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Abstract— The motivation of this paper is to find the class of
channels that provides the largest capacity with both the transmit
power constraint and channel Frobenius norm constraints. We
study both the point-to-point case and the broadcast case. For
point-to-point MIMO channels, the optimal channels must have
T ∗ equal singular values, whereT ∗ is dependent on the available
transmit power and the channel Frobenius norm. This result
agrees with the previous work by Chiurtu et al. For multiuser
broadcast channels, we obtain an upper bound on the sum
capacity. We also show that the bound is asymptotically tight
for high SNR when all user channels have the same Frobenius
norm constraint and Nt ≥ KNr, where Nt and Nr are the
numbers of transmit and receive antennas andK is the number
of users.

I. I NTRODUCTION

Multiple-input-multiple-output (MIMO) systems have
drawn a lot of attention in the last decade. The spatial
dimension, in addition to the time and frequency dimensions,
can be exploited with multiple antennas at the transmitter
and receiver. The fundamental information theoretic results
on MIMO channel capacity, e.g. [1]–[6] just to name a few,
are important because they not only show the performance
limits, but also shed light on how to achieve the capacity,
which helps to design MIMO systems.

The Gaussian MIMO channel capacity problem can be
generally formulated into an optimization problem. Given a
fixed channel or a random channel with certain probability
distributions, the objective is to optimize the input covariance
matrix under a power constraint so that the channel capacity
is achieved. For example, for a fixed channelH, the point-to-
point MIMO channel capacity can be formulated as

max
Q

log
∣∣∣∣I +

1
σ2

HQH †
∣∣∣∣ (1)

subject to tr(Q) ≤ P

whereQ is the input covariance matrix and the only constraint
in (1) is the power constraint, i.e.tr(Q) ≤ P . While the
MIMO channel capacity is a function of the available transmit
power, it is also dependent on the channel characteristics, such
as the channel power. In [7], Sayeedet al. studied the optimal
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MIMO channel capacity scaling law under different channel
power scaling laws with respect to the number of antennas.
While [7] focused on the optimal capacity scaling law, in
this paper, we study the maximum channel capacity with both
transmit power and channel power (represented by the channel
Frobenius norm) constraints.

The term maximum capacityin this paper refers to the
maximum capacity over all possible channels satisfying the
norm constraint, whilecapacityis defined to be the maximum
mutual information over the transmit signal covariance matrix
for a fixed channel. The motivation for optimizing the channel
jointly with the input covariance matrix under the transmit
power and channel power constraints are: 1) for the class of
power-constrained channels, an upper bound on the MIMO
channel capacity can be found; and 2) the characteristics of
the channels providing the maximum capacity can be obtained,
which may be used to direct the adaptive antenna array
configuration if possible.

We study both single user point-to-point MIMO systems
and multiuser broadcast channels. For the point-to-point case,
Chiurtu et al. in [8] showed that the class of channels that
provides maximum capacity must have equal singular values,
and the optimal transmit signal covariance matrix also assigns
equal power to those non-zero eigenmodes. While Chiurtuet
al. obtained the solution with Lagrange multipliers in [8], we
study the problem using iterative water-filling. For the multi-
user broadcast channel case, we obtain an upper bound on the
largest sum capacity for the channels bounded by Frobenius
norm. We also show that the bound is asymptotically tight for
high SNR whenNt ≥ KNr and all user channels have the
same Frobenius norm constraint.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Single User: Point-to-point Case

The symbolwise discrete-time input-output relationship of a
narrowband point-to-point MIMO system can be written as

y = Hx + v (2)

where H is the Nr × Nt channel matrix;x and y are the
transmitted and received symbol vector, respectively;v is the
additive white Gaussian noise vector, withE[vv†] = σ2I , and
(·)† denotes matrix complex conjugate transpose. Without loss
of generality, we assumeσ2 = 1.



