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ABSTRACT

Traditional error di�usion halftoning produces high quality
binary images from digital grayscale images. Error di�usion
shapes the quantization noise power into the high frequency
regions where the human eye is the least sensitive. Error
di�usion may be extended to color images by using error
�lters with matrix-valued coe�cients to take into account
the correlation among color planes. We propose a new ma-
trix gain model to linearize vector color error di�usion. The
model predicts key characteristics of color error di�usion,
esp. linear frequency distortion and color noise shaping.

1. INTRODUCTION

Traditional grayscale error di�usion halftoning quantizes an
eight bit/pixel grayscale image to a one bit/pixel image
for reproduction on binary devices. The reproduction is
high quality because error di�usion shapes the quantization
noise into the high frequencies (a.k.a. \blue noise") where
the human visual system is less sensitive [1]. In addition
to adding noise, grayscale error di�usion also sharpens the
image [2, 3]. The amount of sharpening depends on the
error �lter.

Kite, Evans and Bovik [3] quantify the sharpening and
noise introduced by grayscale error di�usion by linearizing
error di�usion. They replace the quantizer with the \linear
gain model" developed by Ardalan and Paulos [4] for sigma-
delta modulation. The model accurately predicts the noise
shaping and image sharpening in error di�used halftones.

This paper generalizes the linear model of grayscale er-
ror di�usion in [3] to vector color error di�usion [5] by re-
placing the linear gain model with a new matrix gain model
and by using properties of �lters with matrix-valued coef-
�cients. The new model includes the earlier model [3] as
a special case. The new model describes vector color dif-
fusion in the frequency domain, and predicts noise shaping
and linear frequency distortion produced by halftoning.

Section 2 introduces the matrix gain model for vector
color error di�usion. Section 3 validates the matrix gain
model by predicting linear frequency distortion and noise
shaping e�ects of vector color error di�usion. Section 4
concludes the paper by summarizing the results.
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2. LINEARIZING COLOR ERROR DIFFUSION

Fig. 1 shows a block diagram of vector color error di�usion
halftoning. When halftoning red-green-blue (RGB) images,
the quantizer output for each color channel at any pixel is
exactly one element from the discrete set O = f�1; 1g. Here
�1 represents a red, green or blue dot, depending on the
color channel, whereas 1 represents the absence of a dot for
that color channel. We quantize each color channel using a
scalar quantizer. The quantizer Q(�) is de�ned by

Q(u) =
�
Q(u1) Q(u2) Q(u3)

�T
(1)

Q(ui) =

�
1 ui � 0
�1 ui < 0

(2)

where u is a column vector and ui, i = 1; 2; 3, represents
the red, green and blue components of the color vector to
be quantized.

The �lter in the feedback loop has matrix-valued coef-
�cients. The �lter operates on the quantization error se-
quence e(m) to produce the feedback signal sequence ac-
cording to

He(m) =
X
k2S

~h(k)e(m� k) (3)

where m and k are two-dimensional vectors, ~h(�) is a 3� 3
matrix valued sequence, and S is the �lter support.

We model the quantizer of Fig. 1 by a constant lin-
ear transformation denoted by a matrix ~K which is ap-
plied to the signal components of the quantizer input plus
spatially-varying additive noise n(m) applied to the noise
components (components uncorrelated with the input sig-
nal) of the quantizer input, as shown in Fig. 2. This is
a generalization of modeling the quantizers in sigma-delta
modulators [4] and grayscale error di�usion [3, 6]. Corre-
lation among the signal color planes is represented by the
o�-diagonal terms in the matrix ~K. We choose the matrix
~K to minimize the error in approximating the quantizer
with a linear transformation, in the linear minimum mean
squared error (LMMSE) sense,

~K = argmin
~A

E[k b(m)� ~Au(m) k2] (4)

where b(�) represents the quantizer output process, and u(�)
represents the quantizer input process. The solution to (4)



when b(�) and u(�) are wide sense stationary processes is

~K = ~Cbu
~C
�1

uu (5)

where ~Cbu and ~Cuu are covariance matrices [7]. As a di-
rect consequence of this modeling [7], the noise process n(�)
due to the signal approximation error is uncorrelated with
the signal input to the quantizer u(�). We will analyze er-

ror di�usion, assuming a matrix gain of ~K for the signal
path and a matrix gain of ~I (identity matrix) for the noise
path. This corresponds to using the estimator to estimate
signal components in the output of the quantizer from sig-
nal components at its input, and assuming an uncorrelated
noise injection to model the noise. In this way, one may
treat the signal shaping and noise shaping independently.

