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Research Motivation

• Need exists for mapping surface topography over large areas
– Covering �����NP2 area requires remote sensing methods
– Applications require ����P�KRUL]RQWDO�UHVROXWLRQ�DQG����P�YHUWLFal accuracy

• Critical applications (for low-relief topography )
– Hydrology: shallow water runoff channels (~0.1 m vertical accuracy)
– Seismology: active faults (~1 m vertical accuracy)

• Best technologies for low-relief topographic mapping
– Interferometric synthetic aperture radar (INSAR)

• Covers large area, but poor accuracy (especially when vegetation is present)

– Laser altimeter (LIDAR) )
• Excellent accuracy, but covers small area

• Need both sensors (data fusion)
– Exploit advantages of both sensors
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INSAR and LIDAR Imaging

• INSAR (nominal)
– Side-looking
– Fixed illumination
– 6 cm wavelength
– Vertical accuracy ����P
– 10 m pixel spacing
– NASA/JPL TOPSAR

• LIDAR (nominal)
– Downward-looking
– Scanning illumination
– 1 µm wavelength
– Vertical accuracy ������P
– ≤ 5 m pixel spacing
– Optech, Inc.

Large coverage area → primary sensor

complementary sensor

   

ground track

θS

synthetic beam pattern

imaging swath -  12 km

   

imaging swath -  0.3 km

θL



5

Center for Space Research
The University of Texas at Austin

Estimation Framework
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• Smooth noisy estimates from INSAR inversion
• Combine data in a formal way, i.e. account for measurement errors
• Choices:

– Wiener filter provides MMSE linear smoothing
– Median filter provides nonlinear smoothing

• Not suited to MIMO models
• Not suited to indirect measurements

– Wavelet denoising provides local smoothing
• Provides multiresolution analysis, but
• Not suited to MIMO models
• Not suited to indirect measurements

– Kalman filter provides MMSE linear smoothing
• Allows multiresolution analysis
• Handles MIMO models
• Handles indirect measurements
• Provides error measure automatically

Choosing the Approach
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Linear Dynamic Model

• State-space approach
– Can model any random process having rational spectral density function using state 

model with finite dimensionality [Brown and Hwang 1997]

– Can estimate internal variables not directly observed
• Use discrete formulation

– Data from sampled (imaged) continuous process

kkkk

kkkk

vxHy

wxx

+=
+Φ=+1

  

xk = vector state process at time tk; xk = x tk( )
Φk = state transition matrix; relates xk to x k +1 in the absence of process noise

wk = process noise;  vector of Gaussian white sequences

Hk = linear mapping matrix between observations yk and state xk

vk = measurement error; vector of Gaussian white sequences
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• Kalman filter is widely used to estimate stochastic signals
– Requires prior model for Φ, Q, H, R

• { Φ, Q, H, R} assumed known and constant
• Recursive algorithm:

• K is Kalman gain
• H reduces to indicator function {0, 1} 

– because raw observations are transformed via pre-processing

Kalman Filter: Algorithm

  

enter priors ( ˆ x 1|0, P1|0 ) :                             project ahead:

K k = Pk |k −1Hk
T HkPk|k−1 Hk

T + R( )−1
            ˆ x k+1|k = Φkxk |k                        

enter observations ( yk ) :                          Pk+1|k = Φk PkΦk
T + Qk

ˆ x k |k = ˆ x k|k−1 + K k yk − Hk
ˆ x k|k −1( )                repeat :

Pk = I − K kHk( )Pk|k −1                             
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Kalman Smoothing

• Make a return sweep through the data
– Obtain estimates conditioned on all of the data
– Variance of the estimate error is reduced
– N is total number of samples

• Also called fixed-interval smoothing or Rauch-Tung-Striebel smoothing

  

ˆ x (k | N) = ˆ x (k | k) + A(k)[ ˆ x (k +1| N) − P(k +1 | k)]

P(k | N) = P(k | k ) + J (k)[P(k +1 | N) − P (k +1| k)]JT (k)

J(k) = P(k | k )ΦT (k +1,k)P -1 (k +1| k)
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Multiscale Data Fusion

• Motivation
– Captures multiscale character of 

natural processes or signals
– Combines signals  or 

measurements having different 
resolutions

• Common methods
– Fine-to-coarse transformationsof 

spatial models
– Direct modeling on multiscale 

data structures, e.g. quadtree

• Multiscale signal modeling has been heavily studied in recent years
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Effect of Model Errors

• Example: a piece-wise WSS signal
– True Q and R different in regions 1 to 2
– Non-adaptive filter uses values for region 1 throughout

• Effects of non-adaptive estimation in region 2
– Estimates become suboptimal
– Estimates may still track data because of (y-Hx) term
– But true error increases
– Calculated error uncertainty is incorrect

region 1 region 2
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• Innovations are estimate residuals νk = yk-Hxk|k-1 = Hek + vk
– Where ek = xk - xk|k-1 denotes error in estimate
– They represent “innovative” information provided by observations

• Sequence νk is white in the optimal filter

• Sequence νk is sum of Gaussian rv’s, → Gaussian
• Model errors cause violation of uncorrelatedness assumptions

– Yield correlation in νk , E{νk νΤ
j} ����LQ�JHQHUDO

– Compute ACF and test for nonzero values at nonzero lags
• Relate model parameters and ACF (νk) to update Q

Use Innovations to Find Model Errors

E νkν j
T[ ]= E Hek + vk( ) Hej + vj( )T[ ]

vk uncorrelated with ej  and vj  for k ≠ j

for k ≠ j,  ek uncorrelated with yj  and ˆ x j| j −1 depends only on yj

 

 

 
  

 

 
  

E νkν j
T[ ]= 0  ,  for k ≠ j

ACF νk( )= E νkνk− j
T[ ]= HE ekek− j

T[ ]H T + HE ekvk− j
T[ ] for k ≠ j

f(Q)
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Adaptive Estimation

• Most adaptive estimation methods assume Q unknown but constant      [Mehra 
1972]

• But Q not constant for INSAR images in general
– Non-stationary terrain, e.g. forest changing to grassland
– Update Q in a spatial Kalman filter over the INSAR image

• Estimate Q locally with sliding window [Noriega and Pasupathy 1997]

– Incorporate into multiscale framework
– Use innovation-correlation method in sliding window of Ns samples
– Solve O(Ns) simultaneous linear equations to estimate Q

filter in scale filter in space
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• Use separable linear model to address non-stationary data in spatial dimension 
[Fornesini and Marchesini 1978]

– Extend to multiscale framework
• Start up pyramid as before (sparse LIDAR at base)

• Reach dense observations (INSAR) level (m=M-3 ) 
– Use estimates from scale-wise filter at m=M-3 in spatial filter priors
– Adaptively filter along rows and columns of INAR image
– Propagate spatial filter estimates into scale-wise filter priors at level m=M-4

• Proceed up and down pyramid with scale-wise filter as before 

Apply to Multiscale Framework

At scale M-3, scale-wise estimates used in 
priors of spatial filter

Adaptive spatial estimates 
used in priors of scale-wise 
filter at scale M-4

m=M

m=M-3
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• Problem: no direct measurement of zg in presence of vegetation
– INSAR data provide height of phase scattering center zS

– Cannot distinguish surface elevation zg from vegetation elevation zv

– Neglecting noise, zS = zg for bare surfaces

• Proposed solution: 
– Estimate zg and ∆zv from INSAR data using electromagnetic scattering model
– Incorporate additional high-resolution measurements (LIDAR) 

Measuring Topography with INSAR

   

zg

zv

zS

vegetated

INSAR

non-vegetated

zg Š zS Š zvzS = zg
zg < zS < zv

∆zv
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Transforming LIDAR Data

• LIDAR measures zv directly
– Optical wavelengths do not penetrate vegetation, except in gaps

• To get zg at every pixel, threshold vegetated pixels and interpolate
– standard deviation of heights σL indicates presence of vegetation [Neuenschwander, 

Crawford, Weed, and Gutierrez, 2000]

zv = z L    ∀ n1,n2( )∈N

zg =  
zL  ∀ n1,n2( )∈Nσ L < threshold

linear interpolation,  otherwise

 
 
 

zg

zv

zL = zg

LIDAR

zL = zv

zL

n1,n2( ) =  image pixels

N =  set of all image pixels
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Test Area

• Austin, TX: floodplain area with trees and grassland
• Small area for testing fusion with high resolution LIDAR data

– LIDAR @ 1.15 m, INSAR @ 10 m

2 km
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Non-Adaptive Estimates

• Transformed INSAR and LIDAR data into estimates of zg and ∆zv

– Physical modeling  provides observations to multiscale estimation
• No-data areas indicate where LIDAR data were omitted

n1 (1.25 m)n1 (10 m)

n1 (1.25 m) n1 (1.25 m)
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)

n 2
(1

.2
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m
)
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5 

m
)
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5 

m
)
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Adaptive Estimates

• ACF(νk) used to indicate non-white innovations
• Q updated in the spatial filter
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Estimate Errors

• Reduction in global mean absolute error (MAE) relative to original INSAR
– After multiscale Kalman smoothing (MKS): 34.9% 
– After adaptive multiscale Kalman smoothing (AMKS): 35.2%

MAE: prior to multiscale Kalman smoothing 
vegetation height: ∆zv

(LIDAR) - ∆zv
(INSAR) 

H = {0 or 1} 3.44 m 
H = { 1} 3.18 m 
H = {0} 3.69 m 

 MAE: after multiscale Kalman smoothing 
vegetation height: ∆zv

(LIDAR) - ∆zv
(MKS) 

H = {0 or 1} 2.24 m 
H = { 1} 0.589 m 
H = {0} 3.86 m 

 MAE: after spatially adaptive multiscale Kalman smoothing 
vegetation height: ∆zv

(LIDAR) – ∆zv
(AMKS) 

H = {0 or 1} 2.23 m 
H = { 1} 0.588 m 
H = {0} 3.84 m 
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Conclusions

• Physical modeling of INSAR plus multiscale estimation yields statistically 
optimal estimates of zg and ∆zv (MSE sense) 

• Estimates improve when include LIDAR data

• Physical modeling and target-dependent measurement errors allow proper fusion 
of dissimilar data

• Adaptive framework accommodates non-stationary processes

• Contributions
– Combined physical modeling with multiscale estimation to accommodate nonlinear 

measurement-state relations
– Improved estimates of zg and ∆zv for remote sensing applications
– Developed adaptive multi-dimensional Kalman filter in scale and space 


