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Abstract— Wireless channels change due to the mobility of
users, which coupled with system delays, causes outdated channel
state information (CSI) to be used for transmitter optimization
techniques such as adaptive modulation. Channel prediction
allows the system to adapt modulation methods to an esti-
mated future CSI. The primary contribution of this paper is
a low complexity channel prediction method using polynomial
approximation. The method is local in the sense that only a
few previous channel samples are required to estimate the next
CSI. The computational complexity of the proposed method is
demonstrated to be negligible compared to previous methods.
Simulation results show that the proposed method accurately
tracks slowly to moderately fading channels. The proposed
method’s usefulness is demonstrated by applying it to a multiuser
OFDM system. As an example, a multiuser OFDM with a system
delay of 5 ms and a Doppler spread of40 Hz loses about17% of
its capacity due to imperfect CSI. Using the proposed algorithm
to predict the CSI, the capacity loss is less than1%.

I. I NTRODUCTION

Adaptive modulation [1] uses different signal constellations
to different channel conditions to increase spectrum efficiency.
Recently multiuser orthogonal frequency division multiplexing
(MU-OFDM) [2]-[5] is gaining interest. By allocating sub-
channels and power adaptively based on channel conditions,
MU-OFDM can achieve much higher capacity compared to
fixed resource allocation schemes, such as fixed TDMA or
FDMA. However, knowledge of instantaneous channel con-
dition is required to determine the resource allocation. Due
to various delays, such as transmission, hardware, and com-
putational delays, the computed schemes may not be optimal
with respect to the current channel condition, and thus may
degrade the system performance. If channel state information
(CSI) could be reliably predicted, then the subchannels and
power could be allocated for future conditions.

Researchers have realized the importance of channel pre-
diction and various channel estimation algorithms have been
proposed [6]. In [7], a deterministic channel model is proposed
to perform short range channel prediction. The channel is
modelled as a composite signal with tens of incident waves,
whose amplitudes, frequencies, and phases are slowly varying.
Spectrum estimation algorithms, such as the Multiple Signal
Classification algorithm and the minimum norm algorithm,
have been applied to estimate the parameters of incident
waves. In [8], CSIs are predicted by an auto-regressive model,
followed by interpolation to improve the resolution. The

maximum entropy method is used to estimate the AR model
parameters based on a period of CSI observations. Other signal
processing techniques have been applied to perform channel
prediction. In [9], an ESPRIT-type algorithm is proposed to
estimate the dominant incident sinusoids in the composite
channel signal. In [10], the ESPRIT-type algorithm is extended
to predict the wideband time varying channel at different
frequencies jointly. In [11], a nonlinear predictor using mul-
tivariate adaptive regression splines is proposed. This method
finds the nonlinear statistical dependence in the CSI sequence
that far exceeds that of the linear components, and thus can
predict much farther into the future.

In order to predict CSI accurately, all of the above methods
require a certain period of CSI observations. The signal
processing algorithms frequently require autocorrelation esti-
mation, matrix inversion, or singular value decomposition [8]
[9] [10]. The advantage of spectrum estimation methods is that
CSI can be predicted farther ahead, on the order of tens of
milliseconds. In this paper, we propose a simple yet effective
channel prediction method using polynomial approximation. It
requires very few CSI observations. For indoor environments,
the proposed method can predict5 ms ahead with an average
prediction error of3%, at a Doppler spread of40 Hz. The
computational complexity of the proposed method is negligible
compared to the aforementioned methods.

Another advantage of the proposed channel prediction
method is that no interpolation is required to improve res-
olution, since the CSI can be evaluated directly from the
polynomial. In some indoor wireless applications, such as
IEEE 802.11a wireless LAN, channel estimation has to be
performed frequently, because frequency domain equalization
has to be performed in order to decode OFDM symbols
correctly. With the proposed method, channel estimation can
be performed less often and the intermediate channel condition
can be evaluated by the polynomial that is fit with local
channel characteristics.

II. CHANNEL MODEL

The baseband equivalent deterministic channel [8] can be
modelled as

h(t) =
N∑

n=1

An expj(2πfnt+φn) (1)



whereN is the total number of incident waves; andAn, fn

andφn are the amplitude, Doppler frequency, and initial phase
of thenth incident wave, respectively. The Doppler frequency
is fn = fc

v
c cos(θ), where fc is the carrier frequency,v is

the speed of mobile,c is the speed of light, andθ is the
angle between thenth incident wave and the direction that
the mobile is moving.φn is uniformly distributed in[0, 2π].

