Upper Bounds on MIMO Channel Capacity with
Channel Frobenius Norm Constraints

Zukang Shen, Jeffrey G. Andrews, and Brian L. Evans
Wireless Networking and Communications Group
Department of Electrical and Computer Engineering
The University of Texas at Austin, Austin, Texas 78712

Email: {shen, jandrews, bevaj@ece.utexas.edu

Abstract— The motivation of this paper is to find the class of MIMO channel capacity scaling law under different channel
channels that provides the largest capacity with both the transmit power scaling laws with respect to the number of antennas.
power constraint and channel Frobenius norm constraints. We While [7] focused on the optimal capacity scaling law, in

study both the point-to-point case and the broadcast case. For thi tudy th : h | ity with both
point-to-point MIMO channels, the optimal channels must have IS paper, we study the maximum channel capacity wi 0

T* equal singular values, wherel™* is dependent on the available transmit power and channel power (represented by the channel
transmit power and the channel Frobenius norm. This result Frobenius norm) constraints.
agrees with the previous work by Chiurtu et al. For multiuser The term maximum capacityin this paper refers to the
broadcast channels, we obtain an upper bound on the SUM ayimum capacity over all possible channels satisfying the
capacity. We also show that the bound is asymptotically tight : . L ! 4
for high SNR when all user channels have the same Frobenius norm anstralnt_, whileapacityis def'_”ef’ to be the.max'mum.
norm constraint and N; > KN,, where N; and N, are the Mmutual information over the transmit signal covariance matrix
numbers of transmit and receive antennas andX is the number for a fixed channel. The motivation for optimizing the channel
of users. jointly with the input covariance matrix under the transmit
power and channel power constraints are: 1) for the class of
power-constrained channels, an upper bound on the MIMO
channel capacity can be found; and 2) the characteristics of
Multiple-input-multiple-output  (MIMO) systems havethe channels providing the maximum capacity can be obtained,
drawn a lot of attention in the last decade. The spatiahich may be used to direct the adaptive antenna array
dimension, in addition to the time and frequency dimensionspnfiguration if possible.
can be exploited with multiple antennas at the transmitterWe study both single user point-to-point MIMO systems
and receiver. The fundamental information theoretic resuld multiuser broadcast channels. For the point-to-point case,
on MIMO channel capacity, e.g. [1]-[6] just to name a fewChiurtu et al. in [8] showed that the class of channels that
are important because they not only show the performangevides maximum capacity must have equal singular values,
limits, but also shed light on how to achieve the capacitand the optimal transmit signal covariance matrix also assigns
which helps to design MIMO systems. equal power to those non-zero eigenmodes. While Chietrtu
The Gaussian MIMO channel capacity problem can k. obtained the solution with Lagrange multipliers in [8], we
generally formulated into an optimization problem. Given atudy the problem using iterative water-filling. For the multi-
fixed channel or a random channel with certain probabilityser broadcast channel case, we obtain an upper bound on the
distributions, the objective is to optimize the input covariandargest sum capacity for the channels bounded by Frobenius
matrix under a power constraint so that the channel capaoitgrm. We also show that the bound is asymptotically tight for
is achieved. For example, for a fixed chanhilthe point-to- high SNR whenN; > KN, and all user channels have the

I. INTRODUCTION

point MIMO channel capacity can be formulated as same Frobenius norm constraint.
1 t [I. SYSTEM MODEL AND PROBLEM FORMULATION
max log || + —HQH Q) ) . .
Q o? A. Single User: Point-to-point Case

subject to tr(Q) < P The symbolwise discrete-time input-output relationship of a

whereQ is the input covariance matrix and the only constrainr’{arro\’\'banOI point-to-point MIMO system can be written as

in (1) is the power constraint, i.&r(Q) < P. While the y=Hx+v 2
MIMO channel capacity is a function of the available transmit . -
power, it is also dependent on the channel characteristics, Sﬁv&ere H is the N, x N, channe| matrixx andy are the

as the channel power. In [7], Sayeetal. studied the optimal tran.s.rmtted.and recel_ved symbol vector, resgectw?ys the
additive white Gaussian noise vector, wiljw'| = oI, and
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In this paper, we consider the MIMO channel capacity with I1l. POINT-TO-POINT CASE
both total transmit power constraint and channel Frobenius| gt v — max{N;, N,} and M = min{N;, N,}, and let
norm constraint. The motivation is to find the bounds on thee singular value decomposition (SVD) BffH be HTH =
MIMO channel capacity with a channel Frobenius constrainypyt, where D is a diagonal matrix whosé/ non-zero

