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Abstract
Imaging systems that construct an image from phase
information in received signals include synthetic aperture
radar (SAR) and optical Doppler tomography (ODT)
systems. A fundamental problem in the image formation is
phase ambiguity; i.e. it is impossible to distinguish
between phases that differ by 2π. Phase unwrapping in
two dimensions essentially consists of detecting the pixel
locations of the phase discontinuities, finding an ordering
among the pixel locations for unwrapping the phase, and
adding offsets of multiples of 2π. In this paper, we
propose a new method for detecting phase discontinuities.
The method is based on a supervised feedforward
multilayer perceptron neural network. We train and test
the neural network on simulated phase images formed in
an ODT system. For the ODT phase images, the new
method detects the correct unwrapping locations where
some conventional methods fail. The key contribution of
the paper is a one-pass pixel-parallel low-complexity
method for detecting phase discontinuities.

1. Introduction

Many popular imaging systems use phase information
contained within received signals to produce useful
images.  Synthetic Aperture Radar (SAR) [1] systems, for
example, use several scans from an airplane or satellite to
construct a topographic map of large areas of land.  Other
phase-based methods include Magnetic Resonance
Imaging (MRI) [2], acoustic imaging, interferometry, and
X-ray crystallography.

This paper concerns phase imaging in optical Doppler
tomography (ODT) [3] or equivalently color Doppler
optical coherence tomography [4] systems.  ODT is a
broadband interferometric method that uses the phase
difference in two received signals to measure the velocity
of blood within the microvasculature of tissue.  The phase
difference between these two signals at a particular

location is proportional to the velocity in the image at that
location.  Currently, ODT velocity images have a spatial
resolution of 3-10 µm.

The problem inherent in phase imaging is phase
ambiguity; i.e. it is impossible to distinguish phases that
differ by exactly 2π. Signals of the same magnitude, but
with phase equal to 0, 2π, 4π or 2nπ, where n is any
integer, are indistinguishable.  Since it is impossible to
determine the true value of phase, phase values are often
assumed to be between –π and π, or some other range of
2π.  When the true phase value is placed in a specific 2π
range, it is said to be “wrapped.”

Phase unwrapping in images is often performed by
computationally intensive, off-line systems under user
guidance. ODT systems, however, place real-time
constraints on the phase unwrapping of the velocity
images. In this paper, we introduce a new method for two-
dimensional phase unwrapping which

1) detects phase jumps using a neural network,
2) determines ordering of jump locations for phase

unwrapping, and
3) adds the proper phase offset.

The contribution of the paper is in the design of the neural
network to detect phase jumps.  We use a column scan for
the ordering of phase wrapping.  The offsets are –2π, 0
and 2π.  Other phase discontinuities cannot be
compensated.

2. Phase unwrapping in ODT Images

Tribolet [5] developed an early phase unwrapping
method in one dimension.  In 1988, Goldstein’s branch
cut algorithm [1] was the first major attempt at
unwrapping phase in two dimensions.  Goldstein
described the concept of residues and the dependence of
the unwrapped image on the unwrapping path and these
residues.  Since then, there have been a number of other
attempts including the quality-guided path algorithm [6],
the mask cut algorithm [7], and Flynn’s minimum
discontinuity approach [8].  In addition, there have been a
number of optimization techniques including least squares
techniques [9], multigrid methods [10], and Lp-norm
techniques [11].  Besides these methods, there are several
other approaches including cellular automata [12],
polynomial estimation [13], and fractals [14].  There have

B. L. Evans was supported by a US National Science
Foundation CAREER Award under grant MIP-9702707.  T.
E. Milner was supported by the US National Institutes of
Health under grant HL59472-03.

A. C. Bovik, B. L. Evans, and W. Schwartzkopf are with
the Laboratory for Image and Video Engineering,
http://signal.ece.utexas.edu/.



2

also been a few attempts at phase unwrapping with neural
networks in one-dimension [17, 18] and two dimensions
[15, 16], but the two-dimensional techniques have taken
several hours to unwrap even simple images.

The purpose of this work was to develop a method of
phase unwrapping suitable for ODT.  ODT systems have
a special set of requirements not found in many phase
unwrapping environments.  The real-time constraint in
modern ODT systems is ten 100×100 images per second.
This is opposed to SAR and MRI systems in which phase
unwrapping techniques can take days and sometimes
require user interaction.  Unlike these systems, ODT
images must be unwrapped very quickly.  Due to the real-
time constraint, methods that apply iterative optimization
techniques over the entire image are unacceptable for this
application.

ODT images are typically sparse; i.e., blood flow
velocity is zero through most of the image with a few
vessels spread throughout the image.  Furthermore, blood
vessels are generally circular (or elliptical if the vessel is
oriented at an angle).  The blood flow inside the vessels
follows a parabolic distribution with respect to velocity,
where the fastest velocity is in the center of the vessel.

Because of these characteristics of ODT images, a
feedforward neural network was chosen to help solve
phase unwrapping problem.  Neural networks are a good
choice because forward propagation is simple and fast.
Neural networks can often learn characteristics of the
input data. If trained properly, the network can use
information about the consistent structure of ODT images
to unwrap more accurately.  This approach is also
desirable because of a neural network’s ability to
generalize input data and ignore noise.  This ability is
useful in ODT systems, which produce noisy images (see
Figure 3). In addition, the limited success of such
networks in one dimension [17, 18] motivates their use in
two dimensions.

