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Abstract

We discuss the design of optimum signal-adapted

multi-dimensional energy compaction �lters. As in the

one-dimensional (1-D) case, the energy compaction

problem is linear in the auto-correlation coeÆcients

of the compaction �lter which must also satisfy the

multi-dimensional (m-D) equivalent of the Nyquist-

(M) condition. If a minimum-phase spectral factor

exists the optimum compaction �lter is recovered using

the m-D Discrete Hilbert Transform (DHT). If a min-

imum phase spectral factor does not exist we propose

an iterative algorithm based on multi-objective goal at-

tainment. We try to enforce the Nyquist-M condition

while simultaneously forcing the autocorrelation coef-

�cients of the compaction �lter to be as close as pos-

sible to the coeÆcients of the product �lter and the

compaction gain of the optimum compaction �lter to

be close to the compaction gain produced by using the

optimum product �lter.

1 Introduction
The problem of maximizing the function

max
H(ej!)

1

2�

Z �

��

jH(ej!)j2W (ej!) (1)

subject to

1

M

M�1X
k=0

jH(ej(!�2�k=M))j2 = 1 (2)

has received signi�cant attention in the past due to

its occurrence in di�erent signal processing problems

including the design of optimal transmit and receive

�lters for data modems, design of orthonormal �lter-

banks and wavelets, identi�cation of time-varying sys-

tems, echo cancellation, in the design of optimal quan-

tization for a class of non-bandlimited signals and the

design of optimal energy compaction �lters (see [1][2]

for references pertaining to these applications). Each

of these applications essentially involves variations on

the function chosen forW (ej!). Fig. 1 shows the block

diagram of the energy compaction problem. The goal

is to designH(ej!) so that the output variance is max-

imized subject to the constraint (2). Assuming that

the input is a wide-sense-stationary (WSS) stochastic

process we see that the energy compaction problem

is a special case of the problem stated in (1) and (2)

with W (ej!) = Sxx(e
j!) representing the power spec-

trum of the input signal (note that decimation does

not change the output variance). The constraint of

(2) is called the Nyquist-M condition [3]. It can read-

ily be seen that the optimum solution is function of the

product �lter jH(ej!)j2 only. For one-dimensional sig-

nals once the optimum product �lter is obtained, one-

dimensional spectral factorization can be carried out

to obtain an optimal solution for the compaction �lter.

Kirac and Vaidyanathan [1] give several methods for

obtaining the optimal product �lter coeÆcients, such

as analytical methods, linear programming and a win-

dow based approach. Tuqan and Vaidyanathan [2]use

a state space approach to �nd the globally optimal so-

lution for the product �lter and minimum phase spec-

tral factor of the product �lter without explicit spec-

tral factorization. Thus jH(z)j2 = Hmin(z)Hmax(z)
where Hmin(z) and Hmax(z) represent the minimum

and maximum phase spectral factors respectively. In

this paper we are interested in the solution of the

multi-dimensional (m-D) version of the optimum en-

ergy compaction problem. Although, similar to the

one-dimensional (1-D) case, the optimal solution may

be regarded as a linear programming problem in the

coeÆcients of the product �lter, the subsequent spec-

tral factorization is the hard part. The lack of a fac-

torization algorithm for m-D polynomials makes this

an ill-posed task. Thus obtaining an optimal product

�lter does not necessarily imply the solution of the

energy compaction problem. In this paper we explore

a couple of alternatives. First, if the product �lter

does indeed have a minimum phase spectral factor, we

use the m-D version of the Discrete Hilbert Transform

[4][5] (DHT) to obtain the optimum solution. This

is an extension of the 1-D minimum phase �lter de-
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Figure 1: Block diagram illustrating the optimum en-

ergy compaction problem.

sign procedure using the 1-D DHT [6]. However in

several cases a minimum phase spectral factor does

not exist[7]. Application of the DHT to such a prod-

uct �lter results in a �lter whose magnitude square

response is neither Nyquist nor matches the desired

product �lter response. For such cases we use an it-

erative algorithm to solve for the energy compaction

�lter that is a close approximation to the actual mag-

nitude response of the desired spectral factor. Sec-

tion 2 sets up the m-D optimum energy compaction

�lter design problem and obtains a solution for the

optimum product �lter. Section 3 explores the use of

the DHT in obtaining an optimum solution by �nd-

ing the minimum phase spectral factor. Section 4 uses

an iterative method to obtain an approximate solu-

tion in the case when the designed product �lter does

not have a minimum phase spectral factor. Finally

Section 5 concludes the paper by summarizing the re-

sults. Without loss of generality we discuss the design

problem for two-dimensions (2-D). The m-D problem

is a straightforward extension of the 2-D case.

