Adaptive Multiscale Estimation for Fusing Remotely Sensed Imagery

• Clint Slatton, Melba Crawford, and Brian Evans

Center for Space Research The University of Texas at Austin crawford@csr.utexas.edu http://www.csr.utexas.edu

The University of Texas at Austin

Center for Space Research

Outline

- Introduction
- Data Fusion
 - Kalman filter for data fusion
 - Multiscale Kalman filter
 - Adaptive estimation
- Measurements
 - INSAR and LIDAR measurements
 - Transforming into state variables
- Results
 - Selected data sets
 - Parameter estimates
- Conclusions

Research Motivation

- Need exists for mapping surface topography over large areas
 - Covering $\geq 100 \text{ km}^2$ area requires remote sensing methods
 - Applications require ≤ 10 m horizontal resolution and ≤ 1 m vertical accuracy
- Critical applications (for low-relief topography)
 - *Hydrology*: shallow water runoff channels (~0.1 m vertical accuracy)
 - *Seismology*: active faults (~1 m vertical accuracy)
- Best technologies for low-relief topographic mapping
 - Interferometric synthetic aperture radar (INSAR)
 - Covers large area, but poor accuracy (especially when vegetation is present)
 - Laser altimeter (LIDAR))
 - Excellent accuracy, but covers small area
- Need both sensors (data fusion)
 - Exploit advantages of both sensors

INSAR and LIDAR Imaging

Large coverage area \rightarrow primary sensor

- INSAR (nominal)
 - Side-looking

 θ_L

- Fixed illumination
- 6 cm wavelength
- Vertical accuracy $\geq 2 \text{ m}$
- 10 m pixel spacing
- NASÁ/JPL TOPSAR

- LIDAR (nominal)
 - Downward-looking
 - Scanning illumination
 - $-1 \mu m$ wavelength
 - Vertical accuracy $\geq 0.1 \text{ m}$
 - ≤ 5 m pixel spacing
 - Optech, Inc.

complementary sensor

imaging swath - 0.3 km

Estimation Framework

The University of Texas at Austin

Choosing the Approach

- *Smooth* noisy estimates from INSAR inversion
- *Combine* data in a formal way, i.e. account for measurement errors
- Choices:
 - Wiener filter provides MMSE linear smoothing
 - Median filter provides nonlinear smoothing
 - Not suited to MIMO models
 - Not suited to indirect measurements
 - Wavelet denoising provides local smoothing
 - Provides multiresolution analysis, but
 - Not suited to MIMO models
 - Not suited to indirect measurements
 - Kalman filter provides MMSE linear smoothing
 - Allows multiresolution analysis
 - Handles MIMO models
 - Handles indirect measurements
 - Provides error measure automatically

Linear Dynamic Model

- State-space approach
 - Can model any random process having rational spectral density function using state model with finite dimensionality [Brown and Hwang 1997]
 - Can estimate internal variables not directly observed
- Use discrete formulation
 - Data from sampled (imaged) continuous process

$$\boldsymbol{x}_{k+1} = \boldsymbol{\Phi}_k \boldsymbol{x}_k + \boldsymbol{w}_k$$
$$\boldsymbol{y}_k = \boldsymbol{H}_k \boldsymbol{x}_k + \boldsymbol{v}_k$$

- \boldsymbol{x}_k = vector state process at time t_k ; $\boldsymbol{x}_k = \boldsymbol{x}(t_k)$
- Φ_k = state transition matrix; relates x_k to x_{k+1} in the absence of process noise
- w_k = process noise; vector of Gaussian white sequences
- H_k = linear mapping matrix between observations y_k and state x_k
- v_k = measurement error; vector of Gaussian white sequences

Kalman Filter: Algorithm

- Kalman filter is widely used to estimate stochastic signals
 - Requires prior model for Φ , Q, H, R
- $\{\Phi, Q, H, R\}$ assumed known and constant
- Recursive algorithm:

enter priors
$$(\hat{x}_{1|0}, P_{1|0})$$
:
 $K_k = P_{k|k-1}H_k^T (H_k P_{k|k-1}H_k^T + R)^{-1}$
enter observations (y_k) :
 $\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k (y_k - H_k \hat{x}_{k|k-1})$
 $P_k = (I - K_k H_k)P_{k|k-1}$

