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ABSTRACT

Internet traffic primarily consists of packets from elastic flows, i.e.
Web transfers, file transfers (FTP), and e-mail, whose transfers are
mediated via the Transmission Control Protocol. We develop a
conditional sampling technique to analyze throughput correlations
among elastic flow classes based on flow level measurements from
current network traffic monitoring tools. The primary contribu-
tions of this paper are: (1) a demonstration of throughput correla-
tion among temporally overlapping flows on congested resources
by using analytical/simulation models, and (2) application of a
multivariate statistical method (principal components) to infer net-
work properties, such as the number of shared resources by flows
in the network from non-intrusive, flow level measurements col-
lected at a single site. Our proposal for using flow level measure-
ments to infer network properties differs significantly from previ-
ous network tomography research that has employed end-to-end
packet level measurements for making inferences.

1. INTRODUCTION

A commonly accepted definition of an Internet (IP)flow is a unidi-
rectional sequence of packets between a source and a destination
endpoint identified by common IP addresses, Transmission Con-
trol Protocol (TCP) or User Datagram Protocol (UDP) port num-
bers, IP protocol type, type of service fields in IP headers, etc.
An IP flow classis a collection, or aggregation, of flows having
a common attribute. For example, we can refer to all flows shar-
ing common source and destination IP address prefixes as a flow
class. State-of-the-art network monitoring tools (such as Cisco’s
NetFlow) are capable of generatingflow records. A flow record
contains the source and destination IP addresses, source and desti-
nation port numbers, start and end times, and the size (in bytes and
packets) of flows traversing that network element.

A significant portion of the IP traffic consists of packets from
elastic flows, i.e. Web transfers, file transfers (FTP), and e-mail,
whose transfers are mediated via TCP. TCP uses packet delay and
loss as indicators of the available bandwidth to adjust the data
transmission window at the sender. An understanding of the in-
teractions and dependencies among elastic flow classes in the net-
work may be critical in designing and provisioning networks. For
example, on determining that two flow classes carrying Web con-
tent destined for two different customer bases are experiencing
poor performance due to a bottleneck link serving them, the Web
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content provider might choose to replicate content at a second lo-
cation to reduce the load on the bottleneck link. From a customer’s
perspective, on the other hand, determining whether a network
provider uses a diverse set of routes (an indication of robustness)
when carrying different flow classes of the customer may be valu-
able, especially since network providers are unwilling to disclose
their backbone topology. In this case, lack of interdependence
among traffic classes might indicate such a route diversity.

Our premise is that elastic flow classes that are temporally
overlapping long enough on the same path, or bottleneck, will tend
to have correlated throughputs. While our premise is intuitive, the
extent of such correlations needs to be quantified, especially when
flow classes visiting multiple resources can introduce throughput
correlations among flow classes that do not necessarily share paths
or bottlenecks.

In our work, we evaluate the extent of throughput correlations
on analytical/simulation models for dynamic bandwidth sharing
mechanisms [1], [2] that approximate TCP. This evaluation sup-
ports our premise that flow classes that temporally overlap on con-
gested resources will have correlated throughputs. Finally, we pro-
pose to use a statistical methodology for analyzing the structure of
the conditional throughput correlation matrix. The methodology
can be used to identify the underlying causes for the variability
in throughput observations. We argue that the variability in data
can naturally be attributed to shared paths or bottlenecks. This key
finding will be used in our future studies to infer which TCP flow
classes share paths or bottlenecks. In contrast to previous network
tomography research that makes inferences based on packet level
characteristics such as packet loss and packet delay (e.g., [3], [4],
[5], [6], and [7]), we employ a flow level, or user-perceived, per-
formance measure (throughput), which is directly available from
the state-of-the-art network monitoring tools, in order to infer net-
work properties.

2. SIMULATION MODELS

The collection of elastic flows in the network is denoted by a setF .
The size, start time (time of arrival of the first packet in a flow), end
time (time of arrival of the last packet in a flow), and duration of a
flow will be denoted byvf , sf , ef , anddf = ef −sf respectively.
Each flowf ∈ F belongs to a flow classc ∈ C. The function
φ : F → C determines the class of a particular flow. We let
Fc(t) = {f ∈ F : φ(f) = c andsf ≤ t < ef} denote the set of
flows that belong to classc and areactiveat timet.

