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Abstract

Grayscale halftoning converts a continuous-tone image (e.g. 8 bits per pixel) to a lower

resolution (e.g. 1 bit per pixel) for printing or display. Grayscale halftoning by error di�usion

uses feedback to shape the quantization noise into high frequencies where the human visual

system (HVS) is least sensitive. In color halftoning, the application of grayscale error di�usion

methods to the individual colorant planes fails to exploit the HVS response to color noise.

Ideally the quantization error must be di�used to frequencies and colors, to which the HVS is

least sensitive. Further it is desirable for the color quantization to take place in a perceptual

space so that the colorant vector selected as the output color is perceptually closest to the color

vector being quantized. This article discusses the design principles of color error di�usion that

di�erentiate it from grayscale error di�usion.
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I. Introduction

Color error di�usion is a high-quality method for color rendering of continuous-tone

digital color images on devices with limited color palettes such as low-cost displays and

printers. For display applications the input colorant space is a triplet of red, green, and

blue (RGB) values, and the choice of output levels (i.e., the color palette) is a design

parameter. For printing applications the input colorant space is a quadruple of cyan,

magenta, yellow, and black (CMYK) values and the output levels are �xed. For example,

for a bi-level CMYK printer there are 16 possible output colors. In this article we use an

input RGB color space and discuss binary error di�usion. This allows us to concentrate

the exposition to the essential properties of color error di�usion system design without

having to focus on the issues of color palette design and device dependent nonlinear color

transformations. However, most of the results can be easily extended to multilevel images

and other color spaces.

The application of grayscale error di�usion methods to the individual colorant planes

fails to exploit the human visual system response to color noise. Ideally the quantization

error must be di�used to frequencies and colors, to which the human visual system is least

sensitive. Further it is desirable for the color quantization to take place in a perceptual

space (such as Lab) so that the colorant vector selected as the output color is perceptually

the closest to the color vector being quantized. In this article we discuss each of the

above two design principles of color error di�usion that di�erentiate it from grayscale

error di�usion. We have implemented these design principles in a freely distributable

digital halftoning toolbox in Matlab at

http://www.ece.utexas.edu/~bevans/projects/halftoning/toolbox/index.html

II. Analysis of color error diffusion

Fig. 1 shows the system block diagram for color error di�usion halftoning. In Fig. 1,

each signal is vector-valued, e.g. a vector of RGB values. The quantization error e[m] is

fed back, �ltered by the error �lter ~h(m), and added to the input continuous-tone image

x[m]. The net e�ect is to di�use the quantization error frequencies and colors.

The error �lter ~h(m) has matrix-valued coe�cients, and we use a ~ to di�erentiate a
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matrix from a vector. The matrix-valued sequence ~h(�) is de�ned on a causal support

set S with (0; 0) =2 S. If the vector color error di�usion halftoning system were applied

separably to each color, then the coe�cients of ~h(m) would be diagonal matrices. We will

be handling the more general case that the coe�cients of ~h(m) are not diagonal matrices

to account for di�using the quantization error to other colors. The error �lter ~h(m) is 2-D

multi�lter, and its output is de�ned by a matrix-vector convolution:

h
~h ? e

i
(m) =

X
k2S

~h(k)e(m� k) (1)

In the z-domain, the matrix-vector convolution becomes a linear transformation

Z
h
~h ? e

i
(z) = ~H(z)E(z) (2)

A. Modeling color error di�usion

The sole nonlinearity in the vector color error di�usion system in Fig. 1 is the quantizer.

The quantizer of Fig. 1 can be linearized by modeling its e�ect on the input signal (the

original image) and by modeling its injection of quantization noise into the system. The

quantizer e�ect on the input signal is modeled by a constant linear transformation (gain)

denoted by a matrix ~K. This matrix gain is applied only to the signal components of

the quantizer input. The injection of quantization noise is modeled as spatially-varying

additive noise n(m). The additive noise is applied only to the noise components of the

quantizer input [1]. The noise components of the quantizer input are those that are

uncorrelated with the input signal. We refer to this matrix gain plus additive noise model

for the quantizer as simply a matrix gain model.