 $project ahead:
 $\hat{x}_{k+1|k} = \Phi_k x_{k|k}$
 $P_{k+1|k} = \Phi_k P_k \Phi_k^T + Q_k$
repeat:$

- *K* is Kalman gain
- *H* reduces to indicator function {0, 1}
 - because raw observations are transformed via pre-processing

Kalman Smoothing

- Make a return sweep through the data
 - Obtain estimates conditioned on *all* of the data
 - Variance of the estimate error is reduced
 - N is total number of samples

$$\hat{x}(k \mid N) = \hat{x}(k \mid k) + A(k)[\hat{x}(k+1 \mid N) - P(k+1 \mid k)]$$

$$P(k \mid N) = P(k \mid k) + J(k)[P(k+1 \mid N) - P(k+1 \mid k)]J^{T}(k)$$

$$J(k) = P(k \mid k)\Phi^{T}(k+1,k)P^{-1}(k+1 \mid k)$$

• Also called *fixed-interval smoothing* or *Rauch-Tung-Striebel smoothing*

Multiscale Data Fusion

- Multiscale signal modeling has been heavily studied in recent years
- Motivation
 - Captures multiscale character of natural processes or signals
 - Combines signals or measurements having different resolutions
- Common methods
 - Fine-to-coarse transformations of spatial models
 - Direct modeling on multiscale data structures, e.g. quadtree

Fine Resolution

Effect of Model Errors

- Example: a piece-wise WSS signal
 - True *Q* and *R* different in regions 1 to 2
 - Non-adaptive filter uses values for region 1 throughout
- Effects of non-adaptive estimation in region 2
 - Estimates become suboptimal
 - Estimates may still track data because of (y-Hx) term
 - But true error increases
 - Calculated error uncertainty is incorrect

True signal and its observation

Use Innovations to Find Model Errors

- Innovations are estimate residuals $v_k = y_k Hx_{k|k-1} = He_k + v_k$
 - Where $e_k = x_k x_{k|k-1}$ denotes error in estimate
 - They represent "innovative" information provided by observations
- Sequence v_k is white in the optimal filter

$$E\left[v_{k}v_{j}^{T}\right] = E\left[He_{k}+v_{k}\right)\left(He_{j}+v_{j}\right)^{T}$$

 v_k uncorrelated with e_j and v_j for $k \neq j$

for $k \neq j$, e_k uncorrelated with y_j and $\hat{x}_{j|j-1}$ depends only on y_j

$$E\left[v_k v_j^T\right] = 0$$
, for $k \neq j$

- Sequence v_k is sum of Gaussian rv's, \rightarrow Gaussian
- Model errors cause violation of uncorrelatedness assumptions
 - Yield correlation in v_k , $E\{v_k v_j^T\} \neq 0$ in general
 - Compute ACF and test for nonzero values at nonzero lags
- Relate model parameters and ACF (v_k) to update Q

$$\operatorname{ACF}(v_k) = E[v_k v_{k-j}^T] = H \underbrace{E[e_k e_{k-j}^T]}_{\bullet} H^T + H E[e_k v_{k-j}^T] \text{ for } k \neq j$$

Adaptive Estimation

- Most adaptive estimation methods assume *Q* unknown but constant [Mehra 1972]
- But *Q* not constant for INSAR images in general
 - Non-stationary terrain, e.g. forest changing to grassland
 - Update Q in a spatial Kalman filter over the INSAR image
- Estimate *Q* locally with sliding window [Noriega and Pasupathy 1997]
 - Incorporate into multiscale framework
 - Use *innovation-correlation* method in sliding window of N_s samples
 - Solve $O(N_s)$ simultaneous linear equations to estimate Q

Apply to Multiscale Framework

- Use separable linear model to address non-stationary data in spatial dimension [Fornesini and Marchesini 1978]
 - Extend to multiscale framework

