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Abstract - Interferometric synthetic aperture radar
(INSAR) data are fused with laser altimeter (LIDAR) data
to produce improved estimates of bare-surface topography
and vegetation heights. The data from both sensors are first
transformed into estimates of surface elevations and vegeta-
tion heights to obtain linear measurement-state relations. A
spatially-adaptive multiscale estimation framework is then
used to combine the data, which were acquired at different
resolutions. The estimation is performed in scale and space
via a set of Kalman filters. It yields better error character-
istics than the nonadaptive multiscale filter and accommo-
dates non-stationarity in the image data.

1. INTRODUCTION

Interferometric synthetic aperture radar (INSAR) sensors
have been used extensively to map topography. Accura-
cies are limited over vegetated regions, however, because
the observations are not measurements of true surface to-
pography. The measurements correspond to a height above
the true surface that depends on both the sensor and the veg-
etation. Laser altimeter (LIDAR) systems, conversely, can
map topography over smaller areas very accurately. In order
to determine surface elevations and vegetation heights from
dual-baseline INSAR data, we solve an inverse problem for
INSAR scattering [1].

To keep the inverse problem well-posed, a simplified
scattering model is used, which can lead to large uncer-
tainties in the height estimates. LIDAR observations that
are acquired over specific regions of interest are combined
with the INSAR inversion results to improve the estimates
of ground elevations and vegetation heights. We combine
the two data types using a multiresolution Kalman filter ap-
proach, which provides the estimates and estimate uncer-
tainties at each pixel. Combining data from the two sen-
sors provides estimates that are more accurate than those
obtained from INSAR alone, yet have coverage that is

This work was supported by the National Aeronautics and Space Ad-
ministration, under the Graduate Student Research Fellowship Program
(Grant NGT-50239).

both dense and extensive, which is difficult to obtain with
LIDAR.

For a 2-D process, the multiscale estimation is imple-
mented on a quadtree. It is initiated with a fine-to-coarse
sweep up the quadtree that is analogous to Kalman filtering
with an added merge step. This is followed by a coarse-to-
fine sweep down the quadtree that corresponds to Kalman
smoothing. Using the scalar form for clarity, the linear
coarse-to-fine model is given as

x(s) = �(s)x(Bs) + �(s)w(s) 8s 2 S; s 6= s0

y(s) = H(s)x(s) + v(s) 8s 2 T �S (1)

wherex is the state variable, andy represents the observa-
tions. The stochastic forcing functionw is assumed to be
a Gaussian white noise process with identity variance, and
the measurement errorv is a Gaussian white noise process
with scale dependent varianceR(s). S represents the set
of all nodes on the quadtree, andT denotes those nodes at
which an observation is available.s is the node index on the
tree, ands0 denotes the root node.B is a backshift opera-
tor in scale, such thatBs is one scale coarser thans. � is
the coarse-to-fine state transition operator,�2 is the process
noise variance,H is the measurement-state relation, andR

represents the measurement variance of the observations.
The standard Kalman formulation provides optimal es-

timates (in the mean squared sense) when there is perfect
a priori knowledge of the state and measurement models
f�(s), �(s), H(s), R(s)g. A statistically self-similar pro-
cess,1=f noise, is used to describe the evolution of the to-
pography through scale. The1=f behavior across scales
is an idealization though and does not account for spatial
variability at a given scale. If errors exist in the assumed
process or measurement noise variances, the computed es-
timates and estimate uncertainty will be incorrect. We de-
velop an adaptive multiscale estimation approach that ad-
mits spatial variability in the noise processes. As the filter
operates in the spatial dimension, deviations from optimal-
ity are used to detect where the model is in error. The pro-
cess noise variance for the spatial component of the filter is
then updated.



We apply this estimation framework to remotely sensed
data acquired over the coast of Texas. The study area
contains both forested and grassland areas. Dual-baseline
INSAR imagery was acquired by the NASA/JPL TOPSAR
sensor over the entire study area. High-resolution LIDAR
data were also acquired over the study area by an Optech,
Inc. ALTM sensor. The contributions of this work include
(1) extending adaptive estimation techniques to spatially-
varying multiscale processes and (2) improving estimates of
ground elevations and vegetation heights for remote sensing
applications.

2. MULTISCALE FILTER

In previous work [2] we implemented a data fusion frame-
work based on a multiscale Kalman filter [3]. A quadtree
data structure is created with the leaf nodes corresponding
to the high resolution LIDAR data, while the INSAR data
are used at the next coarser scale. The objective is to esti-
mate ground surface topographyzg and vegetation heights
�zv from INSAR and LIDAR data. Our approach has two
components. First, the observations from each sensor are
transformed to obtain estimates of the ground elevations and
vegetation heights. This is done by numerically inverting an
INSAR scattering model and applying an empirical algo-
rithm to the LIDAR data that removes the vegetation com-
ponent. Then the transformed INSAR and LIDAR data are
combined in a multiresolution spatially-adaptive Kalman
filter to obtain optimal estimates ofzg and�zv.

The state transition operator in scale�(m) is determined
by matching the power spectrum of the INSAR observa-
tions to that of the stochastic data model. This provides a
good estimate for the evolution of the state process in scale.
However,�(m) is constant at each scale, hence it cannot
accommodate non-stationarities in the imagery at a particu-
lar scale. An image that contains more than one landcover
type, e.g. grassland and forest, represents a non-stationary
2-D process. Therefore, using a state transition operator that
is variable in scale but uniform in space will lead to subop-
timal estimates in general.