We use known analytical models to generate flow records (as
would be available from commonly used flow level measurement
technologies at a monitoring site) by simulation. We use fluid
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Fig. 1. Two parallel M/GI/1 processor sharing queues. Arrival
rates of flows for each class are shown. We assume that all other
infrastructure that flows visit is overprovisioned.

models to determine the bandwidth shares [1], [2] achieved by
flows at a given time. In such models, the bandwidth allocated
to a flow is adjustedinstantaneouslywhen the number of flows
in the system changes as a result of flow arrivals and departures.
The dynamic bandwidth sharing model approximates actual rate
control mechanisms (such as TCP) well due to the assumption of
separation of times scales: the time scale of flow durations is much
longer than the time scale on which rate control mechanisms con-
verge to equilibrium. We consider bandwidth sharing among flows
first on a single link and then in a “linear” network.

The simplest model is one in which the number of flows on a
single link can be modelled as an M/GI/1 (a single-server queue-
ing system with an exponential interarrival time distribution and a
general, independent service time distribution) processor sharing
queue [8]. That is, if all flows share similar round trip times (RTT)
and packet loss rates, the link bandwidth is shared equally among
the active flows. A parallel collection of queues as shown in Fig. 1
constitutes one of our simplest test cases to investigate through-
put correlations. Fig. 2 illustrates a linear network model with two
links. Such a network can be used to model flows traversing sev-
eral links that interact with the cross traffic on these links. The
linear network model enables us to investigate the coupling effects
between flows following multi-link paths (e.g.,c0) and cross traf-
fic (e.g.,c1 andc2) and possibly between flow classes not sharing
a link (e.g.,c1 andc2). To determine the character of bandwidth
sharing among flows on a linear network, we consider proportion-
ally fair sharing [9]. In each case, we assume that the flows in class
c arrive according to a Poisson process with rateλc. To study the
effect of flow size distribution on throughput correlations, we con-
sider two distributions from which flow sizes are drawn indepen-
dently: (1) an exponential (exp) distribution with mean1/µ = 1,
i.e., a distribution with pdff(x|µ) = µ exp(−µx), and (2) a
bounded Pareto (BP) distribution [10] whose pdf is given by

f(x|α, k, q) =
αkα

1− (k/q)α
x−α−1, k ≤ x ≤ q. (1)

The bounded Pareto distribution that is used has an exponent of
power lawα = 1.3 with minimum sizek = 0.242 and maximum
sizeq = 10, 000. The particular bounded Pareto distribution has
a mean equal to 1 as well. Flow sizes selected from the bounded
Pareto distribution consist of a very large number of short flows
and a few very long flows (as may be the case in the current Inter-
net).

We denote the bandwidth share of a flowf at timet by bf (t).
Then, theperceived throughputrf for a flowf is given by

rf =
1

df

Z ef

sf

bf (t)dt,
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Fig. 2. A linear network. Arrival rates of flows for each class are
shown. We assume that all other infrastructure that flows visit is
overprovisioned.

or rf = vf/df . The average throughput (over the number of
active flows) of a flow classc ∈ C at the measurement point (see
Figs. 1 and 2) is

rc(t) =

(
1

|Fc(t)|
P

f∈Fc(t) rf , if |Fc(t)| > 0,

0, otherwise.

3. CORRELATION AMONG FLOW CLASS
THROUGHPUTS

We compute correlations among flow class throughputs by using
temporal throughput observationsat times whenall of the flow
classes are active. Note that the requirement of thisconditional
samplingstrategy is a stringent one, especially when the offered
load of a flow class under consideration is low. However, we
choose to impose our stringent condition to guarantee positive def-
initeness of the throughput correlation matrix that is used in this
section.

We first divide the observation time into discrete intervals. We
denote the number of discretized time intervals for a measurement
period byT and the number of discretized intervals over which all
flow classes are active byN(T ). We assume that the throughput
of a flow at a discretized time interval is equal to its “continuous-
time” throughput if the flow is active anytime during that interval.
We also assume thatrci(n) andrcj (n) are realizations of ergodic
random processes of throughputs of flow classesci andcj respec-
tively (on discretized intervals). Theconditionalmean and vari-
ance of throughput for flow classci are defined as

mci = lim
T→∞

1

N(T )

TX
n=0

rci(n)1{rci
(n)>0,∀ci∈C},

σ2
ci

= lim
T→∞

1

N(T )

TX
n=0

(rci(n)−mci)
2 1{rci

(n)>0,∀ci∈C},

where1E is the standard indicator function, which is equal to 1 if
E is true and 0, otherwise. The conditional correlation of through-
puts of flow classesci andcj is defined as

ρcicj = lim
T→∞

TX
n=0

(rci(n)−mci)(rcj (n)−mcj )1{rci
(n)>0,∀ci∈C}

N(T )σciσcj

.

