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•Problem: No general capability for mapping and updating remote sensing data acquired

from multiple sensors
 Historical data often acquired from different sensors

 Data sets may have different extents and resolutions

 Different imaging geometry and wavelengths yield sensor-dependent errors

•Solution: Develop multiscale data fusion framework to combine image data
 Use Kalman-based method to provide robust performance and limit computational complexity

•Application: Mapping topography
 Fuse Digital Elevation Models (DEMs) acquired from different sensors and at different times

 Obtain improved DEM with sparse high-resolution data combined with dense low-resolution data

 Obtain error map

 Incorporate spatially-adaptive capability

 • Kalman process noise variance Q is derived from the downward model [1]

Ps(s) = E[x(s)x(Bs)] = Φ2Ps(Bs) + Γ2(s)

Q(s) = Ps(Bs)[1 - Φ2Ps(Bs)/Ps(s)]

 • MKS has no mechanism to make Γ, Ps, or Q vary spatially

 No variation with (i, j), only with scale m

• Benefits of adaptive MKS (AMKS) fusion [2]
 Compensates for modeling errors in Q

 Spatially-varying Q represents actual topography more accurately

 Updated Q images provide insight about topographic features

• Spatial Kalman filter used in the data fusion is scalar-valued and reaches steady state quickly
 Use solution to the scalar time-invariant discrete-time Ricatti equation to examine sensitivity

 The Ricatti difference equation describes the evolution of the discrete-time a priori error variance Pk
-

 The difference equation can be transformed into a system of two simultaneous linear difference equations [5]

 The general solution indicates the Kalman filter rate of convergence grows with  Q and Q/R

Conclusions
• Multiscale estimation represents an improvement over splicing high-resolution data by

accounting for realizations of the state process at multiple scales

• AMKS data fusion provides smaller MSE than standard MKS data fusion

- The amount of improvement depends on the values of Q, ∆Q, and R

- Improvements in the MKS implementation are generally less than in 1-D Kalman filter

- Updated images of Q provide information about where the MKS algorithm is suboptimal

• Alternate approaches to spatially-adaptive MKS will be investigated, such as multiple-model

filter banks
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• Multiscale Kalman smoother (MKS) operates on a quad-tree
 Begins with fine-to-coarse sweep up the tree (Kalman filtering with merge step) [1]

 Followed by coarse-to-fine sweep down the tree (Kalman smoothing)

 Accommodates sparse and irregularly spaced measurements

 Computes minimum mean squared error estimates of state variables

 Allows explicit separation of state variables and observations

m = scale
s = node index on multiresolution tree
Bs = backshift from s (coarse to fine)
x(s) = state variable
w(s) = white noise process ~N(0,1)

Coarse-to-Fine Dynamic Model

x(s)=Φ(s)x(Bs)+Γ(m)w(s) state equation

y(s)=H(s)x(s)+v(s) measurement equation
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Results

Mean h (m)Observation

1.6TOPSAR-3
1.9TOPSAR-2
1.9TOPSAR-1
18ERS

Mean σh (m)Observation

1.6TOPSAR-3
1.9TOPSAR-2
1.9TOPSAR-1
18ERS

Mean sqrt(Ps) (m)Fused results

0.60prior + TOPSAR-3
0.76prior + TOPSAR-2
1.1ERS + TOPSAR-1

Mean sqrt(Ps) (m)Fused results

0.60prior + TOPSAR-3
0.76prior + TOPSAR-2
1.1ERS + TOPSAR-1

18.8101
2.210010
30.511
16.61010
44.70.11
53.7110
38.50.011
52.40.1010

% MSEQ(Q/R)Q

18.8101
2.210010
30.511
16.61010
44.70.11
53.7110
38.50.011
52.40.1010

% MSEQ(Q/R)Q ∆ ∆

Estimating Q In Spatial Dimensions
• Innovations represent prediction error υk = yk - Hxk|k-1 = Hek + vk

 Where ek = xk - xk|k-1 denotes error in estimate

• The sequence υk is Gaussian, white sequence for optimal filter

• Model errors cause assumptions of uncorrelated noise to be violated
 Yields correlation in υk , E[υkυj

T] = 0 in general

• Detect correlation in υk using autocorrelation function (ACF) [3] [4]
 Non-white ACF(υk) implies model errors

 Relate Kalman parameters {Φ, H, Q, R} to ACF(υk) and update Q using innovation-correlation method

f(Q)

• Numerical results were computed for different values of ∆Q(Q/R)
 Relative improvement of the adaptive estimator degraded for large ∆Q(Q/R) values
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y(s) = sensor measurement
v(s) = measurement noise process ~N(0,R(s))
Φ(s) = coarse-to-fine state transition
Γ(s) = stochastic detail model
H(s)  = observation-state mapping

Complexity Analysis
• MKS

- Non-iterative, O(N) operations, where N is number of leaf nodes

• AMKS

- Non-iterative, solve for Q over contiguous pixel segements where non-white innovations detected

- Implement at scale m=M-1, additional operations over MKS O(N/4)

• Adaptive algorithm represents approximately 25% additional complexity and achieves

   up to 15% reduction in MSE

Results
• Obtain improved DEM and lower uncertainty sqrt(Ps) without spatial blurring

• Mean height standard deviations for each observation σh and fusion results sqrt(Ps)

• Fused multiple DEMs from different radars with standard deviations σh >2.5 m
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