysis showed that
the base non-SIMD model, which is a 3-way dynamically
scheduled superscalar processor achieves an IPC of ap-
proximately 2.0. The C62xx code for g711 has very few
packets with more than one slot utilized. Branches are
followed by NOPs for 5 cycles in the assembly code.
There are also several loads due to the look-up table and
NOPs for 4 cycles are inserted in the code. Because of
static scheduling combined with no branch prediction, and
the control nature of the application, no parallelism could
be exploited. Also, the g711 operates on 8-bit data and the
rest of the 24-bits (the C62xx data width is 32-bits inter-
nally) is being wasted.

Even the speedup achieved by the applications from
SIMD technology is not appreciable. The aud application
shows a moderate speedup of around 2.0 for the SIMD
code over the non-SIMD code. About 28% of the dy-
namic instructions are MMX-related. Loop unrolling of 4
was used for each of the echo effects, filtering and signal
mixing portions of this application. The adpcm bench-
mark does not have any MMX instructions because this
algorithm is inherently sequential in that each computa-
tion on a data sample depends on the result of the imme-
diately preceding sample. The g711 SIMD version exhib-
ited a speedup of 1.28 over the non-SIMD code. The
number of MMX related instructions are only around 4%
and the performance increase is partly due to manual loop
unrolling.

4.2 Available Parallelism in Media Applica-
tions

Signal processing and media applications typically
contain a large amount of parallelism, and the low per-
formance of adpcm and g711 prompted us to examine the
benchmarks in detail. Using Tetra [28], a tool from Wis-
consin, we analyzed the applications to find the available
parallelism assuming infinite functional units, perfect
branch prediction, perfect memory disambiguation, and
register and memory renaming. Table 3 indicates the re-
sults. Ironically, g711 exhibits the highest parallelism.
These results were obtained using Sun Ultra-SPARC
code, with gcc compiler, with the highest level of optimi-
zation possible.

Table 3. Available ILP
Benchmark ILP with Infinite

Window
ILP with window

size=32
dotp 3132 3.053
auto 17.53 8.74
fir 20.58 4.13
aud 21.16 4.26
adpcm 33.65 6.12
g711 5316 9.63

4.3 Performance of a Superscalar Processor
with similar Functional Unit Mix as C62xx

The poor performance of g711 on C62xx, combined
with the observation that available parallelism in g711 is
extremely high led us to examine the performance of a
superscalar processor with similar functional units as
C62xx. We configured the SimpleScalar simulator [29] to
a configuration approximately equivalent to the C62xx.
Due to instruction set architecture and compiler differ-
ences, the comparison of execution times is not very
meaningful, however, for the prudent experimentalist who
will cautiously interpret the results, the comparison is il-
lustrated in Table 4. Except for adpcm and g711, where
the C6x compiler fails to exploit the parallelism, the
VLIW architecture performance is better than superscalar
architecture performance. We performed studies on 11
other kernels with optimized assembly, and on all of them
the VLIW performance was superior. When we used na-
ïve C compilation, C6x was still better than superscalar
for one kernel, comparable for 3 kernels and worse for 7
kernels, reaffirming the dependency of VLIW architec-
tures on compiler efficiency.

Table 4. C62x vs. approx. equivalent superscalar

Benchmark

C62xx Execution
time (million cycles)

(naïve C in
bracket)

Superscalar Exe-
cution time (mil-

lion cycles)

dotp 26 (53) 102.9
auto 24.6 (49.5) 147.6
fir 41.3 (148) 271.5
aud 494 (1201) 1557.1
adpcm 281 97.8
g711 173 38.4

We also varied the instruction issue width from 1 to 8,
for the superscalar processor with C62xx-like functional
unit mix and latencies. The interesting observation from
this experiment (see Table 5) is that performance scales
up to issue width of 4 and after that return starts dimin-
ishing. It is also interesting to make an inference that if
the C62xx VLIW compiler could generate packets with at
least 4 out of the 8 slots filled, the performance of the
VLIW processor would almost match the superscalar
equivalent (85%). However, if the compiler is able to fill
only 1 or 2 slots, the superscalar equivalent would excel

the VLIW counterpart. Similarly, if the VLIW compiler
succeeded in filling all eight slots of the packet, which it
is able to in the dotp, auto and fir kernels, the VLIW
processor’s performance will be at least twice better than
the equivalent superscalar. We could not obtain the abso-
lute CPI for the case of the C62xx because the simulator
does not give the number of instructions executed. For
kernels, as mentioned earlier, almost all the eight func-
tional units are occupied in each cycle, but for the appli-
cations most of the code is serial.