Analyzing the linearized vector color error di�usion model
shown in Fig. 2 using z-transforms yields

ZfHe(m)g = ~H(z)E(z) (6)

By analyzing the signal path and ignoring the noise path,

X(z) = U(z) + ~H(z)E(z) (7)

E(z) = (~K�~I)U(z) (8)

Bs(z) = ~KU(z) (9)

By manipulating (7), (8), and (9), the response to the signal
component becomes

Bs(z) = ~K[~I+ ~H(z)(~K�~I)]
�1
X(z) (10)

By considering the contribution of the noise component
B(z) to the output Bn(z),

Bn(z) = N(z) +U(z) (11)

U(z) = �~H(z)E(z) (12)

E(z) = N(z) (13)

By rearranging (11), (12) and (13),

Bn(z) = [~I� ~H(z)]N(z) (14)

The overall system response is given by

B(z) = Bs(z) +Bn(z) (15)

Equations (10) and (14) reduce to the analogous ones for
grayscale error di�usion [3], in which the error �lter coe�-
cients and signal gain are scalar valued.

3. VALIDATING THE MATRIX GAIN MODEL

In this section, we validate the matrix gain model by using
it to predict the linear distortion and noise shaping e�ects of
vector color error di�usion. Sections 3.1 and 3.2 show that
the signal path distortion given by (10) accurately models
the linear distortion that the original color image is sub-
jected to in vector color error di�usion. In Section 3.3, we
validate that the model accurately predicts the noise shap-
ing behavior of vector color error di�usion.

3.1. Validation by linearly distorting the original

We linearly distort the original image without introducing
quantization noise by processing the original image of Fig.
5(a) by using (10). This is equivalent to processing the orig-
inal image according to Fig. 2, with the additive noise ig-
nored. Fig. 5(b) shows the resulting image. Fig. 5(c) shows
the result of halftoning with a �xed error �lter. Fixed error
�lters for the validation process were obtained by terminat-
ing the adaptive algorithm in [5] after a random number of
iterations. Figs. 5(b) and 5(c) have comparable linear dis-
tortion. To see this, we simply form the residual image by
subtracting Fig. 5(b) from Fig. 5(c). The result is shown in
Fig. 5(d). The residual in Fig. 5(d) is uncorrelated with the
original and represents quantization noise. This is consis-
tent with the modeling of Section 2. To quantify the degree
of correlation of the residual image with the original image,
we introduce a correlation matrix de�ned by�

~Crx

�
ij
= �rixj

where �rixj represents the correlation coe�cient [7] between
the color plane i in the residual and the color plane j in
the original image. The correlation matrix for the residual
shown in Fig. 5(d), with respect to the original image shown
in Fig. 5(a) is

~Crx =

 
0:0067 0:0007 0:0051
0:0065 0:0039 0:0049
0:0082 0:0040 0:0062

!

3.2. Validation by creating an undistorted halftone

The model predicts that the linear distortion su�ered by
the color input image is given by (10). This means that if
one pre�lters the input color image by using the �lter

~G(z) = [~I+ ~H(z)(~K�~I)]~K
�1

(16)

then the resulting halftone should exhibit a 
at low-frequency
response with respect to the original color image. Fig. 3
shows error di�usion modi�ed to include the pre�lter. Fig.
3 is exactly equivalent to Fig. 4 when ~L = ~Lopt = ~K�1 �~I,

whenever [~I� ~H(z)] is invertible [8].

For grayscale error di�usion, this result reduces to the
result derived in [3] in which the gain is scalar-valued and
the error �lter has scalar coe�cients. Fig. 4 feeds a lin-
ear transformation ~L of the input image into the quantizer
input. The matrix gain model predicts that the linear dis-
tortion in the halftoning process must be eliminated. To
check this result, we �rst compute the residual of an un-
modi�ed halftone (i.e. halftoned using ~L = ~0) with respect
to the original. Fig. 5(a) shows the original image to be
halftoned. Fig. 5(c) shows the halftone image, which was

halftoned with ~L = ~0 (usual vector color error di�usion).
Fig. 6(a) shows the residual with respect to the original by
subtracting Fig. 5(c) from Fig. 5(a). The correlation matrix
for the residual is

Crx =

 
0:3204 0:2989 0:0999
0:2787 0:3295 0:1605
0:2063 0:2952 0:1836

!



Fig. 6(b) shows the halftone image, which was halftoned

with ~L = ~K�1 � ~I (modi�ed vector color error di�usion).
Fig. 6(c) shows the residual with respect to the original by
subtracting Fig. 6(b) from Fig. 5(a). The correlation matrix
for the residual is

~Crx =

 
0:0052 0:0009 0:0040
0:0054 0:0023 0:0020
0:0058 0:0011 0:0027

!

This shows that the linear distortion has been removed by
modi�ed vector color error di�usion, since the residual with
respect to the original is uncorrelated noise (signal compo-
nents in the residual have been eliminated).

