

Why Multiuser OFDM?

- Orthogonal Frequency Division Multiplexing (OFDM) efficiently provides high data rates without intersymbol interference.
- For 4G cellular and broadband wireless, many users.
- Time division or carrier sensing will have large overhead, poor utilization of diversity.

What is OFDM?

• Discrete-time baseband system model

$$y = Hx + n$$

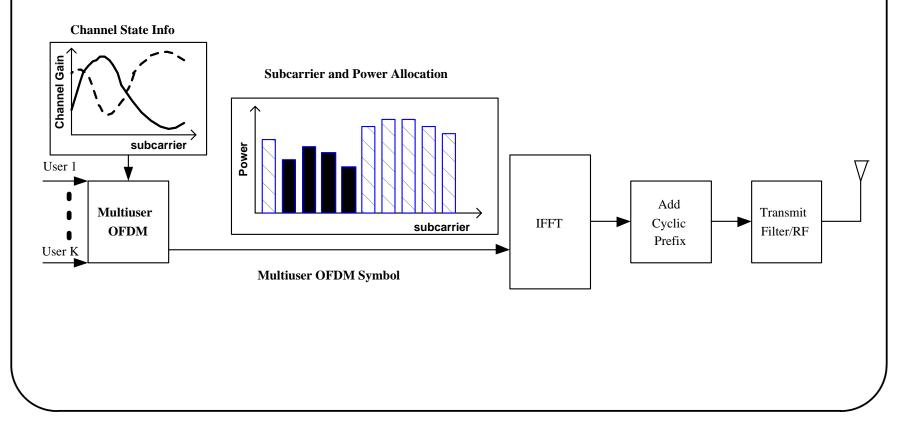
- Cyclic prefix \Rightarrow **H** is a circular matrix, thus **H** = **Q**^{*}**DQ**.
- Prefiltering with IFFT matrix \mathbf{Q}^* and postfiltering with the FFT matrix \mathbf{Q} yields

 $\mathbf{Y} = \mathbf{D}\mathbf{X} + \mathbf{N}$ $\mathbf{D} = \operatorname{diag} \left\{ \lambda_1, \lambda_2, ..., \lambda_N \right\}$

• Basic Idea of Multiuser OFDM: Each user has unique $\{\lambda_n\}$, just use the good ones!

How to partition resources?

• Intuitively, it is obvious that good subcarriers for each user should be used, poor subcarriers should be left for other users.



OK, but really, how to partition resources?

- Fixed resource allocation is clearly suboptimal, but is simple.
 - TDMA: one user occupies all subchannels at each time slot
 - FDMA: each user occupies some subchannels all the time
- Adaptively allocating resources based on channel conditions is obviously better, but...
 - Channel state information at the transmitter is required. (We'll assume we have perfect CSI in this talk).
 - How to optimally assign subcarriers and power?
 - Optimal in what sense?

Rate & Margin Adaptation

- Rate adaptation: maximize capacity with a total power constraint
 - Maximize sum capacity [Jang & Lee, 2003]
 - Maximize minimum user's capacity [Rhee & Cioffi, 2000]
- Margin adaptation: minimize total transmit power given users' data rate and bit error rate requirements [Wong, Cheng, Letaief, & Murch, 1999]

Commentary

- Maximize sum capacity
 - Good: Overall capacity is maximized
 - Bad: No fairness considered. Some users may not get chance to transmit
- Maximize minimum user's capacity
 - Good: Each user gets approximately same capacity \Rightarrow maximum fairness
 - Bad: Overall capacity is not maximized, inflexible allocation of rates.
- To balance sum capacity and fairness, we propose proportional fairness.
 - In theory, fill in the gap between two extreme cases: maximum sum capacity & maximum minimum user's capacity
 - In practice, allow different service privileges \Rightarrow different pricing

Formal problem definition

$$\max_{p_{k,n},\mathbf{1}_{k,n}} \sum_{k=1}^{K} \sum_{n=1}^{N} \frac{\mathbf{1}_{k,n}}{N} \log_2 \left(1 + \frac{p_{k,n}h_{k,n}^2}{N_0 \frac{B}{N}} \right)$$

subject to
$$\sum_{k=1}^{K} \sum_{n=1}^{N} p_{k,n} \le P_{total}$$
$$p_{k,n} \ge 0 \text{ for all } k, n$$
$$\mathbf{1}_{k,n} = \{0,1\} \text{ for all } k, n$$
$$\sum_{k=1}^{K} \mathbf{1}_{k,n} = 1 \text{ for all } n$$
$$R_1 : R_2 : \dots : R_K = \gamma_1 : \gamma_2 : \dots : \gamma_K$$
$$R_k = \sum_{n=1}^{N} \frac{\mathbf{1}_{k,n}}{N} \log_2 \left(1 + \frac{p_{k,n}h_{k,n}^2}{N_0 \frac{B}{N}} \right)$$

