Efficient Matrix Multiplication Methods to Implement a Near-optimum Channel Shortening Method for DMT Transceivers

Jeffrey Wu, Güner Arslan, Dr. Brian L. Evans The University of Texas at Austin Asilomar Conference October 30, 2000

Why DMT?

Typical frequency response of ADSL channels

Typical noise spectrum of ADSL channels

Solution: Partition channel into subchannels using FFT

Simplest possible DMT transceiver

"-Houston, we have a problem..."

Solution to the ISI problem

Goal: Given a CP of length ?, design the TEQ such that it shortens channel to ? + 1 sample periods.

Objection: But this is generally impossible

to do perfectly!

Revised Goal: Design TEQ so that it minimizes ISI in such a way that maximizes channel capacity.

Response: Sounds good, but how do accomplish that?

The min-ISI method [Arslan, Evans, Kiaei, 2000]

Observation: Given a channel impulse response of h and an equalizer w, there is a part of h * w that causes ISI and a part that doesn't.

Does not cause ISI (will stay within cyclic prefix)

The length of the window is ? + 1
Heuristic determination of the optimal window offset, denoted as ?, is given by Lu (2000).

Matrix ingredients of the min-ISI method

- The equalizer w. This is a little vector.
- The convolution matrix **H**, such that $(\mathbf{Hw})_{k} = (h * w)_{k}$.
- The windowing matrix **D**. This is a diagonal matrix that isolates the part of h * w causing ISI.
- The FFT matrix **Q**. Takes FFT of **DHw**.
- The weighting matrix diag(**S**).

W

Η

 \mathbf{W}

The Optimization Problem

Goal: Find w that minimizes $\left\|\sqrt{\operatorname{diag}(\mathbf{S})}\mathbf{Q}\mathbf{D}\mathbf{H}\mathbf{w}\right\|^2$

Translation: Find **w** that minimizes a weighted sum of the ISI power gains in each subchannel.

Something is missing here... a constraint! Constrain $\|\mathbf{GHw}\|^2 = 1$, where $\mathbf{G} = \mathbf{I} - \mathbf{D}$

Translation: Prevent **w** from also minimizing the *desired* part of the h * w!

The Matrix Multiplication Problem (finally!)

The optimization problem can be restated as:

Minimize $\mathbf{w}^T \mathbf{A} \mathbf{w}$, where \mathbf{A} is defined as

Subject to $\mathbf{w}^T \mathbf{B} \mathbf{w} = 1$, where **B** is

$$\mathbf{H}^{T} \land \mathbf{G}^{T} \land \mathbf{G} \mathbf{H} = \mathbf{B}$$

A and **B** are small, so problem can be solved quickly *so long as we can find* **A** *and* **B**.

Turns out to be a BIG problem for real-time implementation.

The Solution to the Problem – Sliding Windows

Arises frequently with Toeplitz matrices (i.e. **H**) Sliding windows for single sums:

Fast Algorithm for Matrix B

Explicit formula:

$$B_{m,n} = \sum_{k=\Delta}^{\Delta+\nu} h_{k-m} h_{k-n}$$

The sliding window:

$$B_{m+1,n+1} = \sum_{k=\Delta-1}^{\Delta+\nu-1} h_{k-m} h_{k-n}$$

What is going on...

The recursion:

$$B_{m+1,n+1} = B_{m,n} - h_{\Delta+\nu-m} h_{\Delta+\nu-n} + h_{\Delta-1-m} h_{\Delta-1-n}$$

Very nice!

Fast Algorithm for Matrix A

Explicit formula:

$$A_{m,n} = \sum_{k=0}^{\Delta-1} \sum_{l=0}^{\Delta-1} h_{k-m} h_{l-m} s_{k-l} + \sum_{k=0}^{\Delta-1} \sum_{l=\Delta+\nu+1}^{N-1} h_{k-m} h_{l-m} s_{k-l} + \sum_{k=\Delta+\nu+1}^{N-1} \sum_{l=0}^{\Delta-1} h_{k-m} h_{l-m} s_{k-l} + \sum_{k=\Delta+\nu+1}^{N-1} \sum_{l=\Delta+\nu+1}^{N-1} h_{k-m} h_{l-m} s_{k-l}$$
here $s_{k-1} = \sum_{k=\Delta+\nu+1}^{N-1} \sum_{l=\Delta+\nu+1}^{N-1} \sum_{k=\Delta+\nu+1}^{N-1} h_{k-m} h_{l-m} s_{k-l}$

where
$$s_{k-l} = \sum_{p=0}^{\infty} S_p e^{j2\pi(k-l)}$$

The sliding window:

$$C_{m+1,n+1} = \sum_{k=a-1}^{b-1} \sum_{l=c-1}^{d-1} h_{k-m} h_{l-m} s_{k-l}$$

Recursive formula:

$$\begin{split} C_{m+1,n+1} &= C_{m,n} \\ &\quad -h_{b-m}h_{d-n}s_{b-d} \\ &\quad -h_{b-m}f(c,d,b,n) \\ &\quad -h_{d-n}f(a,b,d,m) \\ &\quad +h_{a-1-m}h_{c-1-n}s_{a-c} \\ &\quad +h_{a-1-m}f(c,d,a-1,n) \\ &\quad +h_{c-1-n}f(a,b,d-1,m) \end{split}$$

where
$$f(\alpha, \beta, \gamma, \delta) = \sum_{k=\alpha}^{\beta-1} h_{k-\delta} s_{k-\gamma}$$

Variants of the algorithm

Row-rotation method

• "Rotates" the rows in the convolution matrix **H** to simplify the explicit formula of **A** to one double sum.

- Assumes last few samples of impulse response close to zero. GOOD assumption.
- Virtually same performance as original method.

No-weighting method

- Assuming equal weighting of subchannels in the optimization problem. Equivalent to maximum SSNR method by Melsa, Younce, and Rohrs (1996).
- Simplifies calculation of A to a single sum.
- Almost as good performance as original method.

Results

Method	Channel capacity %	SSNR (dB)	Complexity	MACs
Original min-ISI	99.6	37.8	$\frac{1}{2}(N+?)N_{w}(N_{w}+1) + 5N(N_{w}-1) + NN_{w}$	132896
Recursive min- ISI	99.5	37.9	$\frac{4(N_w - 1)(N + 4N_w - ? - 2) + N_w(N + N_w - 1) + N}{N_w(N + N_w - 1) + N}$	44432
Row rotation min-ISI	99.5	37.5	$\frac{2(N_w - 1) (N + 2N_w - ? - 2) + N_w (N + N_w - 1) + N}{N_w (N + N_w - 1) + N}$	25872
Original max SSNR	97.9	58.9	$\frac{1}{2} N N_{w}(N_{w}+1)$	78836
No-weighting min-ISI	97.8	55.4	$N N_w + 5 N_w (N_w - 1)$	10064

N = size of FFT $N_w = \text{size of TEQ}$? = size of cyclic prefix Channel used : CSA loop 1 System margin: 6dB $N = 512, N_w = 17, ? = 32$