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Abstract

The minimum intersymbol interference (min-ISI)

method yields time-domain equalizer (TEQ) designs for

discrete multitone (DMT) modulation transceivers that

are close to channel capacity. For eight standard ADSL

channels, the min-ISI design method reaches within 1%

of the matched �lter bound at the TEQ output. How-

ever, the min-ISI method relies several computation-

ally expensive matrix multiplications. In this paper, we

develop low-complexity algorithms for these mulitplica-

tions to allow for real-time implementation of the min-

ISI method on programmable digital signal processors.

1. Introduction

Discrete multitone (DMT) modulation is widely
used in ADSL and VDSL transceivers, and in digi-
tal audio and video broadcasting transceivers, because
of their ability to transmit e�ciently over spectrally
shaped channels. It acheives this goal by dividing the
channel into many equally spaced frequency bands,
called subchannels, and uses most of these subchannels
to transmit data. In this way, the coding can be tai-
lored for each subchannel so that most of the channel
bandwidth is used without sacri�cing a low bit error
rate.

DMT modulation is implemented by the fast Fourier
transform (FFT), which naturally leads to processing
data in blocks, or symbols. In spectrally shaped chan-
nels, one symbol will overlap signi�cantly with the next
symbol, causing intersymbol interference (ISI). ISI cor-
rupts the FFT spectrum of the received symbols and
thus is a major cause of bit errors in a DMT transceiver.

The �rst line of defense against ISI is to prepend

the last � samples of a symbol to the beginning of
the symbol. This addition, known as a cyclic pre�x
(CP), e�ectively adds a bu�er between adjacent sym-
bols while keeping the FFT spectra of the symbols in-
tact. However, the CP must be short because longer
CPs decrease the e�ciency of a DMT transceiver.

The second line of defense is to add a �nite impulse
response (FIR) �lter, known as a time-domain equal-
izer (TEQ), after the A/D converter in the receiver.
The TEQ attempts to shorten the channel so that the
combined impulse response of the channel and TEQ is
no longer than � + 1 sample periods. In this way, any
symbol passing through the channel and TEQ will only
overlap into the next symbol's cyclic pre�x, preventing
ISI.

Since it is generally impossible for a TEQ to per-
fectly shorten the channel to � + 1 sample periods,
one approach to TEQ design is to shorten the chan-
nel in such a way that maximizes channel capacity at
the TEQ output, e.g. by the Minimum-ISI method [2].
However, the Minimum-ISI method requires compu-
tationally complex matrix multiplications. Therefore,
the purpose of this paper is to reduce the complexity of
these multiplications to allow for real-time implemen-
tation of the mininum ISI method on a programmable
digital signal processor (DSP).

2. The Minimum-ISI Method

The minimum-ISI method models the channel as an
FIR �lter with discrete-time impulse response hk. The
estimation of the channel is usually performed in the
frequency domain, so the impulse response length is the
same as the FFT length in the DMT system, which
we denote as N . We represent the additive noise in
the channel model with a discrete-time random process
nk. If we let xk be a random process representing the



transmitted signal, the signal arriving at the receiver
is

hk � xk + nk

where � denotes linear convolution.
The receiver then processes the received signal with

the TEQ, which is an FIR �lter with an impulse re-
sponse of wk. The length of the �lter, denoted as Nw,
is usually much smaller than N . So at the output of
the TEQ,

yk = hk � wk � xk + wk � nk

The idea behind the minimum-ISI method is to de-
compose the received signal into its signal, interference,
and noise components. Notice that transmitted signal
xk consists of symbols of N points separated by cyclic
pre�xes of a �xed length �. Therefore, all of the ISI can
be removed if the equalizer can successfully shorten the
channel impulse response to � + 1 samples. With this
insight, we formulate the following windowing function
gk to isolate the desired part of hk

gk =

�
1; � � k � �+ �

0; otherwise

where � 2 f0; 1; : : : ; N � �g. A fast heuristic method
[4] exists to determine a priori an estimate of the opti-
mal value of �. With this windowing function, we can
now separate the signal, interference, and noise com-
ponents of the received signal as

yk = h
signal
k � xk + hISIk � xk + wk � nk (1)

where hsignalk = gk(hk � wk) and hISIk = (1 � gk)(hk �
wk).

The decomposition in (1) enables the following def-
inition of the SNR in each subchannel:

SNRi =
jH

signal
i j2Sx;i

jHISI
i j2Sx;i + jWij2Sn;i

(2)

Note that this de�nition assumes that both xk and
nk are wide sense stationary, where Sx is the N -point
power spectrum of xk (without the cyclic pre�x) and
Sn is the N -point power spectrum of nk. Since hISIk

can have up to N+Nw�1 nonzero samples, Thus H
ISI

is actually the spectrum of the �rst N samples of hISIl .
However, this small truncation is a reasonable approx-
imation, since in practice the last Nw � 1 samples of
hISIl are generally very close to zero.