In this paper, we consider the MIMO channel capacity with
both total transmit power constraint and channel Frobenius
norm constraint. The motivation is to find the bounds on the
MIMO channel capacity with a channel Frobenius constraint,
i.e. ||H||2F ≤ W , to identify the channels maximize capacity.
For a point-to-point MIMO system, we have the following
problem formulation.

max
H

max
Q

log
∣∣I + HQH †∣∣ (3)

subject to : tr(Q) ≤ P

||H||2F ≤ W.

B. Multiple Users: Broadcast Case

For a broadcast multiuser MIMO system, the received signal
for userk can be expressed as

yk = Hk

K∑

i=1

xi + vk (4)

wherexi is the useri’s transmitted signal;Hk of sizeNr×Nt

denotes the channel for userk; yk is the received signal for
user k; vk is the additive white Gaussian noise at receiver
k; and K is the total number of users. Furthermore, in this
paper, we assume all users are equipped with an equal number
of receiver antennasNr and the transmitter hasNt ≥ Nr

transmit antennas.
It has been shown that Dirty Paper Coding (DPC) [10]

achieves the sum capacity in a Gaussian broadcast MIMO
channel [13]. And the duality results in [13] show that for a
fixed set of channels{Hk}K

k=1, the sum capacity of a Gaussian
broadcast MIMO channel can found by solving the following
problem:

max
{Qk}

log

∣∣∣∣∣I +
K∑

k=1

H†
kQkHk

∣∣∣∣∣ (5)

subject to
K∑

k=1

Tr(Qk) ≤ P.

Similar to the point-to-point case, with a set of channel
Frobenius norm constraints, we have the following problem
formulation for a Gaussian broadcast channel:

max
{Hk}

max
{Qk}

log
∣∣∣∣I +

K∑
k=1

H†
kQkHk

∣∣∣∣ (6)

subject to
K∑

k=1

Tr(Qk) ≤ P

||Hk||2F ≤ Wk for k = 1, 2, · · · ,K.

Remarks: The emphasis of this paper is to find what kind of
channels provide the maximum MIMO channel capacity with
a channel norm constraint. It is assumed that the transmitter
knows the channel perfectly in order to optimize its signal
covariance matrix.

III. POINT-TO-POINT CASE

Let N = max{Nt, Nr} and M = min{Nt, Nr}, and let
the singular value decomposition (SVD) ofH†H be H†H =
UDU†, where D is a diagonal matrix whoseM non-zero
elements are denoted as{λi}M

i=1; and U is a unitary matrix.
Notice that

M∑

i=1

λi = ||H||2F (7)

and

log
∣∣I + HQH †∣∣ =

M∑

i=1

log (1 + Siλi) (8)

whereSi is the power allocated to theith non-zero eigenmode,
the original problem in (3) can be reformulated as

max
Λ

max
S

M∑

i=1

log (1 + Siλi) (9)

subject to :
M∑

i=1

Si ≤ P

M∑

i=1

λi ≤ W

whereS = {S1 S2 · · · SM} andΛ = {λ1 λ2 · · · λM}.
Notice that the objective function in (9) is symmetric with

S andΛ. For a givenΛ, the optimalSi = Γs− 1
λi

is obtained
by water-filling, whereΓs is the water level which satisfies∑M

i=1 Si = P . For a givenS, the optimalλi = Γλ − 1
Si

and
∑M

i=1 λi = W . Hence iterative water-filling can be used
betweenS andΛ, i.e.

1) starting from an initial valueS∗, maximize the ob-
jective function in (9) over Λ. And let Λ∗ =
arg max

Λ

∑M
i=1 log (1 + S∗i λi).

2) For theΛ∗, maximize the objective function in (9) over
S. Let S∗ = arg max

S

∑M
i=1 log (1 + Siλ

∗
i ).

