

Designing an Embedded Video Processing Camera Using a

16-bit Microprocessor for Surveillance System

Koichi Sato*†, Brian L. Evans*‡ and J. K. Aggarwal*†

†Computer and Vision Research Center
‡Embedded Signal Processing Laboratory

*Department of Electrical and Computer Engineering

The University of Texas at Austin, Austin, TX 78712, USA

{ koh@mail.utexsas.edu , bevans@ece.utexas.edu , aggarwaljk@mail.utexas.edu }

Abstract

This paper describes the design and implementation of a hybrid intelligent surveillance

system consisting of an embedded system and a personal computer (PC)-based system. The

embedded system performs some of the image processing tasks and sends the processed data to

a PC. The PC tracks persons and recognizes two-person interactions by using a grayscale

side-view image sequence captured by a stationary camera. Based on our previous research, we

explored the optimum division of tasks between the embedded system and the PC, simulated

the embedded system using dataflow models in Ptolemy, and prototyped the embedded

systems in real-time hardware and software using a 16-bit CISC microprocessor. This

embedded system processes one frame image in 89 ms, which is within three frame-cycle

periods for a 30Hz video system. In addition, the real-time embedded system prototype uses

5.7K bytes of program memory, 854K bytes of internal data memory and 2M bytes

external DRAM.

1. Introduction

Tracking, recognizing and detecting objects using a video sequence are topics of significant

interest in computer vision. Cai and Aggarwal [1] reported a variety of methods for analyzing

human motion. In [2-3], Haritaoglu, Harwood and Davis tracked both single and multiple

humans in outdoor image sequences using a PC. In [4], Nuria, Rosario and Pentland

recognized two-person interactions from perspective-view image sequences. They tracked

persons and recognized their interaction using trajectory patterns. Meanwhile, some

researchers developed applications that included one or more embedded systems. In [5],

Pentland proposed a “wearable device” that sees people using an image sensor and understands

the environment. In such equipment, a computer can act or respond appropriately without

detailed instructions from humans. In [6], Mahonen proposed a wireless intelligent

surveillance camera system that consists of a digital camera, a general-purpose processor or

DSP for image processing and a wireless radio modem. In [7], Shirai et al. introduced a

real-time surveillance system with parallel DSP processors (TI TMS320C40). Their system

consists of several boards connected in series. It can compute optical flow computation in

floating point faster than 30 frames per second. In this system, a DSP is located between the

two memories. The DSP computes and transfers the image data from the video memory to the

other memory, which is connected to the next processing stage.

In [8], we proposed a surveillance system that recognizes interactive human activities using

a side-view image sequence. The system consists of a single monochrome video camera, a

video-capturing device and a PC. The system is located along a sidewalk and it thus captures

human movement from a side-view. Persons in the sequences move horizontally and the

pattern of their motion is used to determine the interaction.

Our surveillance system made use of outdoor, side-view image sequences. The external

conditions for our system create potential difficulties. First, outdoor image sequences tend to

contain shadows and moving trees and leaves, which makes segmentation more difficult.

Second, side-view image sequences are more prone to occlusion, than are top-view or

perspective images. Our strategy to overcome these problems was to use the temporal

spatio-velocity (TSV) transform [8,9]. The TSV transform estimates pixel velocities from a

binary image sequence. The segmentation based on the TSV-transformed images is more

stable because it uses both spatial and velocity information.

In the practical implementation of the system, we use several cameras to avoid the problem

of the limited field of view inherent in a single-camera system. This in turn causes a problem:

more PCs are required because one PC can only achieve real-time performance when

processing video data from one camera at a 30 Hz frame rate.

To overcome this problem, we propose an embedded system for each camera that performs

the fundamental image processing tasks (that is, the human segmentation processing) and

sends the output data to a PC. This system is potentially able to connect up to 12 embedded

cameras simultaneously in 10 frame/s. In this paper, Section 2 describes the algorithms used

in our system and discusses a division of tasks for the embedded systems. Section 3 models

and simulates the embedded system using dataflow models in Ptolemy [10]. Section 4

discusses the hardware design. Section 5 draws conclusions.