2 Optimum 2-D product �lter design
In this section we set up the problem of �nding an

optimum 2-D product �lter as a linear programming

problem in the coeÆcients of the product �lter. First,

we convert the formulation to the spatial domain. The

output variance �2y in the spatial domain (assuming a

real stochastic input process x(n1; n2) in terms of the

product �lter coeÆcients is

�2y =

N1X
n1=�N1

N2X
n2=�N2

p(n1; n2)rxx(n1; n2) (3)

= rxx(0; 0) + 2

N2X
n2=1

p(0; n2)

+2

N1X
n1=1

N2X
n2=�N2

p(n1; n2)rxx(n1; n2)

where we have used Parseval's identity [8] and the

fact that p(n1; n2) = p(�n1;�n2) and rxx(n1; n2) =
rxx(�n1;�n2) which represent the symmetry in the

coeÆcients of the product �lter and the signal auto-

correlation function respectively. We have also as-

sumed without loss of generality that p(0; 0) = 1 [2].

We must maximize �2y subject to the following con-

straints on the product �lter

p(M[n1 n2]
T ) = Æ(n1; n2) (4)

P (!1; !2) = 1 +

N2X
n2=1

p(0; n2) cos(!2n2) (5)

+ 2

N1X
n1=1

N2X
n2=�N2

p(n1; n2) �

cos(!1n1 + !2n2)

� 0 8!1; !2
The constraint (4) represents the 2-D Nyquist-M con-

straint. The matrix M is the two dimensional sam-

pling matrix. The constraint (5) enforces the fact

that the product �lter frequency response represents a

squared magnitude response and hence is constrained

to be positive. Thus the optimum product �lter may

be obtained by solving the linear programming prob-

lem

max rT#Mp#M (6)

subject to

c#M(!1; !2)
Tp#M � �0:5 (7)

for the optimal product �lter coeÆcient vector

p#M. The vector r#M is obtained by delet-

ing the elements corresponding to the sampling

lattice of the matrix M from the vector r =

[rxx(0; 1) � � � rxx(0; N2); rxx(1;�N2) � � � rxx(N1; N2)]
T .

The vector c#M(!1; !2) is given by deleting the ele-

ments corresponding to the sampling lattice ofM from

the vector c(!1; !2) = [cos(!2) � � � cos(!2N2); cos(!1�
!2N2) � � � cos(!1N1 + !2N2)]

T . The constraints of

(7) may be discretized by substituting (!1; !2) =

(ej 2�k1
L1

; ej 2�k2
L2

); k1 = 0; 1; : : : L1 = 1; k2 =

0; 1; : : :L2 resulting in L1L2 linear constraint equa-

tions. p#M represents the vector of product �l-

ter coeÆcients by deleting the elements correspond-

ing to the sampling lattice of M from the vec-

tor p = [p(0; 1) � � � p(0; N2); p(1;�N2) � � � p(N1; N2)]
T .

The product �lter p(n1; n2) is completely determined

by p#M since it may be generated from p#M using the

symmetry of the product �lter and upsampling using

the matrix M.
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Figure 2: Frequency responses of (a) optimum prod-

uct �lter and (b) the product �lter corresponding to

the optimum compaction �lter of example 1, designed

using the DHT.