Table 5. ILP obtained from a superscalar proces-
sor with different instruction issue widths

C62xx-like functional unit mix
Twice

C6x re-
sources

Benchmark IPC

(N=8)

IPC

(N=4)

IPC

(N=2)

IPC

(N=1)

IPC

(N=16)

dotp 4.980 3.325 1.665 0.833 5.531
auto 3.997 3.347 1.714 0.857 4.995
fir 3.707 3.221 1.665 0.847 4.677
aud 3.597 3.086 1.623 0.836 4.490
adpcm 1.591 1.532 1.192 0.782 1.785
g711 4.073 3.027 1.562 0.789 4.081

4.4 Other Observations

Assembly-optimized code vs. Naïve C code Perform-
ance: The C62xx processor performance is extremely
sensitive to compiler optimizations. Naïve compilation re-
sults in 2 to 14 times increased execution time in 11 dif-
ferent kernels that we studied including DCT, IIR, FFT,
etc.
Scalability of superscalar performance for media ap-
plications: As illustrated in Table 5, performance almost
doubles when issue width changes from 1 to 2 and then
from 2 to 4, on a superscalar processor with C62xx-like
configuration, but issue width of 4 achieves approxi-
mately 85% of the performance of an equivalent 8-issue
processor. A processor with twice the resources as C62xx
and twice the issue width (i. e. 16) and twice the register
update unit (RUU) size only achieves an additional 15%
improvement in performance.
Performance of a Pentium II-like processor on Sim-
pleScalar simulator: We thought it will be interesting to
observe the parallelism achieved by an approximately
Pentium II-like superscalar processor on the SimpleScalar
simulator and compare it with the parallelism observed in
our hardware performance monitoring counter based
measurements on an actual Pentium-II. Although the
comparison of IPCs between a RISC-style ISA as in Sim-
pleScalar with the x86 ISA may seem unfair, the number
of micro-operations per x86 instruction was very close to
1.0 (slightly more than 1.0) in these applications and,
hence it is not totally unfair. The close correspondence in
IPCs except for g711 (in Table 6) is encouraging, consid-

ering the widespread use of the SimpleScalar tool suite in
computer architecture research.

Table 6. Measurement vs simulation (PII vs SS)
dotp auto fir aud adpcm g711

IPC- PII 2.0 2.0 1.85 1.85 1.176 1.49
IPC-SS 2.22 2.18 2.12 2.06 1.235 2.03

Cases where SIMD parallelism is non-applicable, but
VLIW-parallelism is applicable: ILP in applications
with no data parallelism can still be exploited with a
wider VLIW processor. adpcm is the only benchmark that
even slightly demonstrates this phenomenon. In the ver-
sion of adpcm that we used, neither compiler intrinsics
nor assembly routines could exploit any SIMD style data
parallelism. The Pentium II is a superscalar processor of
machine level parallelism 3 while the C62xx processor
has a machine level parallelism of 8. Using the SimpleS-
calar simulator, we found out that an approximate
Pentium II configuration achieves an IPC of 1.23 for
ADPCM while a superscalar with the approximate mix of
functional units as in C62xx can achieve an IPC of 1.59.
This residual ILP is exploited by the wider C62xx, lead-
ing to the slightly superior performance of C62xx over the
Pentium II.
Cases where MMX performance exceeds C62xx per-
formance: g711 is the only benchmark where MMX per-
formance (even baseline Pentium II performance) exceeds
the C62xx performance. This is due to the inability of the
C62xx compiler to schedule multiple instructions in a
packet, and the ability of the Pentium II to exploit ILP and
achieve an IPC of approximately 2.0.
Impact of out-of-order execution: We simulated an in
order microarchitecture with the mix of C6x functional
units. The IPCs improve approximately 15% as the issue
width increases from 1 to 8, however the IPC values did
not exceed 1.0. Hence we concur with Ranganathan et. al.
[4] that conventional ILP techniques are important for
media workloads. One characteristic feature of these
workloads is that most of the parallelism in them is be-
tween iterations rather than within the iteration. In fact,
most instructions inside an iteration are dependent on the
preceding instructions inside the same iteration. Unless
branch prediction and out-of-order execution are per-
formed, it is difficult to extract the parallelism in these
programs, using an ILP processor.
Impact of MMX on CPI: Although the MMX (SIMD)
versions of the benchmarks take less time to execute than
the non-SIMD code, the CPI of the MMX version is
higher than that of the non-MMX version (see Figure 4).
The number of dynamic instructions executed when using
MMX is significantly lower than the non-MMX version.
Although there is an increase in CPI, each SIMD instruc-
tion does four times more work than an earlier instruction.