Optimization

- There are three resources that should be optimized
 - 1. Subcarriers
 - 2. Power amongst users
 - 3. Power amongst subcarriers, for a given user
- These quantities must be jointly allocated for global optimality.
 - KN binary integer variables $\rho_{k,n}$
 - KN continuous variables $p_{k,n}$
 - Non-convex feasible set
 - K^N subchannel allocations. K=4 users, N=64 subcarriers \Rightarrow $K^N=3.4\times 10^{38}$
- Clearly, separate subchannel and power allocation is required.

Subchannel Allocation

- Modified method of [Rhee & Cioffi, 2000], assume equal power distribution to all subchannels
 - 1. Initialization (Enforce zero initial conditions) set $R_k = 0$, $\Omega_k = \emptyset$ for k = 1, 2, ..., K and $A = \{1, 2, ..., N\}$
 - 2. For k = 1 to K (Allocate best subcarrier for each user) (a) find n satisfying $|H_{k,n}| \ge |H_{k,j}|$ for all $j \in A$ (b) let $\Omega_k = \Omega_k \cup \{n\}, A = A - \{n\}$ and update R_k
 - 3. While $A \neq \phi$ (Then iteratively give lowest rate user first choice)
 - (a) find k satisfying $R_k/\gamma_k \leq R_i/\gamma_i$ for all $i, 1 \leq i \leq K$
 - (b) for the found k, find n satisfying $|H_{k,n}| \ge |H_{k,j}|$ for all $j \in A$
 - (c) for the found k and n, let $\Omega_k = \Omega_k \cup \{n\}$, $A = A \{n\}$ and update R_k

Power Allocation for a Single User

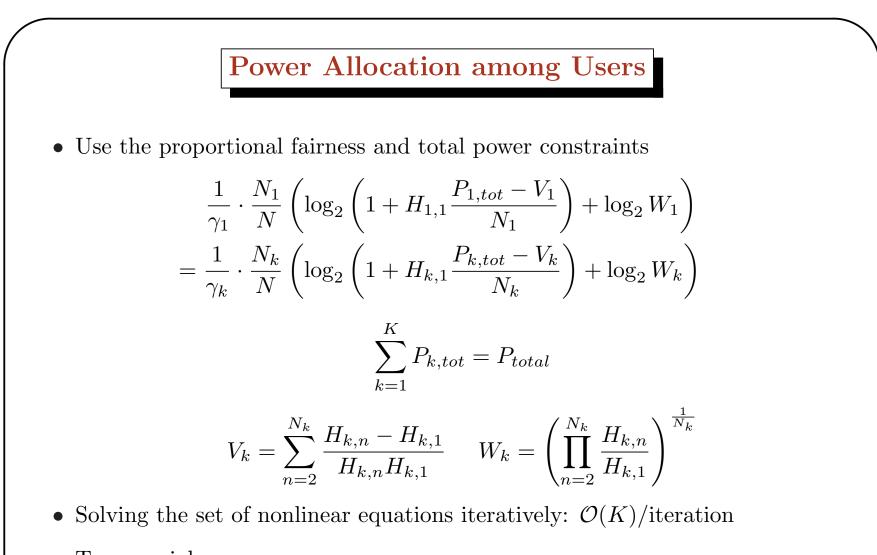
- For user k, given total power $P_{k,tot}$, use water-filling to maximize capacity
- Optimal power distribution for user k