In matrix-vector notation,

H
signal
i = qHi GHw

HISI
i = qHi DHw (3)

Wi = qHi Fw

where

w =
�
w0 w1 : : : wNw�1

�T

H =

2
6664

h0 h�1 : : : h�(Nw�1)
h1 h0 : : : h�(Nw�2)
...

...
. . .

...
hN�1 hN�2 : : : h�(N�Nw)

3
7775

G = diag
�
g0 g1 : : : gN�1

�T
D = I�G

qi =
�
1 ej2�i=N : : : ej2�i(N�1)=N

�T
So the SNR in subchannels can be written as

SNRi =
Sx;ijq

H
i GHwj

2

Sn;ijq
H
i Fwj

2 + Sx;ijq
H
i DHwj

2
(4)

where qHi Fw is the ith N -point FFT coe�cient of w.
Using the SNR de�nition in (4) the channel capacity

of the DMT transceiver can be written as

bDMT =

N�1X
i=0

log2

�
1 +

SNRi

�

�
(5)

where � is the desired system margin [3]. By maximiz-
ing this function with respect to w, we can obtain the
maximum channel capacity (MCC) TEQ [2].

The objective function in (5) is a nonlinear function
of w, which requires nonlinear optimization methods.
The min-ISI method simpli�es the optimization prob-
lem by minimizing the total distortion power instead
of maximizing channel capacity. Since a power term is
always nonnegative, minimizing the distortion power
in each subchannel (the denominator of SNRi in (4))
is equivalent to minimizing the sum of the distortion
power of all subchannels, which can be written as [2]

wTHTDT
X
i2S

�
qijHij

2 Sx;i

Sn;i
qHi

�
DHw = wTAw (6)

To prevent minimization of the signal power, we con-
strain the signal path impulse response energy to one:

jjhsignaljj2 = wTHTGTGHw = wTBw = 1 (7)

Hence, the output signal power is equal to the input
signal power. Finally, the optimization problem for
minimum ISI becomes

min
w

wTAw s.t. wTBw = 1 (8)

Solving (8) with respect to w gives results very close
to that of maximizing (5). We rewrite (6) and (7) as

A = (QDH)Hdiag(S)(QDH) (9)

B = (GH)T (GH) (10)



where Q =
�
q0 q1 � � � qN�1

�T
and S is a vector

of length N containing the subchannel weighting such
that Si = jHij

2Sx;i=Sn;i.

3. Recursive Min-ISI Method

In (10), we can view bothA andB as the multiplica-
tion of anNw�N matrix with anN�Nw matrix, where
Nw � N . Thus it makes sense precompute A and B
for the optimization problem, since both matrices have
dimensions of only Nw �Nw. The small size of A and
B allows the solution of the optimization problem to
be found rapidly by the inverse power method or some
other means. However, naively computing A and B is
very expensive for a real-time implementation. Hence
this section will take advantage of the structure in the
argument matrices, especially the Toeplitz structure of
H, in developing an e�cient algorithm to compute A
and B.

3.1. Fast calculation of matrix B

A fast algorithm to calculate B is straightforward.
The nth column of the convolution matrix H can be
written as

Hn =
�
h0�n h1�n : : : hN�1�n

�T
Left multiplication by the windowing matrix G gives

GHn =
�
0 h��n : : : h�+��n 0

�T
where 0 denotes a row of zeros. Then the elements of
B can be given as

Bm;n = (GHm)
T (GHn) =

�+�X
k=�

hk�mhk�n (11)

From (11) we note that

Bm+1;n+1 =
�+��1X
k=��1

hk�mhk�n

which arrives us at the following recursive formula on
the diagonals of B:

Bm+1;n+1 = Bm;n

�h�+��mh�+��n

+h��1�mh��1�n (12)

B can then be computed as follows. First, use
(11) to directly calculate the �rst column of B. This
takes Nw(� + 1) multiply-accumulate (MAC) oper-
ations. Then use the recursion in (12) to �ll out

the lower triangular part of B. This will take only
Nw(Nw � 1) MACs to complete. Since B is symmet-
ric, we are done calculating B using only Nw(� +Nw)
MACs.