L.e. [[H|[% < W, to identify the channels maximize capacityelements are denoted 48;},; and U is a unitary matrix.
For a point-to-point MIMO system, we have the followingygtice that

problem formulation. M )
D X =IHI% @)
max mQaX log ‘I + HQHT’ 3) i=1
subject to : tr(Q) < P and M
IH|2 < W. log||+HQHT|:ZIOg(1+Si/\i) (8)
=1
B. Multiple Users: Broadcast Case wheres; is the power allocated to thgh non-zero eigenmode,
For a broadcast multiuser MIMO system, the received signtrgle original problem in (3) can be reformulated as
for userk can be expressed as M
. max mgx; log (14 S;\) 9)
yk:HkZXi+Vk 4) M
i=1 subject to : ZSi <P
wherex; is the usefi’s transmitted signalH,, of size N, x N; j;l
denotes the channel for uskry, is the received signal for Z}\_ <W
user k; v, is the additive white Gaussian noise at receiver p t e

k; and K is the total number of users. Furthermore, in this

paper, we assume all users are equipped with an equal nun}%?\?re‘s: {51 52 - Sy} andA ={A Xy - Auf.
of receiver antennasV, and the transmitter had, > N otice that the objective function in (9) is symmetric with
fransmit antennas " "~ =~ 7" SandA. For a givenA, the optimalS; = I'; — i~ is obtained

It has been shown that Dirty Paper Coding (DPC) u%jv\;vater-ﬂllmg, wherel', is the water level which sat|slf|es

achieves the sum capacity in a Gaussian broadcast MIMEi=!1 ‘S;C[ = b Fora g|ve-nS, the opt|mal-)\.i -5
channel [13]. And the duality results in [13] show that for &d>_;—; A = W. Hence iterative water-filling can be used
fixed set of channel§H, }X_, , the sum capacity of a GaussiarPétweenS and A, i.e.

broadcast MIMO channel can found by solving the following 1) starting from an initial valueS®, maximize the ob-
problem: jective function in (9) over A. And let A* =

arg max Zf\il log (1 + S:A:).

us 2) For the A*, maximize the objective function in (9) over
E%ZZXIOg I+ Z HJ’LQ’“H’“ () : S. Let S* = arg max Zgl logJ (14 S;A0). ©
kal 3) Repeat step 1 ansd 2 until an equilibrium is reached.
subject to ZTr(Qk) <P Based on the above iterative water-filling procedure, we
k=1 have the following two Lemmas:

o . ) , Lemma 1: At each equilibrium point, the following equa-
Similar to the point-to-point case, with a set of chanmﬁonS hold

Frobenius norm constraints, we have the following problem

. . 1
formulation for a Gaussian broadcast channel: Sf=T,— v fori=1,2,---,T (10)
log |I f} HIQ,H (6) A 1 f
max max log || + , c=0Ix——= fori=1,2,---.T 11
{Hx} {Qx} s k=1 Rk A SL* ( )
T
K Sfr=P 12
subjectto Y Tr(Q,) < P ; ’ (12)

k=1 9 B T

IHg||% < Wy fork=1,2,--- | K. Z)\TZW (13)
Remarks: The emphasis of this paper is to find what kind of i=1
channels provide the maximum MIMO channel capacity witfor somel < T < M.
a channel norm constraint. It is assumed that the transmittelProof: Equations (10) and (11) are easy to justify because at
knows the channel perfectly in order to optimize its signa&ach equilibrium point{S;}L , are the water-filling results
covariance matrix. for {\:}L,. Otherwise, the iterative water-filling procedure



can be continued until an equilibrium point is reached. Equby finding the maximum among thosd equilibrium points,
tions (12) and (13) are true because the transmitter is supposed

to use as much power as possible and the channel shall also
provide maximal energy. Hence, the power and channel nornﬁélaglog |l + HQHT| = o pmax  Tlog (1 + T2)
constraints are binding. O ' ' Y (24)
Lemma 2: The global maxima must be one of thesqich is straightforward to evaluate. O
equilibrium points. Let T* = arg _max _ Tlog(1+ £%). The interpre-
T:T=1,2 M