- Reach dense observations (INSAR) level (m=M-3)
 - Use estimates from scale-wise filter at m=M-3 in spatial filter priors
 - Adaptively filter along rows and columns of INAR image
 - Propagate spatial filter estimates into scale-wise filter priors at level m=M-4
- Proceed up and down pyramid with scale-wise filter as before

Measuring Topography with INSAR

- *Problem*: no direct measurement of z_g in presence of vegetation
 - INSAR data provide height of phase scattering center z_s
 - Cannot distinguish surface elevation z_g from vegetation elevation z_v
 - Neglecting noise, $z_s = z_g$ for bare surfaces

- Proposed solution:
 - Estimate z_g and Δz_v from INSAR data using electromagnetic scattering model
 - Incorporate additional high-resolution measurements (LIDAR)

Transforming LIDAR Data

- LIDAR measures z_v directly
 - Optical wavelengths do not penetrate vegetation, except in gaps
- To get z_g at every pixel, threshold vegetated pixels and interpolate
 - standard deviation of heights σ_L indicates presence of vegetation [Neuenschwander, Crawford, Weed, and Gutierrez, 2000]

$$z_{v} = z_{L} \quad \forall (n_{1}, n_{2}) \in N$$
$$z_{g} = \begin{cases} z_{L} \quad \forall (n_{1}, n_{2}) \in N | \sigma_{L} < \text{threshold} \\ \text{linear interpolation, otherwise} \end{cases}$$

 (n_1, n_2) = image pixels N = set of all image pixels

Test Area

- Austin, TX: floodplain area with trees and grassland
- Small area for testing fusion with high resolution LIDAR data
 - LIDAR @ 1.15 m, INSAR @ 10 m

Non-Adaptive Estimates

- Transformed INSAR and LIDAR data into estimates of z_g and Δz_v
 - Physical modeling provides observations to multiscale estimation
- No-data areas indicate where LIDAR data were omitted

Adaptive Estimates

• ACF (v_k) used to indicate non-white innovations

• Q updated in the spatial filter

Estimate Errors

- Reduction in global mean absolute error (MAE) relative to original INSAR
 - After multiscale Kalman smoothing (MKS): 34.9%
 - After adaptive multiscale Kalman smoothing (AMKS): 35.2%

MAE:	prior	to	m	ul	tiscal	le	Kal	lman	smo	oth	ing
						(\mathbf{I})			(INC	AD)	

vegetation height: $\Delta z_{\nu}^{(\text{LIDAR})}$ - $\Delta z_{\nu}^{(\text{INSAR})}$			
$H = \{0 \text{ or } 1\}$	3.44 m		
$H = \{ 1 \}$	3.18 m		
$H = \{0\}$	3.69 m		

MAE: after multiscale Kalman smoothing

vegetation height: $\Delta z_{\nu}^{(\text{LIDAR})}$ - $\Delta z_{\nu}^{(\text{MKS})}$				
$H = \{0 \text{ or } 1\}$	2.24 m			
$H = \{ 1 \}$	0.589 m			
$H = \{0\}$	3.86 m			

MAE: after spatially adaptive multiscale Kalman smoothing

vegetation height: $\Delta z_{v}^{(\text{LIDAR})} - \Delta z_{v}^{(\text{AMKS})}$				
$H = \{0 \text{ or } 1\}$	2.23 m			
$H = \{ 1 \}$	0.588 m			
$H = \{0\}$	3.84 m			

Conclusions

- Physical modeling of INSAR plus multiscale estimation yields statistically optimal estimates of z_g and Δz_v (MSE sense)
- Estimates improve when include LIDAR data
- Physical modeling and target-dependent measurement errors allow proper fusion of dissimilar data
- Adaptive framework accommodates non-stationary processes
- Contributions
 - Combined physical modeling with multiscale estimation to accommodate nonlinear measurement-state relations
 - Improved estimates of z_g and Δz_v for remote sensing applications
 - Developed adaptive multi-dimensional Kalman filter in scale and space