Figs. 2 and 3 show the signal and noise paths, respectively, of the vector color error

di�usion system linearized by the matrix gain model for the quantizer. This matrix gain

model is a generalization of modeling the quantizer in a sigma-delta modulator [2] and

grayscale error di�usion [3], [4]. Correlation among the signal color planes is represented

by the o�-diagonal terms in the matrix ~K. Matrix ~K is chosen to minimize the error in

approximating the quantizer with a linear transformation, in the linear minimum mean

squared error sense [1]:

~K = argmin
~A

E[k b(m)� ~A u(m) k2] (3)
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The solution to (3) when b(m) and u(m) are wide sense stationary processes is [1]

~K = ~Cbu
~C�1
uu (4)

where ~Cbu and ~Cuu are covariance matrices. As a direct consequence of this modeling [5],

the noise process n(m) due to the signal approximation error is uncorrelated with the signal

component of the quantizer output us(�). Color error di�usion is analyzed by assuming a

matrix gain of ~K for the signal path and a matrix gain of ~I (identity matrix) for the noise

path. This corresponds to using the estimator to estimate signal components in the output

of the quantizer from signal components at its input, and assuming an uncorrelated noise

injection to model the noise [1]. Analyzing Figs. 2 and 3 in the frequency domain using

z-transforms yields the relationships [1]:

Bs(z) = ~K[~I+ ~H(z)(~K�~I)]�1X(z) (5)

Bn(z) = [~I� ~H(z)]N(z) (6)

Here, Bs(z) and Bn(z) are the z-transforms of the signal and noise components, respec-

tively, of the vector error di�used system output. The overall system response is

B(z) = Bs(z) +Bn(z) (7)

Equations (5) and (6) predict the linear frequency distortion (sharpening/blurring) and

noise shaping e�ects of vector color error di�usion, respectively. The model predictions

are validated both quantitatively and qualitatively in [1] on natural images and are shown

to be e�ective in representing these \linear" e�ects. Nonlinear e�ects such as limit cycles

are not modeled.

B. Linear signal frequency distortion cancellation

The matrix gain model predicts that the linear distortion su�ered by the color input

image is given by (5). This means that if one pre�lters the input color image by using the

�lter

~G(z) = [~I+ ~H(z)(~K�~I)]~K�1 (8)

then the resulting halftone should exhibit no signal frequency distortion with respect to

the original color image. In fact, it is shown in [1] that applying this pre-�lter is equivalent
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to halftoning using the block diagram of Fig. 4, which feeds a linear transformation ~L =

~K�1 � ~I of the input image into the quantizer input. Thus, linear frequency distortion

due to the use of any error �lter may be cancelled by using the block diagram of Fig.

4. The feasibility of signal distortion cancellation is important in the design of color

error �lters since it allows one to design a color error �lter for optimum noise shaping

without requiring it to compensate for signal frequency distortion it introduces. Distortion

elimination removes the sharpening e�ect of an error �lter globally. Desired sharpness may

be introduced using a pre-�lter prior to halftoning.

III. Error filter design for optimum noise shaping

Kolpatzik and Bouman [6] designed optimum color error �lters by designing optimum

scalar error �lters for the luminance and chrominance channels of the color error without

imposing constraints on the solution. Damera-Venkata and Evans [1] generalized this

result to allow matrix-valued error �lters capable of shaping luminance error into the

chrominance channels where the color HVS is less sensitive. A constraint on the error �lter

is introduced to ensure that the errors are bounded for all inputs that vary continuously

over the range of the outputs. Adaptive matrix-valued �lters that attempt to minimize

local mean squared error have also been developed [7].

A. Formulation

Based on the matrix gain model in Section II-A, the net noise component of the output

is

bn(m) =
�
[~I� ~h] ? n

�
(m) (9)

The next step is to quantify the impact of the noise component on the human visual

system. We form an objective function J to measure the average visually weighted noise

energy in the output halftone. For the color human visual system model, we use a linear

spatially-invariant matrix-valued model denoted by the matrix-valued �lter function ~v(�).