Figure 4 also illustrates the percentage of MMX instruc-
tions in the various SIMD style programs.

0

0 .2

0 .4

0 .6

0 .8

1

d o t p a u t o f i r a u d a d p c m g 7 11

C
P

I

0

2 0

4 0

6 0

8 0

1 0 0

%
 o

f
M

M
X

N o - M M X M M X % M M X in s t r u c t io n s

Figure 4. Effect of MMX on CPI

Effect of MMX on branch frequencies: As expected
(Fig. 5.), the branch frequency decreases in general except
in the case of g711 that shows a marginal increase (but it
has only 4% MMX instructions). The decrease is primar-
ily due to processing multiple elements in parallel and
loop unrolling.

0
0 . 0 5

0 . 1
0 . 1 5

0 . 2

d o t p a u t o f i r a u d a d p c m g 7 1 1

%
 o

f
B

ra
n

ch
es

N o - M M X M M X

Figure 5. Effect of MMX on branch frequencies

5. Conclusion

This paper evaluated the effectiveness of SIMD, VLIW,
and superscalar techniques for signal processing and mul-
timedia applications choosing a representative commodity
processor from each category. We observed that:

• SIMD techniques provide a significant speedup for
signal processing and multimedia applications. The
observed speedups over a 3-way superscalar out of
order execution machine range from 1.0 to 5.5.

• VLIW techniques provide significantly greater bene-
fits than SIMD on kernels, but do not maintain the
same ratio on applications. Observed speedup over
the entire suite of benchmarks ranged from 0.63 to
9.0. For optimized kernels, a factor of 8 improvement
was observed over a 3-way out-of-order execution
superscalar processor.

• Assuming perfect branch prediction and infinite re-
sources, the available parallelism in our benchmark
programs is seen to be between 20 and 5300. Most of
this parallelism is between iterations rather than
within iterations.

• Out-of-order execution and branch prediction as in
state-of-the-art superscalar processors are observed to
be extremely important for media applications.

• Although compiler dependency of SIMD and VLIW
architectures favor superscalar paradigm, this para-
digm does not scale much beyond 4 issue for media
applications. Increase in resources required to double
the performance would be enormously high.

• Compiler intrinsics provide the user with ways to de-
velop both SIMD and VLIW code at a higher level of
code development rather than resorting to hand-
coded assembly or libraries that may not have re-
quired functions or are slow due to overhead.

• Assembly libraries assist in the development of opti-
mized applications, however they often introduce
new data structures and overhead in addition to the
fact that they may not fit into all applications.

• VLIW techniques (without branch prediction) do not
yield any significant performance increase in appli-
cations that contain frequent control-dependent data
dependencies like the g711 and adpcm.

• SIMD techniques have the potential to reduce the
number of dynamic instructions and more impor-
tantly the branch frequency (up to half in some
cases).

• Compiler technology still needs to improve with both
SIMD and VLIW architectures (even though intrin-
sics provide some ease of programming when com-
pared to hand-coded assembly, it is still up to the
code developer to find the data and instruction paral-
lelism).

In future work we would like to evaluate the newly an-
nounced Willamette (from Intel) and TMS320C64xx
(from TI) processors. We also plan to implement more
video and image processing applications such as H.263,
JPEG, and MPEG on both SIMD and VLIW processors.

References

[1] K. Diefendorff and P.K. Dubey, “How multimedia workloads
will change processor design”, IEEE Computer, pp. 43-45,
Sep. 1997.

[2] C.E. Kozyrakis and D.A. Patterson, “A new direction for
computer architecture research”, IEEE Computer, pp. 24-32,
Nov. 1998.

[3] R. Bhargava, L. John, B. Evans and R. Radhakrishnan,
“Evaluating MMX technology using DSP and multimedia ap-
plications”, Proc. 31st IEEE Int. Sym. on Microarchitecture,
pp. 37-46, Dec. 1998.

[4] P. Ranganathan, S. Adve and N. Jouppi, “Performance of im-
age and video processing with general-purpose processors and
media ISA extensions”, Proc. 26th Int. Sym. on Computer Ar-
chitecture, pp. 124-135, May 1999.

[5] W. Chen, H.J. Reekie, S. Bhave and E.A. Lee, “Native signal
processing on the UltraSparc in the Ptolemy environment”,
Proc. IEEE Asilomar Conf. on Signals, Systems, and Comput-
ers, pp. 1368-1372, Nov. 1996.

