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Background

• MIMO systems increase the spectral efficiency by exploiting the degree of
freedom in the spatial dimension.

• Transmit power adaptation is possible when channel state information is
known at the transmit side.

– Temporal water-filling for SISO channels [Goldsmith & Varaiya, 1997]

– Spatial water-filling for MIMO channels [Telatar, 1999]

– Space-time water-filling for MIMO channels
[Biglieri, Caire, & Taricco, 2001], [Jayaweera & Poor, 2004]
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Motivation

• Two-dimensional space-time water-filling over one-dimensional spatial
water-filling: how much gain in capacity?

• A comprehensive comparison of space-time water-filling vs. spatial
water-filling

– Capacity

– Outage probability

– Computational complexity

• Performance comparison in a composite channel model

– Rayleigh fast fading

– Log-normal shadowing
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Problem formulation

• Discrete-time baseband model of a narrowband MIMO system

y = Hx + v

• Composite MIMO fading channel model

H =
√

sHw

– Hw: i.i.d. Rayleigh fast fading

– s: log-normal shadowing

• Spatial water-filling

max
Q

log
∣∣∣∣I +

1
σ2

HQH†
∣∣∣∣ s. t. tr(Q) ≤ P ; where Q = E[xx†]

• Space-time water-filling

max
Q

E

[
log

∣∣∣∣I +
1
σ2

HQH†
∣∣∣∣
]

s. t. E [tr(Q)] ≤ P
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Channel capacity with space-time water-filling

• Converting two-dimensional space-time water-filling to one-dimensional
temporal water-filling

E

[
log

∣∣∣∣I +
1
σ2

HQH†
∣∣∣∣
]

= E

[
M∑

k=1

log
(

1 +
p(λk)λk

σ2

)]

= M E

[
log

(
1 +

p(λ)λ
σ2

)]

where λ denotes an eigenvalue of H†H; p(λ) is power adaption for λ.

• Equivalent to temporal water-filling for a SISO channel with effective
channel gain distribution f(λ) [Goldsmith & Varaiya, 1997]

– Optimal power adaptation p(λ) =
(
Γ0 − σ2

λ

)+

– What is the eigenvalue distribution f(λ)?
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Eigenvalue distribution of the composite channel

• Recall H =
√

sHw, hence λ = s t, where λ is an eigenvalue of H†H and t is
an eigenvalue of H†

wHw

• Composite channel eigenvalue distribution f(λ)

– Eigenvalue distribution of H†
wHw, g(t) [Telatar, 1999]

– Log-normal distribution of s, with log-normal variance ρ2

f(λ) =
10

ρ log 10
√

2π

∫ ∞

0

g

(
λ

s

)
1
s2

e
− (10 log10 s)2

2ρ2 ds

• Channel capacity with space-time water-filling

E

[
log

∣∣∣∣I +
1
σ2

HQH†
∣∣∣∣
]

= M

∫ ∞

σ2
Γ0

log
(

Γ0λ

σ2

)
f(λ)dλ
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Simulation results: capacity
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• A 2× 2 MIMO system, with log-normal variance ρ2

• Maximal power mismatch: 0.02% for ρ = 0; 0.05% for ρ = 8; 1.8% for ρ = 16
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Outage probability

• Data transmission is blocked if effective channel gain is less than a threshold

• Definition of outage probability [Jayaweera & Poor, 2004]

Pout(σ2,M) = P{λ1 ≤ σ2

Γ0
}

• Outage probability of space-time water-filling, where gmax(t1) and fmax(λ1)
are the maximal eigenvalue distribution of H†

wHw and H†H respectively

Pout =
10

ρ log 10
√

2π

σ2/Γ0∫

0

∞∫

0

gmax

(
λ1

s

)
1
s2

e
− (10 log10 s)2

2ρ2 ds

︸ ︷︷ ︸
fmax(λ1)

dλ1
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Simulation results: outage probability
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numerical results 

• A 2× 2 MIMO system, with log-normal variance ρ2

• Shadowing effect dominates the outage probability.
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Approximated Capacity and Outage Probability Analysis

• Computationally complex to calculate the eigenvalue distributions exactly

• Limiting eigenvalue distribution for a M ×M MIMO system [Telatar, 1999]

g(t) ≈ 1
2π

√
4

tM
− 1

M2
t ∈ (0, 4M)

• Nakagami-m approximation for maximal singular value of Hw [Wong, 2004]

gmax(t1) ≈ mm

Γ(m)Ωm
tm−1
1 e−

mt1
Ω
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Simulation results: approximated capacity
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• A 4× 4 MIMO system, with log-normal variance ρ2

• Maximal power mismatch: 2.5% for ρ = 0; 1.8% for ρ = 8
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Simulation results: approximated outage probability
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• 4× 4 and 6× 6 MIMO systems; ρ = 8

• The number of antennas has little impact on outage probability.
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Space-time vs. spatial water-filling

space-time water-filling spatial water-filling

spectral efficiency optimal suboptimal

complexity low high

eigenvalue distribution required not required

transmission mode burst continuous
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Conclusion

• Comprehensive comparison of space-time water-filling over spatial
water-filling in a composite channel model

– Space-time water-filling gains little over spatial water-filling unless
shadowing is severe.

– Outage probability is dominated by shadowing.

• Exact method to evaluate the ergodic channel capacity and outage
probability of space-time water-filling

• Approximated eigenvalue distributions to reduce the complexity