2. Assignment of tasks to the embedded system

In designing the surveillance system, we considered the optimum division of tasks between

the embedded system and the PC-based system to take full advantage the unique characteristics

of each. For example, a statically schedulable, fine granularity process such as an image

differencing operation is more effectively performed on an embedded processor, whereas a

database operation is more effectively performed by a PC-based system. The computational

complexity of each operation and the transfer rate and overall suitability of each processor

were evaluated. In the discussion below, we first describe the algorithms, followed by a

discussion and evaluation of the way we divide the tasks. As a measure of the computational

complexity, we use the total number of the operations such as additions, subtractions,

multiplications and comparisons. To determine suitability, we consider the code size,

computational complexity within a loop and the number of branches in the process flow.

Figure 1 presents on overview of the system. In the figure, letters A-I represent process

stages and numbers 1-9 denote data transfer stages.

Background
Subtraction

Vertical
Projection

TSV
Transform

Binarization

Labeling Blob Feature
Extraction

Blob
Association

Interaction
Classification

Video
Sequence

Interaction
Type

1 2 3 4
5

6 7 8 9

B C D E

F G H I

Crop
40x320

A

Figure 1. Overview of single camera system

Crop (A) and Background Subtraction (B)

In order to extract persons, we crop an SHxSV image into an SHxRV region. We set that

region at the level of an average human torso so that all humans are extracted by this operation.

As a result, noise outside the region is eliminated. Then we perform a simple background

subtraction and binarization to segment the foreground region using a threshold Th,



 >−

=
otherwise0

),(),(1
),(

ThyxByxI
yxS

. (1)

To avoid missing human blobs that have intensities similar to the background, we use a low

threshold, thereby accepting some noise. SHxRVx2 is chosen as an estimate of the

computational complexity per frame, while SHxRV [bits/frame] is an estimate of the data

transfer rate.

Vertical projection (C)

In order to reduce the noise, we perform a vertical projection over the entire image (SHxRV

size) and re-binarize the projection value by a threshold TH.





 >= ∑

=

otherwise

TyxS
xH H

b

ay

0

),(1
)((2)

where TH is a threshold that is constant in all situations and H(x) is the object extracted binary

image. As a result, we get a sequence of one-dimensional binary images. For this process,

SHx(RV+1)x2 is chosen as an estimate of the computational complexity per frame, while SH

[bits/frame] is an estimate of the data transfer rate.

The TSV Transform (D) and Binarization (E)

 The TSV transform, which was first proposed in [8,9], estimates the pixel velocity from

binary image sequences. Here, a one-dimensional binary image sequence Hn(x) is converted

into an SHxVV size TSV image Vn(x,v). SH is the horizontal size of the original image and the

vertical size VV is determined by the resolution and range of the velocities.

)()1(),(),(1 xHevvxVevxV nnn
λλ −

−
− −+−= (3)

For the TSV transform, we compute two multiplications and one addition for each TSV point.

Thus, we have SHxVVx3 computations per frame. The transfer rate is SHxVVx8 [bits/frame].

+

TSV Image

One-dimensional binary image

Shift

e-λ

1-e-λ

One-dimensional binary image
is stretched vertically to be the
same size as TSV image

TSV image in the previous frame is shifted parallelogram

Figure 2. Computing the TSV Transform

To group the pixels with similar velocity, we binarize the TSV image by a fixed threshold

Thv.



 ≥

=
otherwise0

),(if1
),(

~ Vn
n

ThvxV
vxV (4)

For binarization, we compute one comparison at each TSV point. This translates into SHxVV

computations per frame and results in a data transfer rate of SHxVV bits/frame.

