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ABSTRACT 

 
Video streaming has already been very popular on the 
Internet through services such as news bulletins from 
different parts of the world and on-demand music-video 
clips. With rapidly developing wireless technologies, 
video streaming to mobile devices will be very common. 
In this paper, we investigate the self-similar scaling 
behavior that is present in variable bit rate (VBR) MPEG-
4 video. As the usage of video services over packet-based 
wireless networks increases, new workload models will be 
necessary to study the quality of service aspects of video 
traffic. A key finding of our study is that MPEG-4 video 
encoder output traffic has fractal behavior and this 
behavior exists regardless of the compression ratio.  
 

1. INTRODUCTION 
 
A significant amount of research has been carried out on 
the performance implications of the self-similar nature of 
network traffic on network performance since the 
groundbreaking study of Leland, Taqqu, Willinger, and 
Wilson on the self-similarity of Ethernet traffic [1] in 
1993. Since then, it has been shown that certain kinds of 
network traffic exhibit self-similarity over many time 
scales.  

Variable bit rate (VBR) video has been shown to 
exhibit long-range dependence [2, 3]. This is mainly due 
to the fact that the adjacent pictures in a video cannot be 
too different from each other and this generates substantial 
autocorrelation in the frame sizes that are next to each 
other. Although long-range dependence does not 
necessarily imply self-similarity, it is a characteristic of 
self-similar processes. Therefore, VBR video may exhibit 
interesting scaling behavior. 

Traditionally, video sources have been modeled by 
short-range dependent models such as Markov chains. A 
number of studies have shown the suitability of these 
models when evaluating the performance of video traffic 
in the network. The irrelevance of long-range dependence 
for the video traffic when designing buffers is discussed in 
[4, Chapter 12]. 

However, the video community is increasingly using 
the Moving Pictures Expert Group (MPEG) standards. 
MPEG coding involves transmitting an I-frame 
periodically to protect against transmission errors. The 
resulting periodic time series may not be directly modeled 
by stationary, short-range dependent models. 

Web and video traffic have started to constitute a 
significant portion of Internet traffic and will also be the 
dominant sources of wireless traffic in the near future. 
MPEG-4 standard is particularly designed for video 
streaming over wireless networks. In this paper, we look at 
very recent MPEG-4 traces generated by an MPEG-4 
coder. We draw conclusions about the scaling behavior of 
the MPEG-4 video at the source using wavelet-based 
methods to identify uniform or non-uniform scaling 
behavior over fine time scales. A simple model that uses 
only a few parameters, such as wavelet coefficients, yet 
characterizes the bursty behavior of the video source can 
be very useful for assessing the quality of service that will 
be experienced by the receiver. Model parameters can be 
used to make admission control decisions when 
responding to video requests from clients. 

In Section 2, we give an overview of the mathematical 
concepts used throughout the paper. In Section 3, we 
describe the video traces and the tools we used in analysis. 
In Section 4, we present the results of the analysis. Finally, 
in Section 5, we close with discussion and conclusions.   
 

2. BACKGROUND 
 
In this section, we briefly introduce the mathematical 
concepts used throughout the paper. Most of the material 
is summarized from [4-7]. Please refer to these references 
for details. 

A process { }( ) |X t t ∈�  is self-similar with Hurst 
parameter 0<H<1 if X(0)=0 and { }( ) |X at t ∈�  and 

{ }( ) |Ha X t t ∈�  have the same finite-dimensional 

distribution [4]. H measures how the entire process scales 
from one time scale to another. 

Let us define the wavelet and scaling functions that 
form an orthonormal basis in L2 as:  
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for j, k∈�. 

Then, a signal X(t) can be represented as the 
expansion, for j, k∈�: 
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where J0 corresponds to the coarsest scale used by the 
expansion. The coefficients cj,k and dj,k correspond to the 
Discrete Wavelet Transform (DWT) of the signal.  

When J0 approaches -∞, we have: 
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where dj,k are the wavelet coefficients. 

A function is pointwise Lipschitz α>0 at ν, if there 
exists K>0, and polynomial p of degree m=�α� such that 
∀t∈�: 

 ( ) ( )f t p t K t v
α− ≤ −  (7) 

 
Lipschitz regularity of a function at ν is the sup of α such 
that the function is Lipschitz α. Lipschitz regularity is used 
to characterize singular structures. 