Proof: This result is straightforwar th jective .. 1 T=1,2,- .M .
00 s result is straightforward because the objec t%tlon of the above results is that among all possible channel

which is limited by the Frobenius norm constraint, i.e.
|2 < W, the class oH maximizing the channel capacity
as T* equal singular values of/W/T*. Notice that the
product of P and W completely decide§™, leading to the
following observation.
Lemma 3: For sufficiently smallPW, T* = 1, and for
sufficiently largePW, T* = M.
This is reasonable because wheil’ is sufficiently small,
. PwW those channels providing the largest capacity shall focus both
Iél,aﬁ( log |I + HQHT| T TgaQX ,MTlog (1 + T2> the channel energy and transmit power to one eigenmode. This
(14) is somehow related to the optimality of beamforming in low
Proof: First, we will find the equilibrium points from SNR regime. WherPW is sufficiently large, thed™ = M,

Lemma 1. meaning all possible spatial dimensions shall be utilized.
Multiply (10) with A} and multiply (11) withS; to obtain

function, i.e. Zf‘il log (1 4+ S;);) is not decreasing as the
iterative water-filling procedure progresses. Suppose the glo ?—,
maxima does not satisfy the conditions in Lemma 1, th
performing the iterative water-filling algorithm can furthe
improve the objective function. O
Theorem 1: For a fixed channeH with channel norm

constraint|H||% < W and transmit power constraifit(Q) <
P, the maximum possible channel capacity is

IV. BROADCASTCASE

SIN =T\ —1 (15) . o
AESF = T4 S* — 1 (16) Fo.r a mgltl—qsgr broadcast channel, the optlmlzgtlon prob-
e AR lem in (6) is difficult to solve. Even for a set of fixed user
Hence channels, the boradcast sum capacity in (5) is a difficult
g — EXF 17 optimization problem. Several algorithms have been proposed,
N e.g. the iterative water-filling algorithm by Jindat,al. in [16].
for i = 1,2,--- ,T. Substituting (17) into (11) results in In this section, we show an upper bound for the problem in
(6) in following theorem.
Ne=T, — L1 (18) Theorem 2: For multiuser broadcast channels with in-
Ls A} dividual channel norm constraintgH||2 < W, for
for i = 1,2,---,T. Notice that from (18))\; only depends ¥ = 1,2,---,K, and a total transmit power constraint
on 'y and T, which is the same for alf = 1,2,--- 7. k=1 11(Qx) < P, the maximum sum capacity is upper
Although A7 may be one of the two possible solutions to (1820unded by
the Lemma in [8] proves that in order to maximize (9), we K
must have max max log |1+ HIQuHy
A= (19) {F MRS g, 5 mqu<p 1; '
and PZII:ﬂ Wi
S; =5 (20) R (1 y T> (29)

for 1 <i,5 <T. Combined with (12) and (13), we obtain where M, = min{Ni, KN, }.

5 = P (21)  Proof: Notice that if we denotéd. = HI HE - HE )T,
T then
and W K
= - (22) max log |l + Z HleHk
{Qx}: X Tr(Qu)<P k=1
fori=1,2,---,T. Also it is easy to see that k=t ;
< log |l + H.QH!]|. 26
AL (23) = Q)P 08 [ + HQH;| (26)
Iy W This is true because the right hand side (RHS) of (26) is

Notice that there areM (for 1 < T < M) candidate the capacity of a point-to-point channdl., which represents
equilibrium points for the global maxima. From Lemma 2, ththe scenario in which users may cooperate in the broadcast
global maximum of the original problem in (3) can be obtainechannel.



Since (26) holds true for any channgi; }5_,, and notice Then

K
that ||H.||2. = H.l|%, we have K K
Rellr = 2 [ I+ HIQuHk| = |1+ ViDyUJULEU[UD.V]
k=1 k=1
K K
max_ max log I + > HIQuHy = [1+) V.DIEV]
{Hi}: [IHe||Z<Ws Q.1 }f: Te(Q,)<P 1 " k=1
=1 i T
< max max_log |l + H.QH!| (27) = [r+vDVi]
Hes [[He|l3 <325, Wi Q: Tr(Q) <P Il +D| (30)