3.2. Fast calculation of matrix A

We will proceed in a similar fashion to produce an
algorithm to compute A. We start by writing out the
nth column of DH:

DHn =
�
h0�n : : : h��1�n 0

h�+�+1�n : : : hN�1�n
�T

Since left-multiplying by Q produces the N -point FFT
for each column of DHn, then it follows that

(QDH)m;n =

 
��1X
k=0

+
N�1X

k=�+�+1

!
hk�ne

�j2�mk=N

By using the fact that

Am;n =

N�1X
p=0

(QDH)Hm;pSp(QDH)p;n

we have the following formula for the elements of A:

Am;n =

��1X
k=0

��1X
l=0

hk�mhl�nsk�l (13)

+

��1X
k=0

N�1X
l=�+�+1

hk�mhl�nsk�l (14)

+

N�1X
k=�+�+1

��1X
l=0

hk�mhl�nsk�l (15)

+

N�1X
k=�+�+1

N�1X
l=�+�+1

hk�mhl�nsk�l (16)

where we de�ne sk�l as

sk�l =

N�1X
p=0

Spe
j2�(k�l)p=N (17)

Thus sk�l can be viewed as an inverse FFT component
of the vector S. Since S is both real and symmetric
about the Nyquist frequency, sk�l is always real, and
furthermore sl�k = sk�l.

The double sums in (13){(16) allow us to decompose
A into the sum of four matrices, each of the form

Cm;n =
bX

k=a

dX
l=c

hk�mhl�nsk�l (18)



As before, we notice that

Cm+1;n+1 =

b�1X
k=a�1

d�1X
l=c�1

hk�mhl�nsk�l

From this realization, we can prove the following re-
cursive formula for the diagonals of C:

Cm+1;n+1 = Cm;n

�hb�mhd�nsb�d

�hb�mf(c; d; b; n)

�hd�nf(a; b; d;m)

+ha�1�mhc�1�nsa�c

+ha�1�mf(c; d; a� 1; n)

+hc�1�nf(a; b; c� 1;m) (19)

where we de�ne the function f as

f(�; �; ; �) =

��1X
k=�

hk��sk� (20)

3.3. Computational complexity analysis

Each occurrence of the function f in (19) has the
�rst three parameters constant, and the last parameter
either m or n. Since there are only Nw � 1 possible
values of m or n for the recursion, so there are only
4(Nw � 1) di�erent values of f . Half of these values
will require b � a MACs each, and the other half will
require d�c MACs each, so we will need 2(Nw�1)(b�
a+d�c) MACs to compute all possible values of f . In
the special case that a = c and b = d (i.e. in the double
sums (13) and (16)), we only have 2(Nw � 1) di�erent
function evaluations, thus needing only 2(Nw�1)(b�a)
MACs to compute all values of f . Using the recursive
formula to �ll in the lower triangular part of C will
take at most 4Nw(Nw � 1) extra MACs to complete.

An immediate savings in computation can be real-
ized by noticing that matrices formed by the double
sums in (14) and (15) are actually transposes of each
other. As a result, their corresponding recursive formu-
las are the same except for the fact that m and n are
swapped. This allows both matrices to use the same
set of values of f for their recursive formulas.

Of course, we still need the �rst column of C in
order to use the recursion in (19). We cannot directly
use (18) to compute the �rst column|such a method
would be far too ine�cient. A better solution is to use
the matrix equation for A in (9), reformulated here to
express the desired order of multiplication:

A0 = (DH)TQHdiag(S)QDH0 (21)

where A0 denotes the �rst column of A. By using
the above formula, we can compute A0 using 2 N -
point FFTs and N + Nw(N � � � 1) MACs. Since
many DMT systems have hardware FFTs, a possible
implementation is to o�oad the FFT operations to the
hardware while a DSP performs the other calculations.

Notice that approach directly calculates the �rst col-
umn of A instead of the �rst columns of the individual
double sums. Thus, we simply add the four recursive
formulas from the double sums of A together and use
the resulting formula to �ll the lower triangular part of
A. The total amount of computations needed to com-
pute both A and B then becomes 2 N -point FFTs and
4(Nw � 1)(N + 4Nw � � � 2) +Nw(N +Nw � 1) +N

MACs. In practice, N is much larger than both � and
Nw, so the number of MACs required approximates to
about 5NwN .