Forp classes, we can obtain aconditional correlation matrix� =
[ρcicj ], whereρcici = 1, andi, j = 0, . . . , p− 1.

We next consider a number of scenarios based on topologies
described in Section 2. For each scenario, correlations are com-
puted based on five (long enough) simulation runs with different



Table 1. Class throughput correlation matrix. The flows in class
c arrive according to a Poisson process with rateλc with sizes
drawn independently from an exponential (exp) and a bounded
Pareto (BP) distribution in (1) with mean 1.λc0 = 0.4, λc1 =
0.4, λc2 = 0.4, λc3 = 0.4.

exp Class 0 Class 1 Class 2 Class 3
Class 0 1 0.899 0.104 0.104
Class 1 0.899 1 0.106 0.106
Class 2 0.104 0.106 1 0.899
Class 3 0.104 0.106 0.899 1

BP Class 0 Class 1 Class 2 Class 3
Class 0 1 0.860 0.051 0.061
Class 1 0.860 1 0.055 0.065
Class 2 0.051 0.055 1 0.846
Class 3 0.061 0.065 0.846 1

random seeds to obtain independent correlation values. The con-
ditional correlation matrix is estimated by taking averages of cor-
relations over five simulation runs. We consider flow sizes with
an exponential distribution (exp) and bounded Pareto distribution
(BP), and obtain two correlation matrices for each scenario.

In the case of two parallel M/GI/1 processor sharing queues (in
Fig. 1), the correlations among throughputs of flow classes, each
offering a load of 0.4, are shown in Table 1. The throughput cor-
relation between flow classes sharing resources (M/GI/1 processor
sharing queues) is large, while the correlation between flow classes
not sharing resources is small or negligible.

The correlations among flow class throughputs in the linear
network (shown in Fig. 2) that uses proportionally fair sharing are
tabulated in Tables 2 – 4 for classes offering different loads. The
throughputs ofc1 andc2 may exhibit some degree of correlation
via c0, even thoughc1 andc2 are not sharing a link. We can make
three observations from these correlation matrices. First, the extent
of correlation between the throughputs of classes sharing a link is
higher for more congested links. Second, the effect of flow class
0 offering a higher load relative to the cross traffic on the links it
visited is to introduce higher degree of cross-coupling betweenc1

andc2 (see Table 4). Third, when flow class 0 visited two bottle-
necks the degree of cross-coupling betweenc1 andc2 throughc0

was small (see Table 3). We also observed that the flow size distri-
bution does not significantly affect the nature of correlation among
flow class throughputs.

Based on these experiments, we conclude that the flow classes
that temporally overlap on congested resources have correlated
throughputs. The coupling effect of flows traversing several links
that interact with the cross traffic on these links is not significant
unless the offered load of such flow classes is higher than loads
offered by cross traffic.

4. REDUCING THE DIMENSIONALITY OF DATA

In a realistic scenario, the number of flow classesp under consid-
eration is often large, which results in correlation matrices that are
hard to interpret. When analyzing multivariate observations, it is
often possible to reduce the number of variables that account for
the variability in data. A common practice in exploratory studies

Table 2. Class throughput correlation matrix. The flows in class
c arrive according to a Poisson process with rateλc with sizes
drawn independently from an exponential (exp) and a bounded
Pareto (BP) distribution in (1) with mean 1.λc0 = 0.2, λc1 =
0.6, λc2 = 0.1.

exp Class 0 Class 1 Class 2
Class 0 1 0.803 -0.034
Class 1 0.803 1 -0.145
Class 2 -0.034 -0.145 1

BP Class 0 Class 1 Class 2
Class 0 1 0.769 0.005
Class 1 0.769 1 -0.092
Class 2 0.005 -0.092 1

Table 3. Class throughput correlation matrix. The flows in class
c arrive according to a Poisson process with rateλc with sizes
drawn independently from an exponential (exp) and a bounded
Pareto (BP) distribution in (1) with mean 1.λc0 = 0.4, λc1 =
0.4, λc2 = 0.4.

exp Class 0 Class 1 Class 2
Class 0 1 0.554 0.624
Class 1 0.554 1 0.072
Class 2 0.624 0.072 1

BP Class 0 Class 1 Class 2
Class 0 1 0.527 0.602
Class 1 0.527 1 0.049
Class 2 0.602 0.049 1

is to apply spectral decomposition to the correlation matrix:

� = e0�0�
T
0 + e1�1�

T
1 + . . . + ep−1�p−1�

T
p−1,

where(ei, �i) are the eigenvalue-eigenvector pairs such thate0 ≥
e1 ≥ . . . ≥ ep−1 ≥ 0 since� is positive definite. In statistical
signal processing theory, the eigenvectors are known as theprin-
cipal componentswhose corresponding eigenvalues are variances
of these components. The percentage of the total normalized vari-
ance, tr(�)=p, explained by the first, saym (< p), variances is
given by

Pi=m−1
i=0 ei/p. We say that the percentage of normal-

ized variance explained is “significant” when it is greater than a
given threshold. If the percentage is significant, then it is possible
to explain the variability in data withm variables.