3) Repeat step 1 and 2 until an equilibrium is reached.
Based on the above iterative water-filling procedure, we

have the following two Lemmas:
Lemma 1: At each equilibrium point, the following equa-

tions hold

S∗i = Γs − 1
λ∗i

for i = 1, 2, · · · , T (10)

λ∗i = Γλ − 1
S∗i

for i = 1, 2, · · · , T (11)

T∑

i=1

S∗i = P (12)

T∑

i=1

λ∗i = W (13)

for some1 ≤ T ≤ M .
Proof: Equations (10) and (11) are easy to justify because at

each equilibrium point,{S∗i }T
i=1 are the water-filling results

for {λ∗i }T
i=1. Otherwise, the iterative water-filling procedure



can be continued until an equilibrium point is reached. Equa-
tions (12) and (13) are true because the transmitter is supposed
to use as much power as possible and the channel shall also
provide maximal energy. Hence, the power and channel norm
constraints are binding. 2

Lemma 2: The global maxima must be one of these
equilibrium points.

Proof: This result is straightforward because the objective
function, i.e.

∑M
i=1 log (1 + Siλi) is not decreasing as the

iterative water-filling procedure progresses. Suppose the global
maxima does not satisfy the conditions in Lemma 1, then
performing the iterative water-filling algorithm can further
improve the objective function. 2

Theorem 1: For a fixed channelH with channel norm
constraint||H||2F ≤ W and transmit power constraintTr(Q) ≤
P , the maximum possible channel capacity is

max
Q, H

log
∣∣I + HQH †∣∣ = max

T : T=1,2,··· ,M
T log

(
1 +

PW

T 2

)
.

(14)
Proof: First, we will find the equilibrium points from

Lemma 1.
Multiply (10) with Λ∗i and multiply (11) withS∗i to obtain

S∗i λ∗i = Γsλ
∗
i − 1 (15)

λ∗i S
∗
i = ΓλS∗i − 1 (16)

Hence

S∗i =
Γs

Γλ
λ∗i (17)

for i = 1, 2, · · · , T . Substituting (17) into (11) results in

λ∗i = Γλ − Γλ

Γs

1
λ∗i

(18)

for i = 1, 2, · · · , T . Notice that from (18),λ∗i only depends
on Γλ and Γs, which is the same for alli = 1, 2, · · · , T .
Althoughλ∗i may be one of the two possible solutions to (18),
the Lemma in [8] proves that in order to maximize (9), we
must have

λ∗i = λ∗j (19)

and
S∗i = S∗j (20)

for 1 ≤ i, j ≤ T . Combined with (12) and (13), we obtain

S∗i =
P

T
(21)

and

λ∗i =
W

T
(22)

for i = 1, 2, · · · , T . Also it is easy to see that

Γs

Γλ
=

P

W
. (23)

Notice that there areM (for 1 ≤ T ≤ M ) candidate
equilibrium points for the global maxima. From Lemma 2, the
global maximum of the original problem in (3) can be obtained

by finding the maximum among thoseM equilibrium points,
i.e.

max
Q, H

log
∣∣I + HQH †∣∣ = max

T : T=1,2,··· ,M
T log

(
1 +

PW

T 2

)

(24)
which is straightforward to evaluate. 2

Let T ∗ = arg max
T : T=1,2,··· ,M

T log
(
1 + PW

T 2

)
. The interpre-

tation of the above results is that among all possible channel
H which is limited by the Frobenius norm constraint, i.e.
||H||2F ≤ W , the class ofH maximizing the channel capacity
has T ∗ equal singular values of

√
W/T ∗. Notice that the

product ofP and W completely decidesT ∗, leading to the
following observation.

Lemma 3: For sufficiently smallPW , T ∗ = 1, and for
sufficiently largePW , T ∗ = M .

This is reasonable because whenPW is sufficiently small,
those channels providing the largest capacity shall focus both
the channel energy and transmit power to one eigenmode. This
is somehow related to the optimality of beamforming in low
SNR regime. WhenPW is sufficiently large, thenT ∗ = M ,
meaning all possible spatial dimensions shall be utilized.

