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Abstract - We analyze the parametric sensitivity of a
spatially-adaptive multiscale data fusion method. The fu-
sion problem is formulated as a recursive estimation prob-
lem in scale and space using a set of 1-D Kalman filters. The
overall filter accommodates data acquired at different reso-
lutions and missing data. The filter approaches optimal per-
formance for data with spatially-varying statistics by adap-
tively updating the filter parameters using the innovation-
correlation method. The contribution of this paper is the
determination of the estimation error sensitivity to the pro-
cess noise and measurement noise variances.

1. INTRODUCTION

Remote sensing applications often require analysis of mul-
tiple images of a single area that are acquired by different
sensors. In general, the images will differ in spatial cover-
age, spatial resolution, and spectral coverage. It is possible
to combine these data sets in a state-space framework so
that indirect relationships between the observations and the
estimated parameters, as well as the individual error charac-
teristics of each sensor, may be taken into account.

One such application is the determination of topography
using Interferometric Synthetic Aperture Radar (INSAR)
and Laser Altimeter (LIDAR) sensors. Strip-map INSAR
sensors can map topography over large areas with moder-
ate accuracies, while LIDAR sensors can map topography
over much smaller areas with very high accuracy. Combin-
ing data from the two sensors provides estimates of topogra-
phy that are more accurate than those obtained from INSAR
alone, yet have coverage that is both dense and extensive,
which is difficult to obtain with LIDAR.

We apply the filter to high resolution LIDAR data and
coarse resolution INSAR data acquired over a vegetated
flood plain in Austin, Texas. We combine the two data types
using a multiscale Kalman filter, which provides the esti-
mates and estimate uncertainties at each pixel. We gener-
alize the multiscale data fusion method in [1] by introduc-
ing a mechanism to detect and adapt to model errors and
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non-stationarities in the observations. The 1-D Kalman fil-
ters that comprise the spatially adaptive component calcu-
late the correlation of the innovations to update the process
noise variance. We present the basic data fusion framework
in Section 2 and our adaptive extension of it in Section 3.
In Section 4 we describe the parametric dependence of the
adaptive estimator. Finally, results and conclusions are pre-
sented in Sections 5 and 6.

2. MULTISCALE FILTER

We implemented a multiscale estimation of 2-D stochastic
processes on a quadtree. The multiscale estimation is ini-
tiated with a fine-to-coarse sweep up the quadtree that is
analogous to Kalman filtering with an added merge step.
The fine-to-coarse sweep up the quadtree is followed by a
coarse-to-fine sweep down the quadtree that corresponds to
Kalman smoothing. We refer to this algorithm as the mul-
tiscale Kalman smoother (MKS). Using the scalar form for
clarity, the linear coarse-to-fine model in [1] is given as

x(s) = �(s)x(Bs) + �(s)w(s) 8s 2 S; s 6= 1

y(s) = H(s)x(s) + v(s) 8s 2 T �S (1)

wheres is the node index on the tree, ands = 1 denotes
the root node. Here,x is the state variable, andy repre-
sents the observations. The stochastic forcing functionw is
assumed to be a Gaussian white noise process with unit vari-
ance, and the measurement errorv is a Gaussian white noise
process with sensor-dependent varianceR(s). S represents
the set of all nodes on the quadtree, andT denotes those
nodes at which an observation is available.B is a back-
shift operator in scale, such thatBs is one scale coarser
thans. � is the coarse-to-fine state transition operator,�
is the coarse-to-fine process noise standard deviation,H is
the measurement-state relation, andR represents the mea-
surement variance of the observations. The scale is repre-
sented by the level in the quadtree, and is denoted bym.
The support of the image at levelm is 2m � 2m, where
m 2 f0; � � � ;Mg.

The standard Kalman formulation provides optimal esti-
mates (in the mean squared sense) when there is perfecta



priori knowledge of the state and measurement model pa-
rametersf�(s), �(s), H(s), R(s)g. If errors exist in the
assumed process or measurement noise variances, then the
computed estimates and estimate uncertainty will be incor-
rect.

In previous work [2] we implemented a data fusion
framework based on a multiscale Kalman filter presented
in [1]. A quadtree data structure is created with the leaf
nodes corresponding to LIDAR data at 1.25 m resolution,
while INSAR data at 10 m resolution are used three lev-
els up in the quadtree. The state process is assumed to
follow a 1=f model known as fractional Brownian mo-
tion. Fractional Brownian motion models can be used to
represent a wide range of natural process such as topog-
raphy and atmospheric turbulence [3]. Using this model,
the power spectrum of the state variablex(s) can be repre-
sented by the multiscale model in (1) by using�(s)=1 and
�(s) = �02

(1��)m=2 [1]. The values of�0 and� are de-
termined by matching the power spectra of the observations
andx(s).