Labeling(F), Feature Extraction(G), Blob Association(H) and Interaction Classification(I)

Once Vn(x,v) is binarized, labeling over Vn(x,v) yields human blobs (stage F). Features of

the human blobs (stage E) are used to associate the human blobs over frames (stage H). Finally,

the system determines the interaction using the human trajectories (stage I). The computation

time for each process depends on the content of the images. We have assumed a reasonable

number for each process. For labeling, we performed two comparisons at each point. For

feature extraction, we assumed 20 blobs are labeled in the previous process, and we performed

300 computations for each blob.

Evaluating Processes by Data Transfer Rate and Computational Complexity

 Figure 3 is a graph depicting the variation of the data transfer rate (left axis) and the

computational complexity (right axis) as functions of the various processes involved in our

system. Table 1 summarizes the suitability of the various stages for implementation on the

embedded system.

Transfer Rate and Computation

2304

288
384

3072

9.6

3072

1230

158.4

288
288

1152

384

768

180

900

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9

Process

T
ra

ns
fe

r
R

at
e

(k
bp

s)

0

200

400

600

800

1000

1200

1400

C
om

pu
ta

tio
na

l c
om

pl
ex

ity
(k

tim
es

/s
ec

)

Transfer Rate (kB/s) Computation (ktimes/s)

B C D E F G I

Figure 3. Data transfer rate and computational complexity

Step Code size Iterative
computation

Number of
branches

Suitability

A Crop Small Simple Small Suitable
B Subtraction Small Simple Small Suitable
C V Projection Small Simple Small Suitable
D TSV Small Simple Small Suitable
E Binarization Small Simple Small Suitable
F Labeling Small Medium Medium Fair
G Feature Ext. Medium Medium Small Fair
H Association Large Complex Large Unsuitable
I Classification Large Complex Large Unsuitable

Table 1. Suitability of each process for implementation on the embedded system

Background
Subtraction

Vertical
Projection

TSV
Transform

Binarization

Labeling Blob Feature
Extraction

Blob
Association

Interaction
Classification

Video
Sequence

Interaction
Type

1 2 3 4
5

6 7 8 9

B C D E

F G H I

Crop
40x320

A

Assigned to the embedded system

Assigned to the PC-based system

Figure 4. Division of tasks between the embedded and PC-based system

For the actual computation, we assumed that the system digitized a 30 [fps] monochrome

video signal into a 320x240 image sequence. Also, we used RV=30 [pixels] and VV=40 [pixels].

Based on these considerations, we assigned stages A through E to the embedded system, while

stages F through I were handled by the PC based system. The overall surveillance system is

feedforward, and we want to partition the blocks to maximize embedded computations and

minimize the data transfer from the embedded system to the PC

3. Dataflow Modeling and Ptolemy Simulation

We determined the tasks to be assigned to embedded system in the previous section. In this

section, we discuss the design and simulation of the embedded system using Ptolemy [10].

Figure 5 shows a block diagram of the embedded system on Ptolemy and Figure 6 gives the

simulation result. Figure 5 follows the same steps as the block diagram discussed in Figure 1.

Crop: A
Background Subtraction: B

Vertical Projection: C TSV Transform: D

Figure 5. System design on Ptolemy

0

20 40 60 80 100 [frame]

Figure 6. Results of the Ptolemy simulation

In Figure 6, the input image sequence at the 20th, 40th, 60th, 80th and 100th frame (top

rows) and the resulting TSV image at each corresponding frame (bottom rows) are shown. The

horizontal axis of the original images and the TSV images are compatible. The vertical axes of

the TSV images are velocity axes. The intensity represents the measure of existence in the

position and velocity. Thus, a bright blob in the TSV image represents a human blob consisting

of pixels with similar velocities and locations. Actually, we can see that the bright blobs are

located in the same horizontal coordinates as the persons. We validated the Ptolemy

simulation results by comparing them with the previous PC implementation, and the two

sets of results were the same.

4. Hardware Design

With the specifications described in Table 2, we designed the hardware to perform the tasks

that we simulated in Ptolemy. Figure 7 is a diagram of the embedded system. Figure 8 is a top

view picture of the hardware.