IV. B ROADCAST CASE

For a multi-user broadcast channel, the optimization prob-
lem in (6) is difficult to solve. Even for a set of fixed user
channels, the boradcast sum capacity in (5) is a difficult
optimization problem. Several algorithms have been proposed,
e.g. the iterative water-filling algorithm by Jindal,et al. in [16].
In this section, we show an upper bound for the problem in
(6) in following theorem.

Theorem 2: For multiuser broadcast channels with in-
dividual channel norm constraints||Hk||2F ≤ Wk for
k = 1, 2, · · · ,K, and a total transmit power constraint∑K

k=1 Tr(Qk) ≤ P , the maximum sum capacity is upper
bounded by

max
{Hk}: ||Hk||2F≤Wi

max
{Qk}:

KP
k=1

Tr(Qk)≤P

log

∣∣∣∣∣I +
K∑

k=1

H†
kQkHk

∣∣∣∣∣

≤ max
T : T=1,2,··· ,Mc

T log

(
1 +

P
∑K

k=1 Wk

T 2

)
(25)

whereMc = min{Nt,KNr}.
Proof: Notice that if we denoteHc = [H†

1 H†
2 · · · H†

K ]†,
then

max
{Qk}:

KP
k=1

Tr(Qk)≤P

log

∣∣∣∣∣I +
K∑

k=1

H†
kQkHk

∣∣∣∣∣

≤ max
Q: Tr(Q)≤P

log
∣∣I + HcQH†

c

∣∣ . (26)

This is true because the right hand side (RHS) of (26) is
the capacity of a point-to-point channelHc, which represents
the scenario in which users may cooperate in the broadcast
channel.



Since (26) holds true for any channel{Hk}K
k=1, and notice

that ||Hc||2F =
K∑

k=1

||Hk||2F , we have

max
{Hk}: ||Hk||2F≤Wi

max
{Qk}:

KP
k=1

Tr(Qk)≤P

log

∣∣∣∣∣I +
K∑

k=1

H†
kQkHk

∣∣∣∣∣

≤ max
Hc: ||Hc||2F≤

PK
k=1 Wk

max
Q: Tr(Q)≤P

log
∣∣I + HcQH†

c

∣∣ (27)

Let Mc = min{Nt,KNr}. From Theorem 1, the solution
to the RHS of (27) can be easily obtained as

max
Hc: ||Hc||2F≤

PK
k=1 Wk

max
Q: Tr(Q)≤P

log
∣∣I + HcQH†

c

∣∣

= max
T : T=1,2,··· ,Mc

T log

(
1 +

P
∑K

k=1 Wk

T 2

)
(28)

Hence combining (27) and (28) completes the proof. 2

Theorem 2 only gives an upper bound on the maximum sum
capacity with channel norm constraints. In the following, we
show a special case where the upper bound in Theorem 2 is
actually tight.

Before stating the Lemma, we first define some notation.
Let T ∗ be the maxima of the RHS of (28), i.e.

T ∗ = arg max
T : T=1,2,··· ,Mc

T log

(
1 +

P
∑K

k=1 Wk

T 2

)
.

Let the SVD ofHk = UkDkV†k, whereUk is a unitary matrix
of sizeNr ×Nr; Vk is a unitary matrix of sizeNt×Nr; and
Dk is a diagonal matrix of sizeNr×Nr the diagonal elements
denoted as{λk,i}Nr

i=1.
Lemma 4: When T ∗ = KN ≤ Nt for some integer1 ≤

N ≤ Nr andW1 = W2 = · · · = WK = W , the bound in (25)
is tight.

Proof: With the conditions given in Lemma 4, the bound in
(25) becomes

log

(
1 +

PKW(
KN

)2

)KN

= log
(

1 +
PW

KN
2

)KNT

(29)

In the following, we construct a set of user channels
{Hk}K

k=1 such that the bound in (29) is achieved.