In general, parameters such as amplitude, Doppler fre-
quency, and initial phase are time-varying. However, if the
mobile is far away from the base station, they evolve slowly.
The slow changing property of these parameters allows the
aforementioned prediction methods [8]-[10] to perform well
since these methods require CSI observations to predict the fu-
ture channel condition. When these parameters evolve quickly,
the observed CSIs may not contain sufficient information for
prediction purposes.

III. PREDICTION WITH LOCAL INFORMATION

In this section, a simple yet effective prediction method is
proposed. A polynomial is fit to several previous CSI samples.
This polynomial is then extrapolated to predict future channel
state. Since only a few previous CSI samples are used, this
method is rather local and has low computational complexity.

Derivation starts from the channel model in (1):

h(t) =
N∑

n=1

An expj(2πfnt+φn) (2)

=
N∑

n=1

An cos(2πfnt + φn)

︸ ︷︷ ︸
I(t)

+j

N∑
n=1

An sin(2πfnt + φn)

︸ ︷︷ ︸
Q(t)

The real part ofh(t) is denoted asI(t), and Q(t) is the
imaginary part. Since bothI(t) andQ(t) are the summations
of N sinusoids, all the derivatives ofI(t) and Q(t) are
continuous. With a function ofM continuous derivatives,
a polynomial of orderM − 1 can be used to approximate
the function, with approximation error determined by the
following theorem [13].

Theorem 1:Givena < b, a functionf(x) with M continu-
ous derivatives on[a, b], a polynomialp(x) with degreeM−1
so that

p(xi) = f(xi)

for i = 1, . . . , M , where the setxi ∈ [a, b] (x1 = a and
xM = b) are distinct, then for everyx ∈ [a, b], there exists a
point ξ ∈ [a, b] such that [13]

f(x)− p(x) =
(x− x1) · · · (x− xM )

M !
f (M)(ξ)

Since all derivatives ofI(t) andQ(t) are bounded,Theorem
1 shows that with{xk}M

k=1 properly chosen, the approximation
error can be controlled. In order to make the approximation
error small, the set of{xk}M

k=1 cannot span a large range.
Thus the polynomials have the local characteristics ofI(t)
andQ(t). Extrapolating the polynomial can perform channel
prediction for a short range.

Consider the discrete-time channel that is formed by sam-
pling the continuous channel with sampling periodT :

hd(n) = h(nT ) = I(nT ) + jQ(nT ) = Id(n) + jQd(n) (3)

Here,hd(n) is the discrete-time complex channel value. The
real and imaginary parts ofhd(n) are Id(n) and Qd(n),
respectively.

In order to preserve the phase information of the channel,
Id(n) andQd(n) are predicted separately. Treatment forId(n)
is described below, whereasQd(n) follows in the same way.

SupposeM previous CSI samples{Id(n − i)}M−1
i=0 are

available, a polynomial

PI(t) =
M−1∑

i=0

cit
i (4)

satisfying

PI(t) =





Id(n) if t = nT
Id(n− 1) if t = (n− 1)T
Id(n− 2) if t = (n− 2)T
...

...
Id(n−M + 1) if t = (n−M + 1)T

(5)

can be found by solving the following set of linear equations

Ac = b (6)

where

A =




1 (nT ) · · · (nT )(M−1)

1 ((n− 1)T ) · · · ((n− 1)T )(M−1)

1 ((n− 2)T ) · · · ((n− 2)T )(M−1)

...
... · · · ...

1 ((n−M + 1)T ) · · · ((n−M + 1)T )(M−1)




(7)

b =
[

Id(n) Id(n− 1) Id(n− 2) · · · Id(n−M + 1)
]T

(8)

with unknown variables

c =
[

c0 c1 c2 · · · cM−1

]T
(9)

Then, the predicted valuêI(n + 1) can be expressed as

Î(n + 1) =
M−1∑

i=0

ci ((n + 1)T )i (10)

The predicted valuêI(n+1) can again be used to predict later
CSIs. However, error propagation can happen.

Matrix A is Vandermonde. A property of Vandermonde
matrices ensures that the calculation ofÎ(n + 1) in (10) is
independent of the valuen. Thus, we can always calculate
Î(n + 1) as follows:

1) Calculatec by solving

Ac = b (11)



whereA is a deterministicmatrix

A =




1 M · · · MM−1

...
... · · · ...

1 3 32 3M−1

1 2 22 2M−1

1 1 1 1




(12)

Note thatn is arbitrary chosen to beM here, andT can
be incorporated into vectorc, consisting of{ci}M−1

i=0 .
2) CalculateÎ(n + 1) as

Î(n + 1) =
M−1∑

i=0

ci(M + 1)i (13)

with the set{ci}M−1
i=0 calculated from (11).

The complexity of the proposed algorithm is very low. The
LU decomposition of matrixA can be precalculated. Once
a new CSI sample arrives, the coefficients{ci}M−1

i=0 can be
calculated by backward and forward substitution inM2 + M
multiplications andM(M − 1) additions. The next channel
state can be predicted by (13) withM multiplications and
M − 1 additions. The complexity of the proposed method
is negligible compared to the complicated signal processing
methods, which require autocorrelation sequence estimation,
matrix inversion or even singular value decomposition.

However, the proposed method cannot predict very far
into the future. Nevertheless, simulation results show that in
environments with low to modest Doppler spread, the proposed
method can predict several milliseconds ahead. More details
about the performance are presented in the next section.

IV. PERFORMANCESIMULATIONS

In the simulations, the wireless Rayleigh fading channel is
modelled as a composite signal of200 isotropically distributed
incident waves.

Fig. 1 shows the performance of the1-step prediction of
the proposed method, with a polynomial of order5. The
maximum Doppler spread is40 Hz. The channel is sampled
at 1 kHz. Thus CSIs of1 ms ahead is predicted. At low
Doppler frequency spread environments, the1-step predicted
value with the proposed method agrees very well with the
accurate channel value.

Fig. 2 uses the same parameters as in Fig. 1, except that
the maximum Doppler spread is100 Hz. Compared with Fig.
1, the difference between adjacent channel samples is much
larger, because channel changes faster. However, the1-step
prediction with a polynomial of order5 still performs well.

Fig. 3 shows the prediction error propagation. The predicted
channel condition is used to estimate later CSIs. It is shown
that with a5th order polynomial, at maximum Doppler spread
of 40 Hz, the5-step or5 ms prediction error is less than3%.
The results are averaged over10000 channels.

Fig. 4 shows the error distribution of the5th order predictor
with a prediction depth of5 ms. CSI is sampled at1 kHz.
Maximum Doppler spread is40 Hz. The results are from
10000 trials. For about97% of the trials, the5 ms prediction
error is less than10%.
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Fig. 1. One-step channel prediction example. CSI is sampled at1 kHz.
Maximum Doppler spread is40 Hz.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

time (ms)

ch
an

ne
l r

es
po

ns
e

perfect
estimated

Fig. 2. One-step channel prediction example. CSI is sampled at1 kHz.
Maximum Doppler spread is100 Hz.

V. A PPLICATIONS

In this section, we study the application of the proposed
method in multiuser OFDM systems [4] [5]. OFDM decom-
poses the whole wideband into several orthogonal subchan-
nels. Usually all the subchannels are occupied by one user at
each transmission time, such as in 802.11a WLAN. Obviously
this scheme is not optimal at least in two aspects:

• Users use all the subchannels regardless the channel gains
in the subchannels.

• Only one user can transmit at each time.

The concept of multiuser OFDM is to allow several users to
share an OFDM symbol. Thus each user obtains a fraction of
bandwidth for data transmission during each symbol. Further-
more, with subchannels and power adaptively allocated based
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Fig. 3. Prediction error vs. prediction depth. CSI is sampled at1 kHz.
Maximum Doppler spread is40 Hz. The results are averaged over10000
channels.
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Fig. 4. Error distribution of a5th order polynomial predictor, with a
prediction depth of5 ms. CSI is sampled at1 kHz. Maximum Doppler spread
is 40 Hz. The results are from10000 trials.

on the CSIs, MU-OFDM can achieve much higher capacity
than non-adaptive systems (TDMA, FDMA) [4] [5].

There are two main optimization problems in adaptive MU-
OFDM literature: margin adaptive (MA) [2] and rate adaptive
(RA) [3] [4] [5]. The margin adaptive objective is to achieve
the minimum overall transmit power given the constraints
on the users’ data rate or bit error rate (BER). The rate
adaptive objective is to maximize capacity with a total transmit
power constraint. In either margin adaptive or rate adaptive,
instantaneous CSIs need to be available at the transmitter
in order to computer the subchanel and power allocation
adaptively. As mentioned before, various delays make perfect
CSIs not available at transmitter. In this paper, we will discuss
the proportional rate adaptive optimization [5] with delayed

CSI. We also evaluate the performance of the proposed channel
prediction method.

