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Why DMT?
Typical frequency response of ADSL channels

Typical noise spectrum of ADSL channels

Solution: Partition channel into subchannels using FFT
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Simplest possible DMT transceiver

QAM IFFTS/P P/S D/A FFTS/PA/D FEQ QAM P/S

Data in Data out

ChannelChannel
Transmitter Receiver

“–Houston, we have a problem…”
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Solution to the ISI problem

CP CP

out

QAM IFFTS/P P/S D/A FFTS/PA/D FEQ QAM P/S

Transmitter Receiver

TEQ

in

Ouch! Ahhh…

CP •CP creates
room between
symbols
•TEQ shortens
channel to fit
within CP
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Goal: Given a CP of length ?, design the
TEQ such that it shortens channel to ? + 1
sample periods.

Objection: But this is generally impossible
to do perfectly! L
Revised Goal: Design TEQ so that it
minimizes ISI in such a way that
maximizes channel capacity.

Response: Sounds good, but how do
accomplish that? K



The min-ISI method [Arslan, Evans, Kiaei, 2000]
Observation:  Given a channel impulse response of h
and an equalizer w, there is a part of h * w that causes
ISI and a part that doesn’t.

•The length of the window is ? + 1
•Heuristic determination of the optimal window offset,
denoted as ? , is given by Lu (2000).
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Matrix ingredients of the min-ISI method

• The equalizer w.  This is a little vector.

• The convolution matrix H, such that (Hw)k = (h * w)k.

• The windowing matrix D.  This is a diagonal matrix that
isolates the part of h * w causing ISI.

• The FFT matrix Q.  Takes FFT of DHw.

• The weighting matrix diag(S).
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The Optimization Problem

Goal: Find w that minimizes 
2

)(diag QDHwS

Translation: Find w that minimizes a weighted
sum of the ISI power gains in each subchannel.

Something is missing here… a constraint!

Constrain 1|||| 2 =GHw , where G = I – D

Translation: Prevent w from also
minimizing the desired part of
the h * w!



The Matrix Multiplication Problem (finally!)
The optimization problem can be restated as:

Minimize wTAw, where A is defined as 

Subject to wTBw = 1, where B is

H
D
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A and B are small, so problem can be solved quickly
so long as we can find A and B.

Turns out to be a BIG problem for real-time implementation.



The Solution to the Problem – Sliding Windows

Arises frequently with Toeplitz matrices (i.e. H)

Sliding windows for single sums:

Subtract Add

Sliding windows for double sums:

Subtract

Add



Fast Algorithm for Matrix B

Explicit formula:
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Very nice!

What is going on…



Fast Algorithm for Matrix A
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Variants of the algorithm

Row-rotation method
• “Rotates” the rows in the convolution matrix H to
simplify the explicit formula of A to one double sum.
• Assumes last few samples of impulse response close
to zero.  GOOD assumption.
• Virtually same performance as original method.

No-weighting method
• Assuming equal weighting of subchannels in the
optimization problem.  Equivalent to maximum
SSNR method by Melsa, Younce, and Rohrs (1996).
• Simplifies calculation of A to a single sum.
• Almost as good performance as original method.
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Results

10064N Nw + 5 Nw (Nw – 1)55.497.8No-weighting
min-ISI

78836½ N Nw(Nw + 1)58.997.9Original max
SSNR

258722(Nw – 1) (N + 2Nw – ? –2) +
Nw (N + Nw – 1) + N

37.599.5Row rotation
min-ISI

444324(Nw – 1) (N + 4Nw – ? –2) +
Nw (N + Nw – 1) + N

37.999.5Recursive min-
ISI

132896½ (N + ?) Nw (Nw + 1) +

5 N (Nw – 1) + NNw

37.899.6Original min-ISI

MACsComplexitySSNR
(dB)

Channel
capacity %

Method

N = size of FFT
Nw = size of TEQ
? = size of cyclic prefix

Channel used : CSA loop 1
System margin: 6dB
N = 512, Nw = 17, ? = 32