The MKS approach provides reasonable estimates for
the evolution of the state process in scalex̂(s). However,
the resulting coarse-to-fine process noise variance�2(s) is
constant at each scale; hence, it cannot accommodate non-
stationarities in the imagery at a particular scale. The fine-
to-coarse process noise varianceQ(s), used in the Kalman
filter, is a function of�2(s) and is therefore also spatially
uniform. An image that contains more than one landcover
type, e.g. grassland and forest, is an example of a non-
stationary 2-D process. Therefore, using a data model that
is variable in scale but uniform in space will lead to subop-
timal estimates in general.

3. ADAPTIVE MULTISCALE ESTIMATION

Several approaches to adaptive estimation have been re-
ported in the literature. Theinnovation-correlationmethod
is employed in this work [4] [5]. This method is theoret-
ically based, and is computationally attractive because it
is noniterative. It is also well suited to stochastic prob-
lems in which the precise dynamics of the process are not
known. The prediction errors in the Kalman filter (inno-
vations) comprise a zero-mean, white, Gaussian noise se-
quence when the model parameters are correct. Therefore,
testing the innovation sequence for non-white behavior by
computing the autocorrelation function (ACF) of the inno-
vations indicates the presence of model errors.

For the 1-D estimation in [4], the innovation sequence of
the Kalman filter is a function of the process noise variance
Q. The ACF of the innovation sequence is computed, and
if at least 5% of the ACF samples exceed a 95% confidence
interval test threshold, the innovations are considered non-
white. A newQ is then estimated using the ACF samples.
The innovation-correlation algorithm was generalized in [5]
to updateQ locally. We apply the method of [5] in the spa-
tial dimensions of the quadtree to produce asymptotically
normal, unbiased, and consistent estimates of the fine-to-

coarse process noise varianceQ(m; i; j), where(i; j) are
the image pixel coordinates. We refer to this algorithm as
the adaptive MKS (AMKS) algorithm.

The multiscale filter initiates at the base of the quadtree
according to the standard multiscale algorithm [1]. Upon
reaching a level that contains dense observationsmc, two 1-
D Kalman filters operate along the rows and columns of the
image. Thea priori estimates of the spatial filters include
the multiscale estimates from the level below. The location-
dependent estimates ofQ(mc; i; j) from the row-wise filter
and column-wise filter are averaged together.Q is updated
by each filter in blocks of1 � Nb pixels. LettingNb =
2mc=4 works well for images where128 � 2M � 512.
Here,M is the number of quadtree levels.

The spatial portion of the Kalman filter is applied only at
levels in the quadtree where dense observations are present
so that the innovation sequences have uniform support. The
Q(mc; i; j) estimates from the spatial filters are then used
to weightQ(s) at each pixel upon returning to the multi-
scale filter atm = mc � 1. The filter then proceeds up the
remainder of the quadtree according to the standard multi-
scale algorithm.

4. PARAMETRIC DEPENDENCE OF THE
ADAPTIVE FILTER

Because the spatial Kalman filters employed in the AMKS
algorithm are scalar-valued and reach steady state quickly,
we examine the solution to the scalar time-invariant
discrete-time Riccati equation to understand the parametric
dependence of the spatial filter performance.

Thea priori error variance represents expected variance
between the true anda priori estimated states

P�k = E[(xk � x̂�k )(xk � x̂�k )
T ] (2)

The scalar time-invariant Riccati difference equation de-
scribes the evolution of the discrete-timea priori error vari-
anceP�k as a function off�,Q,H,Rg.

P�k+1 = �2
k
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This difference equation can be transformed into a system
of two simultaneous linear difference equations [6]:
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Table 1. Percent improvement in MSE obtained by the
adaptive filter for different values ofQ and�Q(Q=R).

Q �Q(Q=R) � % MSE
10.0 0.10 52.4
1.0 0.01 38.5

10.0 1.00 53.7
1.0 0.10 44.7

10.0 10.00 16.6
1.0 1.00 30.5

10.0 100.00 2.2
1.0 10.00 18.8

The	k term in (5) dictates the rate of decay of the solu-
tion. The rate of convergence of the Kalman filter clearly
depends on the magnitudes ofQ andR and the ratio of
noise variancesQ=R. WhenQ=R is large, the solution de-
cays rapidly. The filter becomes highly reactive to new input
data because it weights the data more heavily than the signal
model. This situation can arise when a process with largeQ
is observed using a sensor with a relatively smallR. This is
sometimes the case with near-range INSAR observations of
terrain containing both forested and non-forested regions.

A series of 1-D simulations were performed to determine
the impact of the adaptive estimation as a function ofQ,
Q=R, and�Q, where�Q is a multiplicative factor that
represents an error in thea priori value ofQ used in the
spatial filter. One filter tracks the process with constant, but
erroneous process noise variance�Q �Q. The other begins
with the same noise variance, but employs the innovation-
correlation method used in the AMKS algorithm to update
its estimate ofQ. The degree to which the adaptive fil-
ter improved upon the results of the non-adaptive filter was
found to be a function of the magnitude ofQ and the ratio
�Q(Q=R). The resulting improvements in mean squared
error (MSE) achieved by the adaptive filter are shown in
Table 1. The smallest relative improvement in MSE of
the adaptive estimator corresponds to the largest value of
�Q(Q=R).