CPU Hitachi H8/3048F Microprocessor, 16-bit CISC, 16MHz
Memory Mitsubishi Multi-port DRAM M5M442256 (1Mbit x 4)
Implementation Hitachi C Compiler/Assembler

Table 2. Hardware Specification

NTSC
Signal

AD
Converter

PLL Clock
generator

Multiport
DRAM

Multiport
DRAM

Microprocessor

PC

Analog Part

Multi-port DRAM

Microprocessor

Figure 7. Diagram of the hardware Figure 8. Picture of hardware design

Table 3 shows the results of the hardware simulation. This system processes one frame

within 89 ms, which means that this system computes the data corresponding to one frame

within three image frame cycles and performs 10 frames/s. Also, we can see that the code size,

internal RAM usage, and the data transfer rate to a PC are all very small.
Computation time per one frame 89 [ms] < 100 [ms] = 3 frame-cycle
Code size 5732 bytes
Internal RAM usage 854 bytes
Data rate to PC 128kbps

Table 3. Result of Hardware simulation

5. Conclusion

We have designed an embedded system that is a part of a hybrid system consisting of an

embedded system and a PC-based system. We used a low-power CISC microprocessor and

four multi-port DRAMs in this application. The execution time of the system is 89 ms per

frame, that is, 10 frames/s. The performance bottleneck of the system is the DRAM access time,

because a huge amount of image data has to be transferred between the CPU and the DRAMs.

We used several techniques to reduce the access time, including (i) designing an efficient code

that minimizes the DRAM access time, and (ii) scheduling the DRAM access order so that the

CPU can use the DRAM in the block transfer mode.

We have discussed a surveillance system using a 16-bit general purpose processor.

However, a DSP is generally considered to be most appropriate for a system dealing with a

huge amount of data. Simulation and system design using a DSP, therefore, might better serve

this purpose. We leave it as a future research project.

References

[1] J. K. Aggarwal and Q. Cai, “Human Motion Analysis: A Review”, Computer Vision and

Image Understanding, vol.7, no.3, pp. 428-440, March, 1999.

[2] I. Haritaoglu, D. Harwood and L. Davis, “W4: Who, When, Where, What: A real time

system for detecting and tracking people”, Proc. Int. Conf. on Automatic Face and

Gesture, Nara, pp 222-227, April 1998.

[3] I. Haritaoglu and L. Davis, “Hydra: Multiple people detection and tracking using

silhouettes”, Proc. IEEE Work. on Visual Surveillance, pp.6-13, Fort Collins, Colorado,

June 1999.

[4] N. Oliver, B. Rosario and A. Pentland, “A Bayesian computer vision system for modeling

human interactions”, Proc. Int. Conf. on Vision Systems, Gran Canaria, Spain, pp. 255-272,

January 1999.

[5] A. Pentland, “Looking at people: sensing for ubiquitous and wearable computing” in

IEEE Transactions on Pattern Analysis and Machine Intel., vol. 22, no. 1, Jan. 2000, pp.

107-119

[6] P. Mahonen, “Wireless video surveillance: system concepts”, in Proc. Int. Conf. on Image

Analysis and Processing, 1999, pp 1090-1095

[7] Y. Shirai, J. Miura, Y Mae, M Shiohara, H. Egawa, S. Sasaki, “Moving object perception

and tracking by use of DSP”, Proc. of Computer Architectures for Machine Perception,

Nov. 1993, pp. 251 -256

[8] K.Sato and J.K.Aggarwal, “Tracking and Recognizing Two-person Interaction in Outdoor

Image Sequences”, in Proc. IEEE Work. on Multi-Object Tracking, Vancouver, CA, July,

2001, pp.87-94.

[9] K.Sato and J. K. Aggarwal, “Tracking objects using temporal spatio-velocity transform”,

Proc. IEEE Work. on Performance Eval. of Tracking and Surveillance, Kauai, Hawaii,

December, 2001.

[10] Ptolemy Project, Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley, http://ptolemy.eecs.berkeley.edu/.

