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ABSTRACT

When taking pictures, professional photographers apply pho-
tographic composition rules, e.g. avoidance of mergers. A
merger occurs when equally focused foreground and back-
ground regions appear to merge as one object. This pa-
per presents an unsupervised algorithm that (a) detects the
main subject, (b) detects background objects merging with
the main subject, and (c) reduces the visibility of merg-
ing background objects. Detection of the main subject re-
quires automated adjustment of camera settings. The rest
of the algorithm does not adjust or use the camera set-
tings. The algorithm does not make assumptions about the
scene setting (indoor/outdoor) or content. The algorithm
is amenable to implementation on a fixed-point processor.

1. INTRODUCTION

Developing automated methods for improving photograph
composition during image acquisition, e.g. for digital still
cameras, can be helpful to amateur photographers. The
two required key steps are: (1) automated segmentation of
the main subject [1, 2, 3] and (2) automation of selected
photographic composition rules [4]. This paper automates
one of the photographic composition rules to avoid merg-
ers. A merger occurs when equally focused foreground and
background regions merge as one object. Fig. 1(a) shows
an example of a merger where the trees appear to grow out
of the main subject’s head. Other examples include a hori-
zontal line shooting through the subject’s ears, and a knee
or elbow extending from the frame edge.

In photography, the three-dimensional world is mapped
to a two-dimensional picture. Professional photographers
change camera settings, so that the main subject is in fo-
cus, while the objects in the background that merge with
the main subject are blurred [5]. This preserves the sense of
distance between the objects in the photograph. This pa-
per presents an algorithm that automatically identifies the
main subject and the background object that merges with
the main subject. The background object is then blurred.
The approach could be extended to identify more than one
background object merging with the main subject.

2. BACKGROUND

The main subject can be in focus, while the background
is blurred by diffused light, with the autofocus filter and

Figure 1: Examples of (a) a merger of the main subject,
the man, with the trees in the background (in color) and
(b) the detected main subject mask in (a).

appropriate camera exposure settings. We utilize this fre-
quency difference between the main subject and the back-
ground to segment the main subject [3]. Our algorithm [3]
involves adaptively filtering the image to enhancing the
edges of the main subject, detecting the sharpened edges,
and closing the boundary of the detected edges, in 13 mul-
tiplies, 9 shifts, 4 adds, and 6 byte memory accesses per
pixel. It has lower complexity than Won, Pyan and Gray’s
iterative approach [2], and does not require training as does
the Bayes net approach by Luo, Etz, Singhal, and Gray [1].

The rest of the paper assumes that the main subject
mask has been detected. The subsequent tasks will be
to segment the background and identify which background
object merges with the main subject. The merging back-
ground object is then blurred. The software and color im-
ages for this paper are available at

www.ece.utexas.edu/ “bevans/papers/2004/mergerDetection/

3. MERGER DETECTION AND MITIGATION

The generated main subject mask [3] divides the picture
into foreground and background regions. Fig. 1(b) is the
generated main subject mask for Fig. 1(a). The goals will
be to segment the background, identify merging objects,
and blur the picture. The formulation of the steps follow.



Figure 2: Histogram of the hue values for the background
of Fig. 1(a), showing the average and peaks.

3.1. Background segmentation

The color information is used for segmentation of the back-
ground objects. The red, green, and blue (RGB) image
provided by the camera is transformed to the hue channel
found in the hue, saturation, value (HSV) space. In HSV
space, hue corresponds to color perception, saturation pro-
vides a purity measure, and value provides the intensity. A
histogram in the hue space is then utilized for segmentation
of the background region. Although hue does not model the
color perception of the human visual system as accurately
as CIELab, it is chosen because the transformation from
RGB to hue has lower implementation complexity.

Let the hue values be on the interval [0, 255] and broken
into m-bins. The discrete probability distribution for hue
values belonging to each bin is

P(huen) = % (1)

where c(hue,,) is the count corresponding to each bin and
T, is the total count of values in all bins. By modeling the
background picture as a Gaussian mixture of hue values,
the task is to further segment these m-bins into n-groups,
where each group will identify a different object.

The term % gives the average of the hue values. Any
hue value above this average is marked as a dominant hue.
Based on the available dominant hues, the n-groups are de-
termined automatically, where each group contains only one
dominant hue. Each group boundary lies halfway between
two of the dominant hues. This ensures that the local max-
imums of the probability distribution, P(hue,,) is captured
in each group. Pixels with hue values falling in each of the
identified n-groups form different background objects.

For the proposed algorithm, m is chosen to be 64, as it
is assumed that a difference in four hue levels (i.e., 256/64
levels) would correspond to approximately the same per-
ceived color. Fig. 2 shows the color histogram for the hue
values with the average and the peaks for the background
of Fig. 1(a). Based on the color histogram and the average
value, n = 10 background objects are automatically iden-
tified for Fig. 1(a). Fig. 3 shows three of these identified
background objects.

3.2. Merger detection

Based on the background segmentation, the background im-
age can be modeled as a linear combination of the back-

(a) Object 1

(b) Object 2 (c) Object 3

Figure 3: Some of the background objects (in color) for
Fig. 1(a) identified by the color background segmentation.

ground objects. Thus,

Sy = Z O; (2)

where Sy is the background image and O; are the identified
n background objects. Now, one or more of these back-
ground objects may merge with the main subject. We chose
the background object that has the largest high frequency
energy and is touching the main subject mask.

To automatically identify the merged object, each ob-
ject O; is transformed to a feature space representation,
Q;, where Q; € ,. , is defined as a weighted sum of the
high frequencies contained in the spatial region of each ob-
ject. High frequency coefficients are obtained from the first
level of the two-dimensional Gaussian pyramid [6] of the
intensity image. Gaussian pyramids are localized in space.
The Gaussian pyramid could be replaced with a Laplacian
pyramid, for an extra subtraction per pixel.

The high frequency coefficients are weighted with the
inverse of the distance in space to the main subject mask.
To compute the inverse distance transform, the distance
transform coefficients are stored as a grayscale image, and
are subtracted from 255 before multiplication with the high
frequency coefficients. This assigns more penalty to the
higher frequencies closer to the main subject. Fig. 4(a) and
(b) show the Euclidean distance transform [7, 8] coefficients
and high frequency coefficients obtained from the first level
of the Gaussian pyramid, respectively. In Section 4, we
will reduce the implementation complexity of the inverse
distance measure computation.

An object O; is detected to be merged with the main
subject if its feature space representation, £2;, is more than
a threshold. This threshold could be selected by the user.
This paper presents an unsupervised approach in which the
object O; yielding the maximum value of the feature space
representation, €2;, is identified to be the merged object.
This unsupervised approach detects the object that pro-
duces the strongest merger and blurs the produced artifact.
For Fig. 1(a), the tree object shown in Fig. 3(b), produces
the maximum of the weighted sum of high frequencies, iden-
tifying that the tree merges with the main subject.

3.3. Selective blurring

The detected merged object, O}, has feature a space repre-
sentation, Q7. To reduce the effect of the merger, Q; needs
to be reduced. As Q; is the weighted sum of the high fre-
quencies, the high frequency coefficients are masked when



the image is reconstructed from the Gaussian pyramid rep-
resentation. In Fig. 1(a), the high frequency coefficients of
the first level of the Gaussian pyramid are masked out us-
ing the approximate shape of the detected tree object. The
resulting image is shown in Fig. 5. To increase the amount
of smoothing, masking can be extended to higher levels of
the Gaussian pyramid decomposition.

4. IMPLEMENTATION COMPLEXITY

The proposed algorithm is shown in Fig. 6. The original
RGB image of dimension N x M requires 3N M grayscale
pixels (8 bits per grayscale pixel) without compression. The
main subject is detected with 13 multiplies, 9 shifts, 4 adds,
and 6 byte memory accesses [3]. The output binary main
subject mask requires NM bits.

Background segmentation starts with a conversion from
RGB to hue. The hue value calculation uses an intermediate
variable, H’, which is in the interval [—255,1275] and can
be represented by a 12-bit signed integer. The pseudocode
for the conversion follows:

min = min(R, G, B);

max = max(R, G, B);

0 = max - min;

if (R == max) H = G-B; (within yellow & magenta)

else if (G == max) H' = 2§+B-R; (within cyan & yellow)
else H' = 40+R-G; (within magenta & cyan)

H = (H + 255) >> 3;

In the worst case, the conversion to hue requires 2 shifts,
3 adds, 6 compares, and 4 byte memory accesses per pixel.
The histogram and thresholding requires 1 add and 1 com-
pare per pixel. The hue values are stored in NM pixels,
and a buffer of N M log, n bits stores the information of the
segmented objects. As the number of objects, n, will prac-
tically be less than 2%, the segmented objects’ information
can be overwritten on the buffer storing the hue values.