The relative reduction in MSE obtained from the adap-
tive filter was greater than 10% except in the case of
�Q(Q=R) = 100. In that case, the trueQ=R = 10, and
�Q = 10. In other words, an already large ratio of process
noise variance to measurement noise variance was exasper-
ated by an overestimateda priori value forQ in the filter.
The effectiveQ=R in the non-adaptive filter was 100, the
largest value of the eight cases examined.

The mechanism by which the large�Q(Q=R) value im-
pacts the performance of the adaptive estimator involves
the ACF of the innovations. The large�Q(Q=R) reduces
the energy of the non-zero lag terms in the ACF of the in-
novations relative to the zero-lag term, which reduces the
apparent correlation of the innovations. As a result, the
innovation-correlation algorithm is less likely to detect non-
white statistics in the innovations of the filter due to the er-
roneousa priori value ofQ.

5. RESULTS

Figure 1 shows a dense set of LIDAR data that were ac-
quired over the test site. The imaged area covers300� 300
m2 of a river flood plain in Austin, Texas. Coarse INSAR
data were acquired over the same area by the NASA/JPL
TOPSAR sensor. Vegetation heights were calculated from
the observations [2]. A sparse subset of the LIDAR data
is used to represent the incomplete coverage of terrain that
is typical for LIDAR sensors. A uniform sparse grid of
LIDAR data representing 15% of the total data set was used
in the data fusion.

TheQ(i; j) arrays are uniform at every scale in the MKS
algorithm, but are updated in the AMKS algorithm at the
coarse observation scalemc (see Fig. 2). Figure 3 shows
the INSAR and LIDAR observations of vegetation height
used in the data fusion, the resulting estimates, and the cor-
responding estimate uncertainty.

The process noise associated with the actual vegetation
height varies because the image contains both grass fields
and forest. Thea priori estimates for the fine-to-coarse pro-
cess noise varianceQ in the MKS algorithm are spatially
uniform and therefore necessarily incorrect in some places.
The adaptive algorithm is able to detect this error and cor-
rect for it. The resulting fused estimates cover the entire
imaged area, including areas where LIDAR data were with-
held. Yet, the high-resolution LIDAR information is pre-
served where it is available because of its small measure-
ment uncertainty. The INSAR data is effectively sharpened
through the fusion with the LIDAR data. The estimate un-
certainty in Fig. 3 is the squareroot of the Kalman smoother
error varianceP s [2]. The estimate uncertainty is lowest
where the LIDAR data are available.

With error defined as the difference between the esti-
mates and the full set of LIDAR data, the AMKS algorithm
achieves smaller MSE than the MKS algorithm. The per-
cent reduction in global MSE from using just the coarse data
to using the multiscale fusion is 70%. The additional per-
cent reduction in MSE from the standard multiscale fusion
to the spatially-adaptive multiscale fusion is 0.03%. This
small reduction in MSE of the AMKS algorithm, relative
to the standard MKS algorithm, is consistent with the 1-D
simulation results because(Q=R) > 1 and thea priori Q
was larger than than the trueQ, as indicated by a downward
revision of theQ estimates.

The adaptive estimator impacts the multiscale data fu-
sion results less than the simple 1-D estimation results.
This is because it is implemented on the dense data only,
which correspond to coarse scales. In this example, the
INSAR data are eight times coarser than the LIDAR data,
mc =M�3. The impact of the updatedQ is greatest when
mc =M � 1.

TheQ estimated by the adaptive filter is closer to the true
Q than the standard multiscale result, which indicates that
the adaptive estimation performance is closer to optimal.
The adaptive estimation also provides additional insight into
the spatial variability of the observed process. The AMKS
algorithm requires approximately 15% more computation



time than the MKS algorithm.

6. CONCLUSIONS

The multiscale estimation represents an improvement over
simply splicing in high-resolution data where ever it is
available because it accounts for the fact that observations
acquired at different resolutions actually observe different
processes. The improvement over the standard multiscale
estimation provided by the spatially-adaptive estimation is
small in magnitude in this particular case, but represents in
important extension nonetheless. It addresses the error that
results in the standard multiscale estimation when the pro-
cess noise is not constant or thea priori estimate of the pro-
cess noise variance is incorrect and therefore delivers per-
formance that is closer to optimal.

The amount of improvement of the adaptive estimation
over the non-adaptive estimation depends on the measure-
ment error varianceR of the dense observations (INSAR
in this case) and the process noise varianceQ. R is deter-
mined by sensor characteristics and the data. Thea priori
value ofQ is also determined from that data by matching
power spectra. Therefore, it is not generally possible to con-
trol the values ofQ andR. But in cases where the result-
ing Q=R < 1, greater relative reduction in MSE from the
AMKS algorithm can be expected.
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Fig. 1. Calculated vegetation heights from a dense set of
LIDAR data.
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Fig. 2. Q(m; i; j) atm = mc in the MKS algorithm and
AMKS algorithm.



Fig. 3. AMKS output for fused estimates of vegetation heights.