3 Optimum 2-D compaction �lter de-

sign using the Discrete Hilbert

Transform
The magnitude response of the product �lter is

the squared magnitude response of the optimal com-

paction �lter. If a minimum phase spectral factor ex-

ists, its magnitude response may be obtained from the

magnitude response of the product �lter since

jHmin[k1; k2]j =
p
jP [k1; k2]j (8)

The 2-D Discrete Hilbert Transform (DHT) relates the

magnitude spectrum of a 2-D sequence to its minimum

phase spectrum if it exists. The minimum phase spec-

trum exists if the complex cepstrum is causal. This

is the assumption we make when we apply the DHT.

Once the minimum phase spectrum is determined we

reconstruct the minimum phase polynomial by com-

bining the desired magnitude and phase responses,

and take the inverse FFT. We use the 2-D DHT de-

veloped by Read an Treitel [4]. Extension to higher

dimensions is given in [5].

Given a sampled magnitude spectrum j P [k1; k2] j
where k1 = 0; 1; : : :K1 and k2 = 0; 1; : : :K2 computed

with a K1�K2 FFT , we compute the corresponding

minimum phase spectral factor in two steps. First, we

compute the sampled minimum phase spectrum

�[k1; k2] = �jDFTf s[m1;m2] � (9)

IDFTfln(
p
jP [k1; k2]j+ Æ)gg

where � represents pointwise matrix multiplication

and

s[m1;m2] =

8>>>><
>>>>:

1 m1 = 0; 0 < m2 <
K2

2

1 m2 = 0; 0 < m1 <
K1

2

�1 m1 = 0; 0 < m2 <
K2

2

�1 m2 = 0; 0 < m1 <
K1

2

0 else

(10)

Æ is a small number used to avoid zero as an argument

to the logarithm. Second, we form j Hmin[k1; k2] j
ej �[k1;k2]. The optimum energy compaction �lter

h[n1; n2] may be constructed by

1. computing j Hmin[k1; k2] j which is the sampled

magnitude spectrum of h[n1; n2],

2. calculating �[k1; k2] by using (9),

3. constructing the K1 �K2 FFT of the minimum

phase sequence as j Hmin[k1; k2] j ej �[k1;k2],
4. taking the inverse FFT transform to obtain a min-

imum phase sequence, and

5. truncating the resulting sequence to the desired

�lter impulse response to N1 + 1�N2 + 1.

Example 1 : We use a 5 � 5 signal autocorre-

lation function given by rxx[n1; n2] = e�0:5
p

(n2
1
+n2

2
)

for all examples in this paper. Fig. 2(a) shows the

optimum product �lter response obtained assuming

M = [[2 0]T [0 2]T ] (rectangular sampling) and a

100 � 100 grid sampling. The 3 � 3 minimum phase

spectral factor obtained using 512 � 512 DHT and

truncating had a squared magnitude response given

in Fig. 2(b) showing that a optimum compaction �l-

ter was indeed obtained. The compaction gain given

by G = (
P

rxx(n1; n2)p(n1; n2))=(
P

rxx(n1; n2)
2) for

both cases was 0:5330.
Example 2 : Fig. 3(a) shows the optimum product

�lter response obtained assumingM = [[1 1]T [1 �1]T ]
(quincunx sampling) and a 100 � 100 grid sampling.

The optimum product �lter had a compaction gain

of G = 0:3320. The 3 � 3 minimum phase spectral
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Figure 3: Frequency responses of (a) optimum product

�lter and (b) the product �lter corresponding to the

"optimum compaction �lter" of example 2, designed

using the DHT .

factor obtained using 512� 512 DHT and truncating

had a squared magnitude response shown in Fig. 3(b).

In this case the DHT failed to produce an optimum

compaction �lter. In fact it did not produce a valid

compaction �lter at all (since it resulted in a product

�lter with signi�cant coeÆcient values at the lattice

locations of M of the order of 10�1). In Section 4 we

will obtain an iterative solution to this problem and

�nd a valid optimum compaction �lter with magnitude

squared response close to the response of the desired

product �lter.

4 Iterative compaction �lter design
In this section we consider the case when the de-

signed product �lter does not have a minimum phase

spectral factor. In this case, as seen in section 3

the DHT method fails to produce an optimum com-

paction �lter in general. We note that the coeÆcients

of the product �lter should be equal to the auto-

correlation coeÆcients of the desired optimum com-

paction �lter h(n1; n2). This results in the following

S = 4N1N2 + 2N1 + 2N2 + 1 nonlinear equations in

the coeÆcients of the compaction �lter.
X

(m1;m2)2S

h(m1;m2)h(m1 + n1;m2 + n2) = p(n1; n2)

(11)

where n1 = �N1 : : : N1 and n2 = �N2 : : : N2 and

S represents the support of the �lter h(n1; n2).
These equations may be solved using the Levenberg-

Marquardt algorithm [9]. Several initial guesses must

be tried to avoid local minima. Further if an exact

solution may not exist. A least squares solution is

obtained. In this case the designed �lter would not

satisfy the Nyquist-M condition exactly so would not

be a valid compaction �lter. We formulate the op-

timum design problem as a multi-objective goal at-

tainment problem [10]. This involves expressing the

set of autocorrelation equations in the form of a vec-

tor of objective functions with the right hand side as

the design goals. Thus we form the vectors f(h) =
[f0(h)f1(h) � � � fS�1(h)] and f

� = [f�0 f
�
1 � � � f�S�1] for a

total of S objective functions and design goals. Since

the product �lter is Nyquist-M the corresponding el-

ements of f� are zero. We add the objective func-

tion fS(h) = fT#M(h)r#M and the corresponding de-

sign goal f�S = rT#Mp#M. This objective expresses the

energy compaction of the optimum product �lter in

terms of the �lter coeÆcients of the energy compaction

�lter to be designed. The energy compaction �lter de-

sign may then be expressed as

min

;h


 (12)

subject to:

fi(h)� wi 
 = f�i ; i = 0; 1; : : : S (13)

The problem formulation allows the objectives to be

under or over achieved enabling the designer to be

relatively imprecise about initial design goals. The

relative degree of under or over-achievement of the

goals is controlled by a vector of weighting coeÆcients

w = [w0w2 : : : wS ]
T . The term 
 introduces an ele-

ment of slackness into the problem, which otherwise

imposes that the goals be rigidly met. The weight-

ing vector, w, enables the designer to express a mea-

sure of the relative trade-o�s between the objectives.

For the optimum energy compaction �lter design prob-

lem, we use unit weights for the objectives correspond-

ing to the zero coeÆcients of the product �lter. The

other weights are set to relatively high values (we use

100 � jp(n1; n2)j to have the same percentage under

or over attainment of the goals at the non-zero coeÆ-

cients of p(n1; n2) ). Thus this formulation yields valid



−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.5

1

1.5

2

F
x

F
y

M
ag

ni
tu

de

Figure 4: Frequency response of the product �lter cor-

responding to the optimum compaction �lter of exam-

ple 3 designed using multi-objective optimization.

compaction �lters satisfying the Nyquist-M condition

with compaction gain close as possible to that of the

optimum product �lter.

Example 3 : We attempt to solve the optimum

compaction �lter design problem posed in example 2.

Fig. 4 shows the magnitude squared response of the

optimum compaction �lter designed using the multi-

objective optimization approach presented in this sec-

tion. A least squares solution of the autocorrelation

equations was used as the initial guess. This solution

did not satisfy the Nyquist-M condition (since it re-

sulted in a product �lter with signi�cant coeÆcient

values at the lattice locations of M of the order of

10�1). The multi-objective optimization resulted in

a valid compaction �lter with relatively small coeÆ-

cient values at the lattice locations of M (of the order

of 10�4). The compaction gain of the resulting com-

paction �lter was 0:3224, which is close to the com-

paction gain of the optimum product �lter of 0:3320.

5 Conclusions
We present two methods for the design of optimum

signal-adapted multi-dimensional energy compaction

�lters. First we solve for the optimum product �lter

using linear programming. The compaction �lter must

then be obtained from the product �lter by spectral

factorization. If a minimum-phase spectral factor ex-

ists the optimum compaction �lter is recovered using

the m-D Discrete Hilbert Transform (DHT). An iter-

ative algorithm is proposed when a minimum-phase

spectral factor does not exist. However the iterative

algorithm only achieves a locally optimal solution.
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