Mathematically, the proportional fairness MU-OFDM prob-
lem can be formulated as

max
pk,n,ρk,n

K∑

k=1

N∑
n=1

ρk,n

N
log2

(
1 +

pk,nh2
k,n

N0
B
N

)
(14)

subject to
K∑

k=1

N∑
n=1

pk,n ≤ Ptotal

pk,n ≥ 0 for all k, n
ρk,n = {0, 1} for all k, n
K∑

k=1

ρk,n = 1 for all n

R1 : R2 : ... : RK = γ1 : γ2 : ... : γK

whereK is the total number of users;N is the total number of
subchannels;N0 is the power spectral density of additive white
Gaussian noise;B andPtotal are the total available bandwidth
and power, respectively;pk,n is the power allocated for user
k in the subcarriern; hk,n is the channel gain for userk
in subcarriern; ρk,n can only be the value of either1 or 0,
indicating whether subcarriern is used by userk or not. The
fourth constraint shows that each subcarrier can only be used
by one user.Rk is the channel capacity for userk defined as

Rk =
N∑

n=1

ρk,n

N
log2

(
1 +

pk,nh2
k,n

N0
B
N

)
(15)

Finally, {γi}K
i=1 is a set of predetermined values which are

used to ensure proportional fairness among users.
The optimization problem in (14) is typically very hard to

solve, since it involves both continuous and binary variables.
Separating subchannel and power allocation can reduce the
complexity, with an insignificant amount of capacity loss [4].

In the subchannel allocation algorithm, equal power distri-
bution is assumed to all the subchannels. We defineHk,n =
h2

k,n

N0
B
N

as the channel-to-noise ratio for userk in subchanneln
and Ωk is the set of subchannels for userk. The subchannel
allocation algorithm can be described as follows:

1) Initialization
set Rk = 0, Ωk = ø for k = 1, 2, ..., K and A =
{1, 2, ..., N}

2) For k = 1 to K

a) find n satisfying| Hk,n |≥| Hk,j | for all j ∈ A
b) let Ωk = Ωk ∪ {n}, A = A− {n} and updateRk

according to (15)

3) While A 6= ø
a) find k satisfyingRk/γk ≤ Ri/γi for all i, 1 ≤ i ≤

K
b) for the foundk, find n satisfying| Hk,n |≥| Hk,j |

for all j ∈ A
c) for the foundk and n, let Ωk = Ωk ∪ {n}, A =

A− {n} and updateRk according to (15)



TABLE I

MU-OFDM SIMULATION PARAMETERS

number of users 4
number of subchannels 64

total bandwidth 1 MHz
total power 64 W
AWGN No −80 dB W/Hz

γk 1
CSI sampling frequency 1 kHz

channel length (taps) 6
predictor order 5

With the set ofΩk generated from the subchannel allocation
algorithm, the optimal power distribution can be found by
solving the following optimization problem

max
pk,n

K∑

k=1

∑

n∈Ωk

1
N

log2

(
1 +

pk,nh2
k,n

N0
B
N

)
(16)

subject to:
K∑

k=1

∑
n∈Ωk

pk,n ≤ Ptotal

pk,n ≥ 0 for all k, n
Ωk are disjoint for allk
Ω1 ∪ Ω2 ∪ ... ∪ ΩK ⊆ {1, 2, ..., N}
R1 : R2 : ... : RK = γ1 : γ2 : ... : γK

Details about how to solve (16) can be found in [5].
Typically the wireless channel in OFDM systems exhibits

frequency selectivity. Hence, it can be modelled as a multi-
tap channel. The channel-to-noise ratio in each subchannel
is related to all the channel taps by a Fourier transform.
Thus, in order to predict CSIs in each subchannel, it is
necessary and sufficient to predict all the multi-tap coefficients.
These coefficients can be estimated at receiver and feedback
to transmitter. The prediction algorithm at transmitter uses
the proposed method to predict the coefficient of each tap
separately.

Fig. 5 shows the sum capacity in MU-OFDM vs. Doppler
spread with perfect CSIs, delayed CSIs, and predicted CSIs.
The simulation parameters are shown in Table I. With delayed
CSIs, the capacity loses around17% at Doppler frequency of
40 Hz, compared to the perfect CSI case. With the predicted
CSI, the capacity loss is insignificant. However, at higher
Doppler spread, the predictor can no longer accurately predict
5 ms, hence capacity drops quickly as Doppler spread increase.

VI. CONCLUSION

A simple yet effective short range channel prediction
method is proposed. The proposed method uses local channel
samples to fit a polynomial. The prediction is carried out by
extrapolating the polynomial. Simulation results show that in
low to modest fading environments, the proposed method can
predict 5 milliseconds ahead with average prediction error
within 3%. The proposed method requires almost no channel
state observation and has very low complexity.
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