We argue thatm corresponds tothe number of shared re-
sourcesamong flow classes. We list the eigenvalues of the correla-
tion matrices reported in Tables 1 through 4, and the percentage of
normalized variance explained by the first two principal compo-
nents in Table 5. Since more than 90% of normalized variance
is captured by the first two principal components, we can con-
clude that there were two shared resources in the network for the
classes under consideration. This inference is based only on mea-
surements made at a single pointwithoutknowing the topology of
the network.



Table 4. Class throughput correlation matrix. The flows in class
c arrive according to a Poisson process with rateλc with sizes
drawn independently from an exponential (exp) and a bounded
Pareto (BP) distribution in (1) with mean 1.λc0 = 0.6, λc1 =
0.2, λc2 = 0.1.

exp Class 0 Class 1 Class 2
Class 0 1 0.810 0.631
Class 1 0.810 1 0.391
Class 2 0.631 0.391 1

BP Class 0 Class 1 Class 2
Class 0 1 0.759 0.629
Class 1 0.759 1 0.456
Class 2 0.629 0.456 1

Table 5. Eigenvalues and the percentage of normalized variance
captured by the first two principal components of class throughput
correlation matrices.

Table Eigenvalues % Variance
1 (exp) (2.108, 1.689, 0.102, 0.101) 94.9
1 (BP) (1.969, 1.737, 0.154, 0.140) 92.6
2 (exp) (1.823, 0.988, 0.189) 93.7
2 (BP) (1.774, 1.001, 0.225) 92.5
3 (exp) (1.871, 0.929, 0.201) 93.3
3 (BP) (1.824, 0.952, 0.224) 92.5
4 (exp) (2.237, 0.625, 0.138) 95.4
4 (BP) (2.238, 0.558, 0.205) 93.2

5. PRELIMINARY VALIDATION AND CONCLUSION

In our preliminary studies with actual TCP flow measurements
collected over a one-hour period at the border router at The Uni-
versity of Texas at Austin, we analyzed the class throughput cor-
relation matrix of four inbound Web traffic classes (whose class
throughputs were assumed to be stationary over one hour) by using
a systematic method, namelyfactor analysis[11]. By using factor
analysis, we were able to associate flow classes with shared re-
sources as well. For validation purposes, we selected flow classes
(with source IP addresses associated with HotMail, MSN, AOL,
and CNN) whose providers were known with reasonable certainty
(HotMail and MSN from Microsoft Corporation, AOL and CNN
from AOL Transit Data Network). We assumed that the selected
flow classes experienced congestion at their source due to high de-
mand for their content.

Based only on collected flow measurements, the method suc-
cessfully identified the classes originating from the same infras-
tructure after establishing a proper threshold for omitting flows
with short durations when computing the class throughputs. Due
to space constraints, in the present paper we omit the discussion of
the determination of the threshold for short flows and factor anal-
ysis results, and outline only the determination of the number of
shared resources among flow classes.

For the class throughput correlation matrix of four selected
classes, we identified two significant principal components based
on the following (heuristic) criteria: We assumed that a principal

component was significant if it contributed more than a “variance”
of 1 to the total normalized variance. The two principal compo-
nents accounted for67.5% (which was deemed significant for our
exploratory purposes) of the total normalized variance with a95%
confidence interval[66.3%, 68.7%] that was computed by using
the bootstrap bias-corrected and accelerated (BCa) method [12].
Hence, we concluded that the variability in four class throughputs
could be explained by two principal components, which corre-
sponded to two different providers. Note that the distribution of
throughputs of short TCP flows is generally widely dispersed [2].
The omission of short flows was necessary in order to “filter out”
the noise introduced by short flows into class throughputs.
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[1] L. Massoulíe and J. W. Roberts, “Bandwidth sharing and
admission control for elastic traffic,”Telecom. Sys., vol. 15,
pp. 185–201, June 2000.

[2] S. Ben Fred, T. Bonald, A. Proutiere, G. Régníe, and J. W.
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