We de�ne a constraint set C to ensure that all the quantization error (represented in a

device independent RGB space) is di�used and that the system is stable [8]. Thus, the

color error di�usion system (~h(�); ~v(�)) for a given vision model ~v(�) may be solved for an
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optimum �lter ~hopt(�)

~hopt(�) = arg min
~h(�)2C

J (10)

where

J = E
h
k

�
~v ?

h
~I� ~h

i
? n

�
(m) k2

i
(11)

and

C =

(
~h(i); i 2 S j

X
i

~h(i)1 = 1; ~h(i) � ~0

)
(12)

The necessary and su�cient conditions for an optimum solution to (10) is [1]

X
k

~vT (k)~r(~v?n)n(�i� k) =
X
p

X
q

X
s

~vT (s)~v(q)~h(p)~rnn(p+ q� s� i) (13)

These equations may be regarded as a generalization of the Yule-Walker equations [9] from

linear prediction theory to the matrix case, with a generalized linear spatially-invariant

weighting. The above set of generalized Yule-Walker equations may be solved for the

optimal �lter subject to the constraints of (12) to obtain the optimum color error �lter

coe�cients. A white noise image is used as an approximation to the uncorrelated noise

image n(m) [1], [6].

The required autocorrelation matrices are approximated as

~rnn(k) = E
h
n(m)nT (m+ k)

i
� �(k) (14)

~r(~v?n)n(k) = E

" X
t

~v(t)n(m� t)

!
nT (m+ k)

#
�
X
t

~v(t)�(k+ t) = ~v(�k) (15)

B. A linear color model for the human visual system

As mentioned in Section III-A, we use a linear spatially-invariant matrix-valued model

~v(�) for the color human visual system model in the error �lter optimization given by

(10). The linear spatially invariant human visual system color model is based on the

work of Poirson and Wandell [10]. The Poirson and Wandell model operates in the device

independent XYZ space and consists of

1. A linear transformation ~TXY Z!Opponent from XYZ into an opponent space consist-

ing of a luminance (Black-White) channel, a Red-Green channel, and a Blue-Yellow

channel.
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2. Separable spatial �ltering on each channel using a di�erent spatial �lter on each

channel. Thus the luminance channel is �ltered less aggressively than the chrominance

channels. This operation may be regarded as a matrix convolution in the frequency

domain by a �lter with diagonal matrix-valued coe�cients ~d(�).

Since we are starting in RGB space, we will need an additional transformation ~TRGB!XY Z

to transform from a linear RGB space into XYZ. Hence, ~v(m) is computed as

~v(m) = ~d(m) ~TXY Z!Opponent
~TRGB!XY Z (16)

The parameter speci�cations for the model including the shapes of the luminance and

chrominance spatial �lters are given in [11].

Monga, Geisler and Evans [12] generalized this linear color model as a linear transfor-

mation ~T to a desired color space, which is not necessarily the opponent representation

[10] but any one that satis�es pattern color separability, followed by appropriate spatial

�ltering in each channel. This generalization provides a platform for evaluation of di�er-

ent HVS models in perceptual meaning and error �lter quality obtained by minimizing

(11). Based on this framework, they evaluate four color spaces [12] in which to optimize

matrix-valued error �lters. The objective measure used for evaluation is the noise shaping

gain of the optimal �lter over the Floyd-Steinberg �lter in decibels [1]:

Noise Shaping Gain = 10 log10

 
Jfs

Jopt

!
(17)

Here, J refers to the value of the objective function given by (11). They also performed a

subjective assessment procedure that evaluates the halftones based on a paired comparison

task as described in [12]. The results of the subjective test corroborate the objective

measures. The color spaces in order of increasing quality are (1) YIQ space, (2) YUV space,

(3) opponent color space [10], [11], and (4) linearized CIELab color space [13]. These color

spaces in conjunction with appropriate spatial �lters as described in [12] form a unique

HVS model. The color HVS model based on transformation to the linearized CIELab

[13] color space, spatial �lters for the luminance frequency response due to Nasanen and

Sullivan [14], and the chrominance frequency response as given by Kolpatzik and Bouman

[6] yields the best halftones. The subjective test is available online at

http://www.ece.utexas.edu/~vishal/cgi-bin/test.html
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C. Results

Fig. 5(a) shows the original toucan image. Fig. 5(b) shows a halftone generated by

applying Floyd-Steinberg error di�usion separably. The green color impulses on the red

toucan are easily visible on a color monitor. Fig. 5(e) and Fig. 5(g) show the green and blue

planes of the Floyd-Steinberg halftone, respectively. The color impulses on the body of the

red toucan are clearly visible in the green plane. Fig. 5(c) shows a halftone generated by

applying an optimum matrix-valued error �lter. The green color impulses are eliminated.

Fig. 5(f) and Fig. 5(h) show the green and blue planes of the optimum halftone. The green

channel (which contributes greatly to luminance) does not show spurious color impulses.

However, since the error is shaped into the blue-yellow channel, the blue channel of the

optimum halftone has several artifacts that are not easily visible in the optimum color

halftone. The signal frequency distortion produced by the optimal error �lter can be

cancelled using the distortion cancellation method described in Section II-B. Fig. 5(d)

shows the optimum halftone after distortion cancellation. Notice that the sharpening

e�ect of the optimum error �lter has been undone resulting in an undistorted halftone.

IV. Quantization based on perceptual criteria

The use of the mean squared error (MSE) criterion in a colorant space is equivalent

to uniform, separable, scalar quantization. The visual quantization error may be further

reduced by performing the quantization according to perceptual criteria. Such methods

typically aim to minimize colorimetric error, luminance variations, or a combination of the

two.

A. Calorimetric quantization in error di�usion

Hanieshi et al. [15] suggested the use of the XYZ and Lab spaces to perform quantization

and error di�usion. In this case the rendering gamut is no longer a cube. The MSE

criterion in the XYZ or Lab space is used to make a decision on the best color to output.

The quantization error is a vector in the XYZ space is di�used using an error �lter. (Lab

space is not suitable for di�using errors due to its nonlinear variation with intensity.) This

method performs better than separable quantization but su�ers from boundary artifacts

[15] [16] such as the \smear artifact" and the \slow response artifact" at color boundaries
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due to accumulated errors from neighboring pixels pushing quantizer input colors outside

the gamut. This causes a longer lag in cancelling the errors. This e�ect may be reduced

by clipping large color errors [15] [17] or by using a hybrid scalar-vector quantization

method called semi-vector quantization [16]. This method is based on the observation

that when errors in colorant space are small vector quantization does not produce the

smear artifact. When large colorant space errors are detected, scalar quantization is used

to avoid potential smearing. First, the colorants where the colorant space error exceeds

a preset threshold are determined and quantized with scalar quantization. This restricts

the possible output colors from which a color must be chosen using vector quantization in

device independent color space.

B. Minimization of luminance variation

This class of color error di�usion algorithms is based on the observation that luminance

uctuation in the halftone appears as visible graininess and must be minimized. For

example if a mid-tone were printed with black and white dots only then there would be a

large luminance variation from the black to the white. If however the tone were printed

using only Cyan, Magenta and Yellow dots with minimized overlap, then there would

be less white space and the overall luminance variation will be much lower resulting in

reduced graininess. For inkjet printing, the overprinting of Cyan and Magenta dots is to be

minimized especially in the highlights, since the luminance variation due to the composite

blue dots is usually objectionable.

Klassen, Eschbach and Bharat [18] distort the colorimetric color space of vector error

di�usion using penalty functions so that at a given input tone level, favored colors with low

luminance variation are more likely to be chosen. Lau, Arce, and Gallagher [19] control

the overlap of individual color separations using an inuence matrix to transform the

quantizer input, prior to quantization. Shaked et al. [20] restrict the number of allowable

output colors for a given input color in the color space according to a Minimum Brightness

Variation Criterion (MBVC) to four allowable colors (the minimum number of colors

required to reproduce an input color in the average color sense), which forms a Minimum

Brightness Variation Quadruple. Such a restriction allows each tone to be printed with

four possible colors that produce the least luminance variation.
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Threshold modulation can be incorporated into the luminance variation minimization

framework to produce homogeneous color dot distributions [21], [22]. Eschbach [21] uses

cross-separation threshold imprint functions derived from the input and the past outputs

and thresholds to achieve homogeneous color highlights and shadows. The imprint biases

a threshold in the neighborhood of a minority pixel to discourage clumping and pro-

mote regular dot spacing. Using appropriate correlated imprint functions also minimizes

inter-colorplane luminance variation. Levien [22] �rst weights the quantizer error using

multichannel weights and then lowpass �lters the result to derive a quantizer threshold

modulation that minimizes luminance variation due to dot overlap. Further, an output

dependent threshold modulation (which is equal to the di�erence between the expected

inter-minority pixel distance davg = 1=g2 at graylevel g [23] and the actual distance to the

nearest minority pixel) is used to produce a pleasing distribution of minority pixels.

C. Results

Fig. 6(a) shows a halftone image generated using vector error di�usion in the device

independent XYZ space [15]. Artifacts are noticeable at color boundaries, especially on

the yellow toucan. Fig. 6(b) shows a halftone image generated using vector error di�usion

in the device independent XYZ space with artifact reduction by semi-vector quantization

[16]. The boundary artifacts are signi�cantly reduced. Fig. 6(c) shows a halftone generated

using the MBVC quantization as described in [20]. Fig. 6(d) and Fig. 6(e) show magni�ed

views of the MBVC halftone and the Floyd-Steinberg halftone respectively. The MBVC

halftone exhibits much smoother color with signi�cantly reduced objectionable color vari-

ation.

V. Conclusion

This article reviews some of the recent analysis and design methods for bi-level color

error di�usion halftoning systems. The key ideas in the design of these systems are color

noise shaping and color quantization according to perceptual criteria.

Printing is performed in a subtractive (where certain wavelengths of light are subtracted

or absorbed and the reected light is viewed) CMY color space. For printing applications

a fourth color, K (black) is introduced since the composite of the CMY colorants produces
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a dark brown in practice. To print an RGB image, �rst a printer/media dependent non-

linear color transformation from RGB to CMYK is made. The transformation from device

independent XYZ to CMYK is non-linear and device dependent.

This paper has focused on the essential design principles of color error di�usion halftoning

systems using the RGB space for convenience (transformation to XYZ is accomplished by

a linear transformation of gamma uncorrected data). These principles may be applied to

the CMYK color space without loss of generality. For example, the methods of Section

III could be applied to di�use error optimally in device independent XYZ color space in

combination with XYZ colorimetric quantization method. In this case the nonlinear device

dependent transformation from XYZ to CMYK must be computed based on physical

measurement of color patches. The MBVC error di�usion developed in RGB space could

be extended to CMYK by de�ning appropriate vector quantizers that depend on the

relative luminance of the CMYK colorants. We have omitted a discussion of multi-level

color error di�usion halftoning and color palette design methods due to space constraints.

A good source of references on these topics is [24].
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Fig. 1. System block diagram for vector color error di�usion halftoning. Here, ~h represents a �xed 2-D

FIR error �lter with scalar or matrix valued coe�cients. The vector m represents the 2-D index

(m1;m2). The quantizer Q(�) performs scalar or vector quantization.
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Fig. 2. System block diagram for the signal path obtained by substituting the matrix gain model for

quantizer. Here, zs(m) represents the signal component of the variable z(m). The matrix gain ~K

represents a linear transformation of the signal component us(m) of u(m).
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Fig. 3. System block diagram for the noise path obtained by replacing the quantizer with an additive

noise source. The noise injection n(m) is a noise process that is uncorrelated with us(m) in Fig.

2. Here, zn(m) represents the noise component of the variable z(m). un(m) represents the noise

component of u(m).
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Fig. 4. System block diagram that modi�es the vector color error di�usion halftoning system in Fig. 1.

~L represents a constant linear transformation (matrix gain) that controls the amount of sharpening

in the color planes.
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(a) Original image (b) Floyd-Steinberg error �lter

(c) Optimum error �lter (d) Signal distortion cancellation

(e) Green plane of Floyd-Steinberg halftone (f) Green plane of optimum halftone

(g) Blue plane of Floyd-Steinberg halftone (h) Blue plane of optimum halftone

Fig. 5. Signal and noise shaping in color error di�usion.
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(a) Vector error di�usion in XYZ space (b) Boundary artifact reduction

(c) MBVC error di�usion (d) Detail of MBVC

(e) Detail of Floyd-Steinberg halftone

Fig. 6. Color quantization in color error di�usion. Minimum Brightness Variation Criterion (MBVC)

error di�usion uses separable Floyd-Steinberg error �lters.
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