) _ whereD is a diagonal matrix of siz& N, x KN, It hasK N
Let M. = min{N,, K'N, }. From Theorem 1, the solutionyon_zero diagonal element and tji elementd; is
to the RHS of (27) can be easily obtained as

- LW 31)
max max 10g|l —&—HCQHU o KN N
Het |IHellf <35, Wi @ Tr@QsP for all j = 1,2,---, KN. And equality (a) holds because
szzl W Vi, L Vg L --- LV, and D{E is diagonal for allk =
= T:Hll’gfg_yMchog (1 == ) (28) 192... K.
With (31), we have
Hence combining (27) and (28) completes the proof. O K ) KN
Theorem 2 only gives an upper bound on the maximum sum 108 |! Z H.QkHk| = H log(1 + d;)
capacity with channel norm constraints. In the following, we k=1 J=1
show a special case where the upper bound in Theorem 2 is - KNlog (1 + PWQ) (32)
actually tight. KN
Before stating the Lemma, we first define some notatiowith equals (29). Hence Lemma 3 is proved. O
Let T* be the maxima of the RHS of (28), i.e. Lemma 5: When KN, < N, andW; = Wy = --. =
Wx = W, the bound in (25) is asymptotically tight for high
K SNR.
T = arg T:Hll,%,)-(u,Mchog (1 + W) . Proof: For high SNR, we havd™ = min{N;, KN, } =

K N,.. This is true because for large enough SNR, the trans-
mitter needs to utilize as many eigenmodes as possible. Hence
Let the SVD ofH;, = UkaVL, whereUy, is a unitary matrix Lemma 5 is a special case of Lemma 4 whéfe= N,. O

of size N, x N,; V, is a unitary matrix of sizeV; x N,; and Remarks: The results in Lemma 4 and Lemma 5 are
Dy, is a diagonal matrix of sizéV,. x N,. the diagonal elements not surprising because when the user channels are mutually

denoted aS{Ak,i}ZN;l- orthogonal, the sum capacity of the broadcast channel is the
Lemma 4: WhenT* = KN < N, for some integerl < same as the cooperative channel with the same total transmit

N < N, andW; = W, = --- = Wx = W, the bound in (25) power constraint.

is tight.

. .. . . . V. NUMERICAL RESULTS
Proof: With the conditions given in Lemma 4, the bound in

(25) becomes In this section, we provide a few numerical results on the

maximum MIMO channel capacity with both transmit power
KN . and channel norm constraints.
PKW PW T For a point-to-point MIMO channel, since the optimal
log <1+ KN)2> = log (1 T N2> (29) number of non-zero eigenmodé&s* is determined by the
product of P and W, we defineSNR = PW in this paper.
) Fig. 1 shows the largest possible MIMO channel capacity vs.
In It(he following, we construct a set of user channel§Ng for different ), which is the minimum of the number
{Hx}z=, such that the bound in (29) is achieved. of transmit and receive antennas. For low SNR, the capacity
e LetV; L Vs L --- L Vg, which means all user channeldsS the same regardless of the valueldf This is true since
are orthogonal to each other. Lét= [\/j V; V}(]T_ under low SNR, the optimal transmit strategy is to allocate all
. Let D. — dia {\/E \/Z \/EO 0} for b — Power to the largest eigenmode. And those channels providing
k g N N N ; . .
Lo... K the most f:apacny shall focu; all its energy to one g|genmode.
L P P As SNR increases, more eigenmodes shall be utilized. And
« LetE = dlag{i oS A 0}' Let Q. = Fig. 2 shows the optimal number of eigenmodes vs. SNR.

P
KN K KN
Uk.EUL fork=1,2,---, Fig. 3 shows the largest capacity V&. for different SNR. It

>
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Fig. 1. Point-to-point MIMO channels. Maximum capacity vs. SNR, whiclfFig. 3.  Point-to-point MIMO channels. Maximal capacity vs. M, which is

is defined asSNR £ PW. M = min{N;, N, }.
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Fig. 2. Point-to-point MIMO channels. Optimal number of eigenmod&9) (

vs. SNR, which is defined &8NR £ PW. M = min{N¢, N} = 10. [8]

is simply a different view of Fig. 1. From Fig. 3, we confirmedyg)
that for low SNR, the largest capacity is the same foridll

VI. CONCLUSION

defined asM = min{N;, N;-}. And SNR £ PW.
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