3. ADAPTIVE ESTIMATION

Several approaches to adaptive estimation have been re-
ported in the literature. Theinnovation - correlationmethod
is employed in this work. This method is theoretically
based, and is computationally attractive because it is nonit-
erative. It is also well suited to stochastic problems in which
the precise dynamics of the process are not known. The
measurement residuals (innovations) comprise a zero-mean,
white, Gaussian sequence when the model parameters are
correct. Therefore, testing the innovation sequence for non-
white behavior by computing the autocorrelation function
indicates whether the model contains errors or not.

Mehra showed that the process noise variance in a
Kalman filter could be correctly estimated using the auto-
correlation function of the innovation sequence to obtain

the optimal filter [4] for the stationary case. Recently, this
method has been extended to examine the innovation se-
quence locally, and thus update the estimate of the process
noise locally for non-stationary processes [5]. We extend
the method of [5] to the multiresolution case.

The innovation sequence is a function of the process
noise variance�2, which is estimated from the local au-
tocorrelation function. This method produces asymptoti-
cally normal, unbiased, and consistent estimates of�2. The
method of [5] uses a batch of recently computed estimates
to update the process noise variance. We generalize the lin-
ear system model in (1) to describe separable processes in
scale and spatial dimensions. We adaptively estimate�2 in
the spatial component of the filter.

4. MULTI-DIMENSIONAL STATE MODEL

We make use of the Fornasini-Marchesini Form II (FM-II)
multi-dimensional linear system model [6] to admit process
dynamics in multiple dimensions. First, it is generalized
to admit one dimension of non-uniform support (scale) and
two spatial dimensions. The node indexs is written in terms
of these dimensionss = fm; i; jg, wherem represents
scale (level of the quadtree) and(i; j) are the image pixel
coordinates. The coarse-to-fine state model is given by

x(m; i; j) = �(m j m� 1)x(m� 1; di=2e; dj=2e) + (2)

�(i j i� 1)x(m; i� 1; j) + �(j j j � 1)x(m; i; j � 1) +

�(m j m� 1)w(m� 1; di=2e; dj=2e) +

�(i j i� 1)w(m; i� 1; j) + �(j j j � 1)w(m; i; j � 1)

where f(m + 1; di=2e; dj=2e); (m + 1; di=2e +
1; dj=2e); (m + 1; di=2e; dj=2e + 1); (m + 1; di=2e +
1; dj=2e+1); (m; i�1; j); (m; i; j�1)g is the set of nodes
from which the priors in the upward filter are derived.

The filter initiates at the base of the quadtree in the stan-
dard multiscale manner [3]. Upon reaching a level that
contains observations, two 1-D Kalman filters then oper-
ate along the rows and columns of the image. Thea pri-
ori estimates of the spatial filters include the multiscale es-
timates from the level below. The location dependent es-
timates from the row-wise filter are incorporated into thea
priori estimates of the column-wise filter. The process noise
is updated by each filter in blocks of 16 pixels. The spatial
portion of the Kalman filter is applied only at levels in the
quadtree where dense observations are present so that the
innovation sequences have uniform support. The estimates
from the column-wise filter are then used as the observa-
tions in the multiscale component of the filter at the current
level. The filter then proceeds in the standard multiscale
way up the remainder of the quadtree.

5. RESULTS

MSE for vegetation height estimates from the INSAR in-
version alone (no LIDAR data), multiscale fusion with the
LIDAR, and multiscale spatially-adaptive fusion with the



Table 1. Mean squared error before filtering, after multi-
scale Kalman smoothing, and after adaptive filtering.H =
f0; 1g represents all pixels at the finest scale,H = f1g rep-
resents pixels where LIDAR was present, andH = f0g
represents pixels where LIDAR was not present.

Vegetation height MSE (m2)
INSAR only multiscale spatially adaptive
(no fusion) fusion multiscale

fusion
H=f0, 1g 22.7 5.24 4.42
H=f1g 24.7 0.424 0.940
H=f0g 21.1 9.16 7.25

LIDAR are summarized in Table 1 for a portion of the study
area. The error is the difference between the estimates and
the full set of LIDAR data. The algorithm estimates bare
surface topography as well as vegetation height, and a sim-
ilar reduction in MSE was observed for bare surface eleva-
tions. We use the mean squared error (MSE) for our per-
formance measure since the Kalman filter is optimal with
respect to this measure. There is a dramatic reduction in
MSE when the LIDAR data are combined with the INSAR
data. There is a significant additional reduction in global
MSE when the spatially adaptive filter is used.

Figure 1 shows the estimated vegetation heights and the
corresponding estimate uncertainty. The uncertainty is low-
est where there is LIDAR data and where there is minimal
vegetation. The uncertainty varies continuously between re-
gions with and without LIDAR data; however, in this exam-
ple, the transition appears sharp because the measurement
uncertainties of the two sensors are the same order of mag-
nitude and the two observation types reside on adjacent lev-
els in the quadtree.

6. CONCLUSION

We have developed a multiscale spatially adaptive state-
space filter for data fusion. It yields better error charac-
teristics than the nonadaptive multiscale filter and accom-
modates non-stationarities in the image data. Continuing
research will focus on extending the spatial filter to non-
separable 2-D processes. Multiple-model (filter bank) ap-
proaches to the adaptive estimation will also be investigated.
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Fig. 1. Vegetation heights (top). The oval shaped bright
region in the center of the image is a grove of trees. The
surrounding dark area is grassland. Estimate uncertainty
(bottom). The diagonal swath in the image results from in-
cluding LIDAR data from a single representative pass.