$$p_{k,n} = p_{k,1} - \frac{H_{k,1} - H_{k,n}}{H_{k,n}H_{k,1}}$$

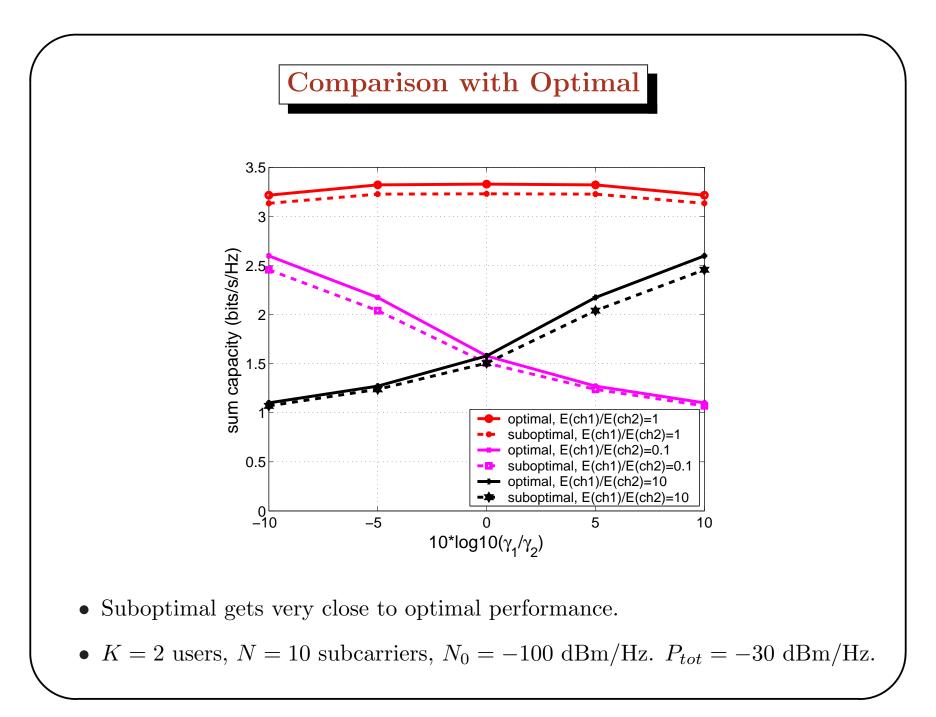
$$P_{k,tot} = \sum_{n=1}^{N_k} p_{k,n} = N_k p_{k,1} - \sum_{n=2}^{N_k} \frac{H_{k,1} - H_{k,n}}{H_{k,n} H_{k,1}}$$

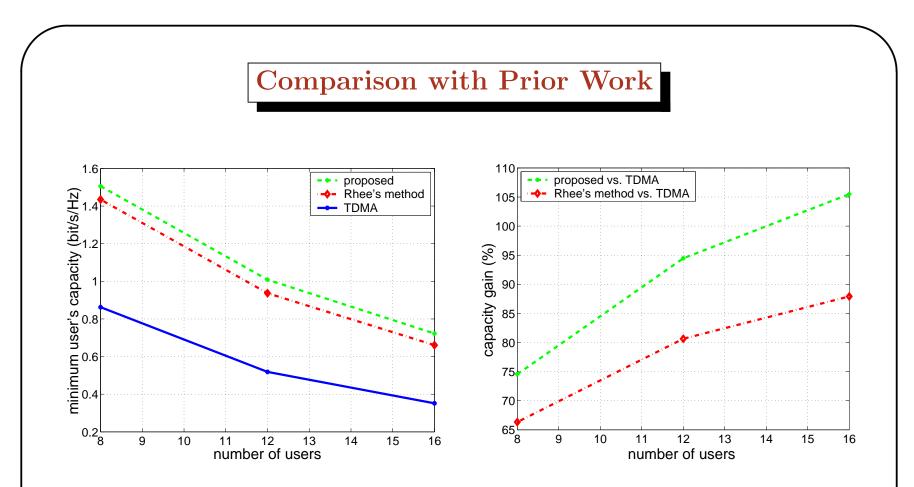
- $-H_{k,n}$ is the channel-to-noise ratio for user k at subchannel n
- N_k is the number of subchannels used by user k
- $H_{k,1} \le H_{k,2} \le \dots \le H_{k,N_k}$
- How to find $P_{k,tot}$?

WNCG



- Two special cases
 - Linear case: $N_1: N_2: \ldots: N_K = \gamma_1: \gamma_2: \ldots: \gamma_K$, closed form solution
 - High channel-to-noise ratio: $V_k = 0$ and $H_{k,1}P_{k,tot}/N_k \gg 1$





- Even for equal rates, proportional fairness with optimal power allocation improves upon max-min scheme.
- $N_0 = -110 \text{ dBm/Hz}$, $P_{tot} = -30 \text{ dBm/Hz}$, N = 64. The maximum path loss difference is 40 dB, and $\gamma_1 : \gamma_2 : \ldots : \gamma_K = 1 : 1 : \ldots : 1$.

Conclusion

- Two main contributions:
 - 1. Introduced a proportional fairness rate adaptive optimization for multiuser OFDM
 - 2. Provided an optimal power allocation for an arbitrary subchannel allocation
- With a separate (suboptimal) subchannel and power allocation, the complexity (in K) is reduced from exponential to linear.
 - 1. Loss in data rate is only a few percent relative to global optimum.
 - 2. Gain in data rate is around a factor of 2 relative to fixed allocations.