[6] H. Nguyen and L. John, “Exploiting SIMD parallelism in
DSP and multimedia algorithms using the AltiVec technol-
ogy”, Proc. 13th ACM Int. Conf. on Supercomputing, pp. 11-
20, Jun. 1999.

[7] R.B. Lee, “Multimedia extensions for general-purpose proc-
essors”, Proc. IEEE Workshop on Signal Processing Systems,
pp. 9-23, Nov. 1997.

[8] V. Lappalainen, “Performance analysis of Intel MMX tech-
nology for an H.263 video encoder”, Proc. 6th ACM Int. Conf.
on Multimedia, pp. 309-314, Sep. 1998.

[9] J. Bier and J. Eyre, “Independent DSP benchmarking: meth-
odologies and latest results”, Proc. Int. Conf. on Signal Proc-
essing Applications and Technology, Sep. 1998.

[10] C. Lee, M. Potkonjak and W.H. Smith, “MediaBench: A tool
for evaluating and synthesizing multimedia and communica-
tions systems”, Proc. 30th Int. Sym. on Microarchitecture, pp.
330-335, Dec. 1997.

[11] H. Liao and A. Wolfe, “Available parallelism in video appli-
cations”, Proc. 30th Int. Sym. on Microarchitecture, pp. 321-
329, Dec. 1997.

[12] S. Sriram and C.Y. Hung, “MPEG-2 video decoding on the
TMS320C6x DSP architecture”, Proc. IEEE Asilomar Con-
ference on Signals, Systems, and Computers, Nov. 1998.

[13] V. Zivojnovic, J. Martinez, C. Schlager and H. Meyr,
“DSPstone: A DSP-Oriented benchmarking methodology”,
Proc. Int. Conf. on Signal Proc. Appl. and Tech., Oct. 1994.

[14] EDN Embedded Microprocessor Benchmark Consortium,
http://www.eembc.org.

[15] D. Talla and L. John, “Performance evaluation and bench-
marking of native signal processing”, Proc. 5th European
Parallel Processing Conference, pp. 266-270, Sep. 1999.

[16] L. Kohn et al. “The Visual Instruction Set (VIS) in UltraS-
PARC”, COMPCON Digest of Papers, Mar. 1995.

[17] Intel, “Pentium III processor home”,
http://developer.intel.com/design/PentiumIII/prodbref/

[18] AMD, “Inside 3DNow! Technology”,
http://www.amd.com/products/cpg/k623d/inside3d.html

[19] Motorola, “AltiVec Technology”,
http://www.mot.com/SPS/PowerPC/AltiVec/index.html

[20] Intel, “Performance Library Suite”,
http://developer.intel.com/vtune/perflibst/index.htm.

[21] Texas Instruments, “TMS320C6000 benchmarks”,
http://www.ti.com/sc/docs/products/dsp/c6000/62bench.htm

[22] Intel, “C/C++ compiler”,
http://developer.intel.com/vtune/compiler/cpp/index.htm.

[23] Texas Instruments, “TMS320C6x Optimizing C Compiler
User’s Guide”, Lit. Num. SPRU187B.

[24] Speech Coding Resource.
http://www-mobile.ecs.soton.ac.uk/speech_codecs/.

[25] D. Bhandarkar and J. Ding, “Performance characterization of
the Pentium Pro processor”, Proc. of 3rd Int. Sym. on High
Performance Computer Architecture, pp. 288-297, Feb. 1997.

[26] A. Peleg and U. Weiser, “The MMX technology extension to
the Intel architecture”, IEEE Micro, vol. 16, no. 4, pp. 42-50,
Aug. 1996.

[27] Texas Instruments, “TMS320C6000 CPU and instruction set
reference guide”, Lit. Num. SPRU189D.

[28] Todd Austin and Guri Sohi, “Tetra: Evaluation of serial pro-
gram performance on fine-grain parallel processors”, Techni-
cal Report, University of Wisconsin; Also “Dynamic depend-
ency analysis of ordinary programs”, Proc. of the 19th Int.
Sym. on Computer Architecture, pp. 342-351, 1992

[29] Todd Austin and Doug Burger, "The SimpleScalar Tool Set,
Version 2.0" TR-1342, Computer Sciences department, Uni-
versity of Wisconsin, Madison.

[30] N. P. Jouppi and D. W. Wall, “Available instruction-level paral-
lelism for superscalar and superpipelined machines”, Proc. of Int.
Sym. on Architectural Support for Programming Languages and
Operating Systems, pp. 272-282, 1989.