The intensity Gaussian pyramid first converts the color
image to an intensity image by either

I=(R+G+B)/3or [ =(R+2G+B)/4 (3)

The former step requiring 2 adds and 1 multiply is suitable
for programmable digital signal processors. For a hardware
implementation, we could use the later, which requires 2
adds, a shift left by one bit (multiplication by 2) and a shift
right by two bits (division by 4). Shifts can be used because
the RGB values are non-negative. The intensity image is
stored in INM pixels. Any level of the Gaussian pyramid
can be computed by convolving the grayscale image with a
3 x 3 filter with power-of-two coefficients, which requires 9
shifts, 8 adds and 4 byte memory accesses per pixel. The
9 reads in image values to compute the convolution can be
stored in registers in order to reduce the number of memory
reads to 3 per pixel. The first level of coefficients are stored
in NM pixels, and the intensity image may be overwritten
in a sequential implementation of Fig. 6.

The inverse distance transform could be determined from
the Euclidean distance transform [7, 8] by subtracting its
value from 255. In this case, the inverse distance trans-
form would be computationally intensive. We propose an

(b)
Figure 4: (a) The Euclidean distance transform coefficients
and (b) the high frequency coefficients from the first level
of the Gaussian pyramid for Fig. 1(a). The background
object is detected to be merged if it yields the maximum of
the weighted sum of (a) and (b).

Figure 5: The detected merged region is processed in the
frequency domain to reduce the effect of the merger. The
blurred trees induce a sense of distance. Image is in color.

approximate, lower complexity, inverse distance measure.
Along each row (column) the distance of each “off” pixel
from the nearest “on” one is computed and a ramp func-
tion is generated. The maximum of the horizontal (row)
distance and the vertical (column) distance is taken as the
distance from the nearest “on” pixel. In order to assign
more penalty to the high frequency coefficients close to the
main subject, the pixels closer to the main subject mask
have a higher weight. The weights are stored in NM pix-
els. The distance measure requires 2 adds, 1 compare, and
2 byte memory accesses per pixel.

For each background object, the intensity Gaussian pyra-
mid coeflicients are weighted by the inverse distance trans-
form coefficients and summed. The background object with
the highest sum is chosen as the background merging object,
and the corresponding background object mask is output.
The background object mask can be stored in the main
subject mask buffer so as to reuse memory. All totaled, 1
multiply, 1 add, and 1 compare are required per pixel.

In the final step, the color Gaussian pyramid and recon-
struction only have to be applied to those pixels in the bi-
nary mask input. For each pixel in the binary mask input,
the first level of the color Gaussian pyramid transforma-
tion is calculated separably for each RGB planes. For each



color plane, 9 shifts, 8 adds, and 3 byte memory accesses
are required for a 3 x 3 filter kernel. The high frequency
coefficients for the merging background object are masked
with 1 compare and 1 memory access per pixel. The output
(merger reduced) image takes 9 shifts, 8 adds, 1 compare,
and 1 byte memory access per pixel, and would be stored
in 3N M pixels.
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Figure 6: Proposed merger reduction algorithm for an orig-
inal N x M color image. Storage is 3NM grayscale pixels
(bytes) for the original, NM bits for a mask, and 3NM
grayscale pixels (bytes) for the output (merger reduced)
image. For a parallel implementation of the subsystems, an
additional storage of 2N M pixels (bytes) is needed.

The computational requirements for each block in Fig. 6
are given in Table 1. All the blocks, except the main subject
detection and color Gaussian pyramid/reconstruction, work
only on the background image. Hence, the complexity will
depend on the percentage of background pixels in the image.

The proposed algorithm was tested on several pictures.
The merger reduced image for Fig. 7(a) is shown in Fig. 7(b).
The background trees merging with the bird are blurred
out, inducing a sense of distance.

5. CONCLUSION

This paper presents an unsupervised algorithm for auto-
matic merger detection and mitigation when taking pho-
tographs in digital still cameras. The performance of the
color based segmentation will be limited for highly textured
backgrounds, which may require texture segmentation in-
stead. Alternately, merger detection could be used to warn
the user of a possible merger.
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