Knox [2] shows that the error image for grayscale error
di�usion e(m) is correlated with the input image. Knox also
shows that the sharpness of halftones increases as the cor-
relation of the error image with the input increases. Kite,
Evans and Bovik [3] show that by adding dither, the quanti-
zation error may be decorrelated with respect to the input,
and the sharpening (linear distortion) e�ects of error di�u-
sion vanish. They also conclude [3] that image sharpening
is due to the fact that the input to the error �lter contains
signal components, which are fed back and shaped. Since
the system has a highpass response, this results in the half-
tone being sharper than the original image.

We will show by using the matrix gain model that in
the case of modi�ed error di�usion (Fig. 4), halftoning with

the value of ~L which cancels linear distortion, is a su�cient
condition for the error image (input to the error �lter) to
be free of signal components from the input image.

By replacing the quantizer in Fig. 4 with a gain matrix
~K and analyzing the signal path,

Es(z) = ~K
�
~LX(z) +U(z)

�
�U(z)

= ~K ~LX(z) +
�
~K�~I

�
U(z) (17)

Since

U(z) = X(z)� ~H(z)Es(z) (18)

we obtain�
~I+

�
~K�~I

�
~H(z)

�
Es(z) =

�
~K~L+ ~K�~I

�
X(z) (19)

By substituting ~L = ~K�1 � ~L into (19), Es(z) = 0. Hence,
there are no signal components in the error image. To check
this prediction, and hence validate our modeling, we half-
tone test images with ~L set to cancel linear distortion. Fig.
5(a) shows the original image to be halftoned. Fig. 6(b)

shows the halftone image, halftoned with ~L = ~K�1 � ~I

(modi�ed vector color error di�usion). Fig. 6(d) shows the
error image. The correlation matrix for the error image
with respect to the original is

~Cex =

 
0:0455 0:0235 0:0122
0:0493 0:0144 0:0164
0:0428 0:0142 0:0150

!

The low correlation of the error image was predicted by the
theory and therefore strongly corroborates it.

3.3. Validation of the noise response

According to our model, the noise shaping is predicted by
(14). To verify the prediction, we �rst compute a residual as
described in Section 3.1. This residual is shaped noise. We
need to verify that the noise shaping is in fact given by (14).
We halftone test images using the optimal distortion can-
celling method described in Section 3.2. This corresponds
to halftoning with the value of ~L = ~K�1 � ~L. The matrix
gain model predicts that the input to the error �lter has no
signal components. The input to the error �lter in this case
is N(z). We then �lter this noise image (i.e. input to the
error �lter) according to (14), to form a predicted residual.
If the noise shaping equation is correct, then this residual
must be spectrally close to the actual residual image. This
was indeed found to be the case. Fig. 7 shows radially aver-
aged spectra of the three color planes of the actual residual
noise image and the residual computed using the noise shap-
ing predicted from the model. The close agreement of the
spectra con�rms the predictions of the matrix gain model.

4. CONCLUSION

We present a framework for the analysis of vector color
error di�usion systems that use matrix-valued error �lter
coe�cients. For the multi-channel quantizer, we introduce
a matrix gain model. The model linearizes color error dif-
fusion, which permits the use of linear systems theory to
derive the signal and noise transfer functions. We validated
the model by predicting the linear frequency distortion and
color noise shaping e�ects of color error di�usion.
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Figure 1: System block diagrams for vector color error di�usion halftoning where H represents a �xed 2-D nonseparable
FIR error �lter with matrix valued coe�cients.
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Figure 2: System block diagram for vector color error di�usion model, where ~K represents a linear transformation of the
signal component of u(m) and n(m) is a noise process uncorrelated with the signal component of u(m).
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Figure 3: System block diagrams for vector color error di�usion halftoning with a �xed pre-�lter G having matrix valued
coe�cients.
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Figure 4: System block diagrams for modi�ed vector color error di�usion halftoning. ~L represents a constant linear trans-
formation.



                                    

(a) 256 � 256 lenna (b) lena generated using model ~K (c) Halftoned lenna (d) Residual noise image

Figure 5: Validation of matrix gain model by linearly distorting the original image. Here the residual image has been scaled
using a full-scale contrast stretch for display purposes.

                                                

(a) Residual when ~L = ~0 (b) Halftone using ~Lopt (c) Residual using ~Lopt (d) Error image using ~Lopt

Figure 6: Validation of matrix gain model by creating an undistorted halftone. Here the residual image and the input to
the error �lter have been scaled using a full-scale contrast stretch for display purposes.
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Figure 7: Predicted and actual radially averaged spectra for residual noise image: (a) red, (b) green and (c) blue planes.
Solid lines indicate actual spectra while the dashed lines represent predicted spectra