• Let V1 ⊥ V2 ⊥ · · · ⊥ Vk, which means all user channels
are orthogonal to each other. LetV = [V†1 V†2 · · · V†K ]†.

• Let Dk = diag
{√

W
N

√
W
N
· · ·

√
W
N

0 · · · 0
}

for k =
1, 2, · · · ,K.

• Let E = diag
{

P
KN

P
KN

· · · P
KN

0 · · · 0
}

. Let Qk =

UkEU†k for k = 1, 2, · · · , K.

Then∣∣∣∣∣I +
K∑

k=1

H†
kQkHk

∣∣∣∣∣ =

∣∣∣∣∣I +
K∑

k=1

VkDkU†kUkEU†kUkDkV†k

∣∣∣∣∣

=

∣∣∣∣∣I +
K∑

k=1

VkD2
kEV†k

∣∣∣∣∣
(a)
=

∣∣I + VDV†
∣∣

= |I + D| (30)

whereD is a diagonal matrix of sizeKNr×KNr, It hasKN
non-zero diagonal element and thejth elementdj is

dj =
P

KN

W

N
(31)

for all j = 1, 2, · · · ,KN . And equality (a) holds because
V1 ⊥ V2 ⊥ · · · ⊥ Vk and D2

kE is diagonal for allk =
1, 2, · · · ,K.

With (31), we have

log

∣∣∣∣∣I +
K∑

k=1

H†
kQkHk

∣∣∣∣∣ =
KN∏

j=1

log(1 + dj)

= KN log
(

1 +
PW

KN
2

)
(32)

with equals (29). Hence Lemma 3 is proved. 2

Lemma 5: When KNr ≤ Nt and W1 = W2 = · · · =
WK = W , the bound in (25) is asymptotically tight for high
SNR.

Proof: For high SNR, we haveT ∗ = min{Nt,KNr} =
KNr. This is true because for large enough SNR, the trans-
mitter needs to utilize as many eigenmodes as possible. Hence
Lemma 5 is a special case of Lemma 4 whereN = Nr. 2

Remarks: The results in Lemma 4 and Lemma 5 are
not surprising because when the user channels are mutually
orthogonal, the sum capacity of the broadcast channel is the
same as the cooperative channel with the same total transmit
power constraint.

V. NUMERICAL RESULTS

In this section, we provide a few numerical results on the
maximum MIMO channel capacity with both transmit power
and channel norm constraints.

For a point-to-point MIMO channel, since the optimal
number of non-zero eigenmodesT ∗ is determined by the
product ofP and W , we defineSNR = PW in this paper.
Fig. 1 shows the largest possible MIMO channel capacity vs.
SNR for differentM , which is the minimum of the number
of transmit and receive antennas. For low SNR, the capacity
is the same regardless of the value ofM . This is true since
under low SNR, the optimal transmit strategy is to allocate all
power to the largest eigenmode. And those channels providing
the most capacity shall focus all its energy to one eigenmode.
As SNR increases, more eigenmodes shall be utilized. And
Fig. 2 shows the optimal number of eigenmodes vs. SNR.
Fig. 3 shows the largest capacity vs.M for different SNR. It
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Fig. 1. Point-to-point MIMO channels. Maximum capacity vs. SNR, which
is defined asSNR , PW . M = min{Nt, Nr}.
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Fig. 2. Point-to-point MIMO channels. Optimal number of eigenmodes (T ∗)
vs. SNR, which is defined asSNR , PW . M = min{Nt, Nr} = 10.

is simply a different view of Fig. 1. From Fig. 3, we confirmed
that for low SNR, the largest capacity is the same for allM .

VI. CONCLUSION

In this paper, the MIMO channel capacity with channel
Frobenius norm constraints is studied. For a point-to-point
MIMO channel, the optimal channel that provides the largest
capacity must haveT ