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Abstract— In this paper, different techniques for long-range
channel prediction for OFDM systems are investigated. Fre-
quency domain channel prediction on each OFDM data subcar-
rier is first explored, and it is shown that the optimum prediction
filter depends only on the time-domain channel statistics for the
wide-sense stationary uncorrelated scattering (WSSUS) wireless
channel. Frequency domain prediction on the pilot subcarriers
is investigated next, where the optimum prediction filter is deter-
mined for each pilot subcarrier, and is reused for all the nearby
data subcarriers. Finally, time-domain channel prediction on the
multipath taps is explored. It is shown that frequency domain
prediction on the pilot subcarriers performs almost identically
to prediction using all subcarriers. Furthermore, it is also shown
that time-domain prediction outperforms the frequency domain
prediction methods.

I. INTRODUCTION

Adaptive OFDM systems overcome the limitation of con-
ventional OFDM by allowing the transmitter to vary the power,
modulation, and coding on each subcarrier depending on the
current channel state information (CSI) [1]. This requires the
transmitter to have knowledge of the CSI, which can be ob-
tained through feedback from the receiver’s channel estimates,
or through its own estimates in a time division duplex (TDD)
reciprocal channel. In high mobility environments, where the
Doppler frequency is high and the channel changes rapidly,
the CSI used by the transmitter would be outdated due to the
processing and feedback delays.

In [2], delayed CSI was shown to negatively impact the
capacity and bit error rate of the adaptive OFDM system.
Furthermore, it was shown that the use of channel prediction
can improve the performance of the system. In [3], channel
prediction over a longer range was shown to improve the
performance of adaptive OFDM in a low-mobility environ-
ment. In that system, the coefficients of a linear predictor for
each OFDM subcarrier was updated for each new block of
observed symbols. In [4], decision-directed and adaptive short-
term channel prediction on the time-domain channel taps were
proposed. Their approach uses an IFFT/FFT pair to derive the
time-domain channel taps, perform the prediction, and then
return to the frequency domain. In [5], an unbiased channel
power predictor was applied to the time-domain channel taps,
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Fig. 1. Adaptive OFDM System Block Diagram

and a preliminary evaluation of frequency domain channel
prediction on all the subcarriers was also presented.

In the prior work in this area, it was not clear whether fre-
quency domain prediction on all the tones, frequency domain
prediction on the pilot tones, or time-domain prediction is best.
This paper analyzes and compares the performance of these
three different channel prediction strategies. These approaches
are compared in terms of complexity and normalized mean-
squared error performance (NMSE). It is shown through
NMSE derivations and simulation results that frequency do-
main prediction on the pilot subcarriers performs almost
identically to prediction using all subcarriers. Furthermore,
it is also shown that time-domain prediction outperforms the
frequency domain prediction methods.

II. SYSTEM MODEL

A. OFDM System

The adaptive OFDM system model considered in this paper
is given in Fig. 1. The input bits are initially mapped by
a bank of adaptive encoders into Nd complex data symbols
Xd(n, k) which corresponds to the kth subcarrier in the nth
OFDM block. The constellation density for each encoder
would depend on the predicted state of the wireless channel,
in which various bit and power allocation strategies may be
used to either maximize the data rate or to minimize the
power given a bit error rate (BER) constraint. The next block
inserts Np pilot symbols Xp(n, k) which are known to both
transmitter and receiver and are used primarily for channel
estimation and/or synchronization. It also inserts Ng guard
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symbols Xg(n, k) = 0 at the edges of the OFDM symbol
which allows for the OFDM signal to naturally decay and obey
spectral mask constraints. The combination of data, pilot, and
guard symbols form the N -subcarrier OFDM symbol X(n, k).
This is subsequently transformed into a time domain sequence
{xi(n)}Ni=1 using the N -point IFFT.

Ignoring the effects of intersymbol and intercarrier inter-
ference, the received signal for the kth subcarrier in the nth
OFDM block is Y (n, k) = H(n, k)X(n, k) +W (n, k) where
H(n, k) and W (n, k) are the frequency domain channel gain
and the additive white Gaussian noise (AWGN) respectively.
The channel estimation block then takes Y (n, k) as input and
forms the channel estimates Ĥ(n, k) to detect the transmitted
sequence as X̂(n, k) = Y (n, k)/Ĥ(n, k). These channel
estimates are then fed back to the transmitter with a delay
∆, where the channel prediction block would generate the
predicted channel estimates Ĥ(n+∆, k) for adaptation.

B. Wireless Channel

The complex baseband representation of the time-varying
wireless channel is given by [6]

h(t, τ) =

r−1
∑

i=0

αi(t)δ(τ − τi) (1)

where τi is the delay and αi(t) is the complex amplitude of
the ith multipath, and where there are r total propagation
paths. The αi(t)’s are assumed to be wide sense stationary,
narrowband complex Gaussian random processes, which are
bandlimited by the Doppler frequency fd and independent for
each path i. It is also assumed that h(t, τ) is constant within
one OFDM symbol duration Tsym = 1/Fsym.

Taking the Fourier transform of (1), we get the frequency
response of the time-varying channel

H(t, f) =
r−1
∑

i=0

αi(t)e
−j2πfτi (2)

Assuming that the OFDM system with symbol period Tsym
and subcarrier spacing ∆f have proper cyclic extension and
sample timing, it was shown in [7] that the sampled channel
frequency response at the kth tone of the nth OFDM block
can be expressed as

H(n, k) , H(nTsym, k∆f)

=

Nt−1
∑

i=0

h(n, i)e−j2πki/N

where h(n, i) , h(nTsym, iTs), with Ts = 1/∆f denoting
the sampling period of the system. Furthermore, the h(n, i)
for i = 0, 1, . . . , Nt − 1 are wide sense stationary (WSS),
independent, narrowband complex Gaussian processes, with
average power σ2

i and number of taps (Nt ¿ N ) that depend
on the delay profiles and dispersion of the wireless channel.

We further assume that each h(n, i) has the same normal-
ized correlation function rh(m) for all i, i.e.

rhi
(m) , E{h(n+m, i)h∗(n, i)} = σ2

i rh(m) (3)

and that the total power of the path gains are normalized to
1, i.e.,

∑

i σ
2
i = 1.

Thus, the correlation function for the frequency response
for different OFDM blocks and tones can be written as

rH(m, l) , E{H(n+m, k + l)H∗(n, k)}

= rh(m)rf (l)
(4)

where rh(m) = E{h(n + m)h∗(n)} is the time correlation
function for the WSS time-domain channel taps and rf (l) =
Nt−1
∑

i=0

σ2
i e

−j2πli/N is the frequency correlation function where

σ2
i is the average power for the ith tap. Therefore the cor-

relation function is time-frequency separable, where clearly
rh(0) = rf (0) = 1.

III. CHANNEL PREDICTION FOR OFDM SYSTEMS

In this section, we discuss the three different OFDM channel
prediction schemes.

A. Prediction over all the tones

Define the mean squared error (MSE) of the predicted
frequency domain channel as

ε(n) =
1

N

N−1
∑

k=0

E{|H(n+∆, k)− Ĥ(n+∆, k)|2} (5)

and the predicted channel response as

Ĥ(n+ ψd, k) =

p−1
∑

l=0

wk(l)Ĥ(n− ld, k) (6)

where

Ĥ(n− ld, k) = H(n− ld, k) + E(n− ld, k) (7)

are the past noisy estimates of the channel acquired at the
downsampled rate Fd = Fsym/d where d is a positive
integer denoting the downsampling factor. For generality, no
particular channel estimation method is assumed, and the
channel estimation error E(n, k) is assumed to be a zero
mean Gaussian random variable with variance σ2

est. It is also
assumed that this error is independent for different ns and ks,
and is uncorrelated with all H(n, k). The wk’s are the N 1-
D Wiener prediction filter coefficients for each tone k which
exploits the time-domain correlation of the kth OFDM tone 1.

For notational convenience, we assumed that we wish to
predict the channel response at a future time that is a multiple
of the downsampling factor d, i.e. ∆ = ψd, and we would like
to predict ψ steps ahead. Prediction at instances not a multiple
of downsampling rate could be easily accomplished through
interpolation.

1Although a 2-D Wiener filter which exploits both time and frequency
domain correlation would in general achieve a lower MSE, it was shown in
[8] for the case of channel estimation that separate time and frequency domain
filters can instead be used without much performance degradation.
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Since (5) is clearly a separable function, we can treat
each tone as a separate minimization problem. Using the
orthogonality principle [9] on a particular tone k gives us

E{(H(n+ ψd, k)− Ĥ(n+ ψd, k))Ĥ∗(n− ld, k)} = 0,

l = 0, · · · , p− 1 (8)

Substituting (6) into (8), and using (7), we get the optimum
prediction filter as

wk = (RHk
+ σ2

estI)
−1

rk,ψ (9)

where

wk = [wk(0) wk(1) · · · wk(p− 1)]
T (10)

RHk
=











rHk
(0) r∗Hk

(d) · · · r∗Hk
(d(p− 1))

rHk
(d) rHk

(0) · · · r∗Hk
(d(p− 2))

...
...

. . .
...

rHk
(d(p− 1)) rHk

(d(p− 2)) · · · rHk
(0)











(11)

rk,ψ = [rHk
(ψd) rHk

((ψ+1)d) · · · rHk
((ψ+p−1)d)]T

(12)
and

rHk
(m) , E{H(n+m, k)H∗(n, k)}

≈
1

M

M−1−m
∑

i=0

Ĥ(di+m, k)Ĥ∗(di, k)
(13)

where the autocorrelation function estimate from M previous
downsampled channel estimates [9] is used in (13). Substitut-
ing the optimum filter coefficients (9) into mean squared error
function (5) gives the minimum mean squared error (MMSE)

εmin,f =
1

N

N−1
∑

k=0

(rHk
(0)− r

H
k,ψ(RHk

+ σ2
estI)

−1
rk,ψ) (14)

.

B. Prediction using the pilot tones

In the previous method described, notice that (13) is actually
an estimate for the time-domain autocorrelation function of the
multipath taps given in (4), i.e. since rHk

(m) = rH(m, 0) =
rh(m). Hence, determining wk’s separately for all N sub-
carriers is unnecessary, since the optimum prediction filter
is theoretically the same for all subcarriers. However, non-
ideal conditions such as correlated scattering and differential
Doppler could potentially degrade the performance when only
one prediction filter is used for all subcarriers.

A potential tradeoff that can be made is to design Np ¿
N prediction filters corresponding to the pilot subcarriers in
the OFDM symbol. These filters are then reused by the data
subcarriers nearest to the given pilot subcarrier predictor.

The prediction filter design equations are the same as for
the all-tone prediction as given in (9), except that (13) should
be changed to

rHk
(m) ≈

1

M

M−1−m
∑

i=0

Ĥ(di+m, k′)Ĥ∗(di, k′),

k′ = arg min
l∈Np

|l − k|

(15)

where Np is the set of subcarrier indices corresponding to the
pilot tones.

The MMSE is also given by (14), but we expect it to be
slightly greater than the MMSE for the all-tone prediction
because of the approximation in (15).

C. Prediction on the time-domain channel taps

Another approach would be to perform prediction on the
Nt time-domain channel taps. Consider the N -length vector
of the time domain channel taps as the IFFT of the frequency
domain channel estimates (7)

ĥ(n) =W
H
N Ĥ(n)

=W
H
N (H(n) +E(n))

= h(n) + e(n)

(16)

where W
H
N is the IDFT matrix and h(n) is the time-domain

channel tap vector. The noise vector e(n) is uncorrelated
with h(n) and has elements that are also independent and
identically distributed Gaussian random variables with zero
mean and variance σ2

est, since the IDFT is an orthogonal linear
transformation. Let Nt be the set of indices that correspond
to the Nt elements with the highest energy in ĥ(n) =
[ĥ(n, 0), . . . , ĥ(n,N−1)]. We assume that we have knowledge
of the number of multipath taps Nt, and thus we can predict on
only the Nt highest energy taps and still have the information
about the channel. Determining the Wiener prediction filter for
each i ∈ Nt, we have

wi = (Rhi
+ σ2

estI)
−1

ri,ψ (17)

where Rhi
and ri,ψ are the autocorrelation marix and cross

correlation vector similarly defined as in (11) and (12), but
with autocorrelations

rhi
(m) , E{h(n+m, i)h∗(n, i)}

≈
1

M

M−1−m
∑

l=0

ĥ(ld+m, i)ĥ∗(ld, i)
(18)

For the time domain channel taps that are not in Nt, we
simply consider them to be zero, and thus the predicted time-
domain channel response is

ĥ(n+ ψd, i) =







p−1
∑

l=0

wi(l)ĥ(n− ld, i), i ∈ Nt

0, otherwise
(19)
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The MMSE for each of the time domain channel taps can
then be written as

εmin,i = rhi
(0)− r

H
i,ψ(Rhi

+ σ2
estI)

−1
ri,ψ (20)

.
Considering the MSE of the predicted frequency domain

channel response (5) written in vector form,

εmin,t =
1

N
E{(H− Ĥ)H(H− Ĥ)}

=
1

N
E{(WN (h− ĥ))H(WN (h− ĥ))}

=
1

N
E{(h− ĥ)H(h− ĥ)}

=
1

N

Nt−1
∑

i=1

(

rhi
(0)− r

H
i,ψ(Rhi

+ σ2
estI)

−1
ri,ψ

)

(21)

where we have omitted the n+∆ time indices for the channel
responses h, ĥ, H, and Ĥ for notational conciseness.

IV. PERFORMANCE COMPARISONS

A. MMSE Performance

It was argued in section III-B that the MSE of all-tone
prediction is less than pilot tone prediction. We shall determine
that time-domain prediction is in turn better than all-tone
prediction.

Rewriting (14) assuming rHk
(m) = rh(m), and thus

dropping the subscript k, we have

εmin,f =
1

N

N−1
∑

k=0

(rh(0)− r
H
ψ (RH + σ

2
estI)

−1
rψ)

= 1− r
H
ψ (RH + σ

2
estI)

−1
rψ

(22)

Taking the spectral decomposition [9] of RH , we have

εmin,f = 1−

p−1
∑

l=0

αl
λl + σ2

est

(23)

where αl , r
H
ψ vlv

H
l rψ and λls are the eigenvalues of RH .

Similarly, for the MMSE of the time-domain prediction,

εmin,t =
1

N

Nt−1
∑

i=0

(

rhi
(0)− r

H
i,ψ(Rhi

+ σ2
estI)

−1
ri,ψ

)

=
1

N

Nt−1
∑

i=0

(

σ2
i rh(0)− σ

2
i r
H
ψ (σ

2
iRH + σ

2
estI)

−1σ2
i rψ

)

=
1

N

Nt−1
∑

i=0

σ2
i

(

1−

p−1
∑

l=0

σ2
i αl

σ2
i λl + σ

2
est

)

(24)

Assuming a uniform power delay profile, i.e. σ2
i = 1/Nt, we

have

εmin,t =
1

N

(

1−

p−1
∑

l=0

αl
λl + σ2

estNt

)

(25)

TABLE I
COMPUTATIONAL COMPLEXITY AND MEMORY REQUIREMENTS FOR THE

THREE PROPOSED PREDICTION ALGORITHMS

Algorithm Computation Memory

All-tone O(Np2) O(2Np)

Pilot tone O(Npp
2) O(Np)

Time-domain O(Ntp
2) O(Ntp)

Comparing the MMSE of both approaches, we have

εmin,f
εmin,t

=

1−
p−1
∑

l=0

αl

λl+σ2

est

1

N

(

1−
p−1
∑

l=0

αl

λl+σ2

estNt

)

≈ N

(26)

where the approximation is justified since σ2
est and Nt are

typically small.

B. Computational Complexity and Memory Requirements

For the all-tone prediction, the optimum filter coefficients
(9) can be solved using the Levinson recursion [9] which
has complexity O(p2). Furthermore, p + ψ autocorrelation
lags need to be computed using (13), with M greater than
p, and on the same order of magnitude as p. This gives a
complexity of O((p + ψ)2). Since a separate filter is to be
used for each subcarrier, the overall computational complexity
is O(N(p2+(p+ψ)2)) ≈ O(Np2). On the other hand, N M -
length previous channel estimates and N p-length prediction
filters also need to be stored. This gives a memory complexity
of O(N(M + p)) ≈ O(2Np).

In the pilot tone prediction, since we only need to design Np

prediction filters, the computational complexity is reduced by
a factor of N/Np to O(Npp

2). As for the memory required,
we need to store Np M -length previous channel estimates
to compute the autocorrelations, N − Np p-length previous
channel estimates for the prediction, and Np p-length predic-
tion filter coefficients. This gives a memory complexity of
O(p(Np + N)) ≈ O(Np), which is on the same order but
half as complex as the all-tone case.

The complexity analysis of the time-domain prediction is
similar to the pilot tone case, but with the added complexity
of performing M N -IFFTs to get the time-domain responses
for autocorrelation estimation and prediction, and one N -FFT
to get back the predicted frequency response. This gives a
computational complexity of O(NtMp+N logN(M + 1)) ≈
O(Ntp

2), which is still on the same order as the pilot tone
case but more complex. The memory required, however, is
less than the other two cases since we only need to store the
channel estimates and filter coefficients for Nt taps, giving a
complexity of O(Nt(M + p)) ≈ O(Ntp).

A summary of the computational complexity and memory
requirements for the three proposed algorithms is provided in
Table I.
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C. Simulation Results
The OFDM system considered is based on the IEEE 802.16e

mobile broadband wireless system [10] operating in the ETSI
”Vehicular A” channel environment [11], which is a 6-tap
frequency-selective Rayleigh fading channel model. It has
N = 256 subcarriers, with Np = 8 pilot tones, and a total
of Nd = 192 data subcarriers, leaving Ng = 56 guard
subcarriers. The system has bandwidth BW = 5 MHz and
carrier frequency fc = 2.6 GHz. A sampling frequency of
fs = 144/125BW = 5.76 MHz, and a guard interval of
Ngi = 64 samples is used, giving an OFDM symbol period
of tsym = (N + Ngi)/fs = 55.56µs. We further assume a
mobile velocity of v = 75 kph, giving a Doppler frequency of
fd ≈ 180Hz, and a coherence time of tcoh = 1/(2fd) = 2.8
ms, which is ncoh ≈ 50 OFDM symbols.

The downsampling factor used for prediction is d = 25.
This gives an effective prediction sampling rate of fp =
1/(tsymd) = 720 Hz, which is twice the required Nyquist
sampling rate of 2fd = 360 Hz. The filter order is chosen
to be p = 75 according to the minimum description length
(MDL) cost function [9]. This value is in agreement with the
typical model order defined in [12]. We assume we have M =
100 downsampled channel estimates to use to estimate the
autocorrelations, which gives us information on approximately
Md/ncoh = 50 coherence times in the past.

Figure 2 shows the normalized MSE performance of the
three prediction schemes as the channel estimation error vari-
ance is increased for the case of predicting 1 and 5 tcoh ahead.
It can be seen that the NMSE performance of the all-tone
prediction is only slightly better than the pilot tone prediction,
even if pilot tone prediction is less complex than all-tone pre-
diction. Furthermore, time-domain prediction performs much
better than the frequency domain prediction schemes. The
improvement of time-domain prediction is more evident under
high estimation errors, but lessens in lower estimation errors.
Figure 3 shows the normalized MSE performance of the three
prediction schemes as a function of the prediction horizon,
the left figure for a high channel estimation error variance
of σ2

est = 0.1, and the right figure for a low estimation
error variance σ2

est = 0.001. We see the same performance
differences across the three methods.

Intuitively, this is because the estimation error that was
initially spread throughout the frequency domain channel
response also spread throughout the time-domain channel
taps through the IFFT operation. However, since we only do
prediction on the highest energy taps, the error present in
these taps is less than predicting on all the subcarriers in the
frequency domain

V. CONCLUSION

We compared three different algorithms for long range
channel prediction in OFDM systems: all-tone, pilot tone
and time-domain prediction. Analytical and simulation results
show that pilot tone prediction achieves almost the same
NMSE performance with lower complexity than all-tone pre-
diction. It was also shown that time-domain prediction has
better NMSE performance than both other methods, while
maintaining similar complexity as pilot tone prediction.
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