Fractals are signals that are singular at almost every 
point. Most fractals are self-similar. Multifractals are 
signals whose singularities vary from point to point. In 
general, one cannot compute the pointwise Lipschitz 
regularity of a multifractal since its singularities are not 
isolated. Therefore, a wavelet-based partition function is 
defined as 
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where Cj is a normalizing constant and dj,k are the wavelet 
coefficients. Note that an abrupt burst in the signal 
generates a large wavelet coefficient, which in turn gets 
magnified by taking the qth power across scales, which 
enables us to characterize the bursty behavior of the 
signal. 

The scaling exponent represents the asymptotic decay 
of the partition function: 
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Table 1. Statistics of the MPEG-4 traces studied. 
 
 SW 

HI 
SW  
ME 

SW 
LO 

SL 
HI 

SL 
ME 

SL 
LO 

Comp. 
ratio  

27.62 97.83 142.52 13.22 43.43 72.01 

Mean 
Mbps 

0.28 0.08 0.053 0.58 0.18 0.11 

Std 
Mbps 

0.18 0.091 0.091 0.464 0.213 0.176 

Peak 
Mbps 

1.9 0.94 0.94 4.4 2.4 2.3 

Hurst 
Param 

0.903 0.847 0.770 1.000 0.997 0.935 

 
 

3. TRACES AND TOOLS 
 
We use MPEG-4 traces that are available from the 
Telecommunication Networks Group, Technical 
University of Berlin [8]. The video resolution for each 
movie is 176x144 pixels (corresponding to QCIF) with 8 
bits/pixel, which is suitable for transmission over wireless 
networks to mobile devices. The two traces we have 
studied are Star Wars IV (SW) and Silence of the Lambs 
(SL). The traces consist of the number of bytes that arrives 
in 40 ms (corresponding to 25 frames per second). For 
each movie, the high quality (HI), medium quality (ME), 
and the low quality (LO) outputs are studied. The Hurst 
parameters for the traces are computed using R/S statistics. 
For further information on computations, refer to [8]. 
Table 1 shows the frame statistics of the two movies 
studied. 

To study the traces we use MATLAB© Wavelet 
Toolbox 2.1 available from the MathWorks Inc. and 
WaveLab802, another MATLAB© toolbox for wavelet 
analysis, available from Stanford University [9]. 
 

4. RESULTS 
 
For each movie and for each quality level, Figures 1-6 plot 
the following: 
1. The number of bytes per frame: The plots show the 
bursty nature of the video traffic generated by the encoder. 
The non-stationarity is apparent from the trace plots. 
2. The Continuous Wavelet Transform (CWT): CWT plots 
show the repetitive (or periodic) pattern of the traffic over 
many scales (i.e. self-similarity). The intensity of the gray 
levels corresponds to the magnitude of signal at a given 
scale and time. The CWT is computed using the Gaussian 
Wavelet. 
3. Partition Function: We look at the fine scales. We see 
the slope of curves increasing with increasing q 
(nonlinearly). Dips in the curve imply “interesting” fractal 
behavior. For details on this interpretation, refer to [5, 6]. 



  

A key finding is that the compression ratio does not affect 
the fractal behavior of video (as demonstrated by the 
figures). 
4. Scaling Exponent: Non-linearity of the curve implies 
that the time-series is multifractal. Straight line would 
have implied exact self-similarity (monofractal process). 
 

5. CONCLUSION 
 
Understanding the self-similar behavior of video traffic 
and building models for workload for video servers will 
undoubtedly help network engineers design better 
networks and software for video services over the wireless 
Internet. Models can be used in a variety of admission 
control algorithms to prevent congestion in wireless 
networks. A recent study that uses Multifractal Wavelet 
Model to model and infer network traffic may also be 
applied to generate synthetic MPEG-4 traffic for 
performance evaluation [10]. The models also provide 
compact descriptions of the traffic. These descriptions can 
be used for resource allocation algorithms, traffic shapers, 
and pricing and policy controllers to improve the quality 
of the network services for mobile users.  

This study shows that self-similar scaling is present in 
video traffic and compression ratio does not change this 
behavior.  
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Figure 1. Star Wars IV (High Quality) 
 

 
Figure 2. Star Wars IV (Medium Quality) 
 

 
Figure 3. Star Wars IV (Low Quality) 
 
 
 
 
 
 
 
 

 

 
Figure 4. Silence of the Lambs (High Quality) 
 

 
Figure 5. Silence of the Lambs (Medium Quality) 
 

 
Figure 6. Silence of the Lambs (Low Quality) 
 