3. Proposed Algorithm

We design a multilayer perceptron neural network (25
inputs, 5 hidden units, and 3 outputs) to detect phase
jumps.  For each pixel in an image, the network will look

at the surrounding pixels and determine the true phase of
that pixel based on its wrapped value and the wrapped
values of its neighbors.

Each of the wrapped values of the neighboring pixels
and the wrapped value of the current pixel will be an
input into the network.  Figure 1 shows the inputs to
neural net.  This neural network is then trained so that it
predicts the relative jump from the pixel above it.
Because we know that the phase at the top of ODT
images must be zero, the network can start at the top of
the image and unwrap the entire image in this way.

The outputs of the network follow the method in [18].
The network has three outputs.  The first output is the
probability that the current pixel is in the 2π range above
that of the pixel above it (a positive wrap).  The second is
the probability that the current pixel is in the same 2π
range as the pixel above it (no wrap). And the third output
is the probability that the current pixel is in the 2π range
below that of the pixel about it (negative wrap).

This network was then trained using the conjugate
gradient method on 90 simulated ODT images.  Because
the images were simulated, the true phase values were
available for training the network.  Each training image
contained around 2500 pixels and simulated blood vessels
with different sizes, elliptical shapes, and magnitudes of
blood flow.  This translates to over 200,000 training
vectors.  A small set of additional images (10 images) was
used to validate that the network did not overfit the
training data.

A number of network parameters were varied to
determine which network architecture was most effective
for the ODT phase unwrapping problem.  Several
different neighborhood sizes were tried, but a 5×5
neighborhood seemed to give the best results.  Since each
pixel in the neighborhood was an input to the network, the
final network had 25 inputs.  The number of hidden units
was also varied, and a number around 5 seemed to give
the best results.  The hidden units used the hyperbolic
tangent sigmoid activation function.  Input and output
units used linear activation functions.

The feedforward neural network could be implemented
in real time.  At each pixel, the network would require
140 multiplications, 132 additions, and 5 table lookups
(for the activation functions of the hidden units).  If one
assumes 2 instructions for a 256 word table lookup, then
each pixel would take 150 DSP instructions; that is, 140

Figure 1: Neural network inputs

Neighboring pixels

Current pixel

Positive No Jump Negative
Positive 0.89 0.11 0
No Jump 0.0004 0.9988 0.0008
Negative 0 0.09 0.91

Table 1: Confusion matrix
for the neural network
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multiply-accumulates and 10 table lookup instructions.
At 10 frames per second of 100×100 images, 15 million
DSP instructions per second would be required.

4. Results

The algorithm was tested on 100 simulated images of
blood vessels of different sizes, shapes, and magnitudes of
flow.  Figures 2-5 show one of the simulated blood
vessels on which the neural network was tested.  A three-
dimensional representation of the actual blood flow in this
vessel being simulated is shown in Figure 2, where the
height in the image represents the blood velocity at that
point.  Figure 3 shows the wrapped image of the blood
vessel after all values are wrapped into the range [-π, π).
Figure 4 shows the pixels around the small vessel and
where the positive and negative wraps in this vessel were
detected by the neural network.  Black pixels represent
positive phase wraps in the vertical direction, and white
pixels represent negative phase wraps.  Figure 5 shows all
the pixels that are in a 2π range higher than the rest of the
image.  This vessel was unwrapped correctly by the
neural network.

On the 100 simulated images, the neural network
correctly identified 90% of the phase jumps.
Furthermore, it only detected jumps on 0.1% of the pixels
on which no jump occurred.

A confusion matrix for the classifier is given in Table
1.  This matrix gives the percentage of pixels of the type
given in the row that are classified as the type given in the
column.  Therefore, the fraction of pixels with no jump
that were classified as having a positive jump is 0.0004.

5. Conclusions

We propose a new phase discontinuity detection
method based a feedforward neural network method. The
method is pixel-parallel and requires only one pass over
the phase image. The more difficult problem of ordering
the phase discontinuities for proper phase unwrapping is
not addressed in this paper.  It has been shown [1] that the
order in which the jumps are unwrapped makes a large
difference in the final unwrapped image that is obtained.
We simply unwrap along the columns of the image.

Many phase unwrapping methods go through many
iterations of optimization and take hours to complete even
on small images.  Forward propagation in neural networks
is simple, and an entire image can be unwrapped in a
fraction of a second. While all previous two-dimensional
phase unwrapping methods [1, 6-18] were designed for
general phase images, the neural network method can
learn specific types of images.  Other methods produce
comparable results, but many of them take much longer
than the proposed method.

In summary, using neural networks has been effective
in unwrapping difficult ODT phase images.  Another
interesting problem would be to see if similar results
could be obtained with other imaging techniques such as
SAR and MRI by training on images from those systems.
The neural network’s speed and accuracy in phase
unwrapping specific types of images certainly merit
further study.  This method of phase unwrapping could
prove to be useful for other image processing systems.
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Figure 2: Simulated flow in a
blood vessel without wrapping

Figure 3: Simulated flow in a
blood vessel after wrapping

Figure 4: Location of positive (black)
and negativate (white) phase jumps

Figure 5: Pixels in the range [π, 3π)