4. Row-Rotation Min-ISI Method

We can reduce the computational complexity of our
method by noticing that if � = 0, then the double sums
in (13), (14), and (15) vanish to zero. One possible way
to e�ectively force � to be zero is to introduce the \row
rotation" matrix R, de�ned by the equation

R =
�
eN�� : : : eN�1 e0 : : : eN���1

�
(22)

where e0, : : :, eN�1 are the standard basis vectors in
Rn. R has the following properties:

QR = diag(q�)
HQ (23)

R diag(d) = diag(Rd)R (24)

where d can be any N -dimensional vector, but in this
case represents the diagonal of the windowing matrix
D. Using these properties of R, we have following
equivalent form of A:

A = (Q diag(Rd)RH)Hdiag(S)(Q diag(Rd)RH)
(25)

Here, (25) has the same structure as the original equa-
tion for A in (9), except for the possibility that RH
is not Toeplitz. So as it stands, we cannot use our
recursive methods here because they depend on the
Toeplitz nature of H. However, RH is guaranteed to
be Toeplitz if the last Nw � 1 samples of the channel
impulse response are zero. In practice, the last Nw � 1
samples are indeed extremely close to zero, and so we
lose almost no accuracy by modeling the channel with
N � Nw + 1 coe�cients padded with Nw � 1 zeros.
Such an approach is more natural in some respects be-
cause now the convolution of the channel and equalizer
is fully represented by the matrix multiplication Hw.



With this slight change to the channel impulse re-
sponse, we can write the following equation for A

Am;n =

N�1X
k=�+1

N�1X
l=�+1

hR;k�mhR;l�nsk�l (26)

where hR;m�n is the element at the mth row and nth

column of the Toeplitz matrix RH. This formulation
reduces the complexity of computing A and B to 2
FFTs and 2(Nw�1)(N+2Nw���2)+Nw(N+Nw�

1) +N MACs, or approximately 3NwN MACs.

5. No-Weighting Min-ISI Method

Suppose that we ignore the subchannel weighting by
assuming that each subchannel has equal importance
in the cost function. Then the matrix diag(S) becomes
a multiple of the identity matrix, and the orthogonality
of the FFT matrix Q gives

A =M(DH)T (DH) (27)

where M is some positive scalar. This assumption es-
sentially reduces the min-ISI method to the maximum
SSNR method [5]. We can use the same methods used
to derive (11) and (12) to devise a fast algorithm to
calculate A. Since this simpli�ed method does not re-
quire the use of an FFT, we are not limited by the size
of the vectors in the convolution matrix H. Hence we
can use a full convolution matrix with N+Nw�1 rows
if desired, provided that we also enlarge the diagonal
matrices G and D accordingly.

This simpli�ed method reduces the calculation of A
and B to NwN + 5Nw(Nw � 1) MACs|without the
need for any FFT operations. While equally weighing
the subchannels is indeed a major simpli�cation, the
maximum SSNR method performs fairly well in prac-
tice. Therefore, this simpli�ed method is a reasonable
approach if computational resources are at a premium.

6. Results

Table 1 summarizes the computational complexity
of the TEQ design methods which require computation
ofA andB. The complexities for the original minimum
ISI method and maximum SSNR method was derived
from the computation of the formulas in (9), (10), and
(27) where the optimal order of matrix multiplication
is speci�ed by the parentheses of the formulas. Com-
puting QDH e�ciently involves direct computation of
the �rst column using an FFT, and the application
of sliding window methods to compute the rest of the
columns. We remark that to keep the comparisons fair,

Method Complexity
(excluding FFTs)

original 1
2
(N + �)Nw(Nw + 1)

min-ISI +5N(Nw � 1) +NNw

recursive 4(Nw � 1)(N + 4Nw � � � 2)
min-ISI +Nw(N +Nw � 1) +N

row-rotation 2(Nw � 1)(N + 2Nw � � � 2)
min-ISI +Nw(N +Nw � 1) +N

maximum 1
2
NNw(Nw + 1)

SSNR
no-weighting NNw + 5Nw(Nw + 1)
min-ISI

Table 1. Comparison of the computational
complexities of two previous methods (orig-
inal min-ISI and maximum SSNR) with the
three proposed methods.

all obvious optimizations, such as complex conjugate
mirroring and the real, symmetric nature of A and B
were taken into consideration when computing these
complexities.

Table 2 shows the performance and computational
complexity of the TEQ design methods obtained from
simulations. All of the methods achieve close to 100%
channel capacity, with a slight gap between methods
that include subchannel weighting and those that do
not. The methods proposed in this paper drastically
reduce the complexity of calculating A and B. In ad-
dition, we expect the complexity gap to increase as Nw

increases, and the performance gap to increase as the
spectral shaping in the channel becomes more severe.

The results in Table 2 also show that maximizing
the SSNR is does not necessarily maximize channel ca-
pacity. Although the maximum SSNR method [5] gives
higher SSNR, the achievable channel capacity is lower
than the min-ISI base methods. Fig. 1 shows a screen
shot of a Matlab DMTTEQ toolbox developed by Ar-
slan, Lu, and Evans, which is available at

http://signal.ece.utexas.edu/~arslan/dmtteq/
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Figure 1. A snapshot of the MATLAB DMTTEQ
toolbox, which was used for all simulations.


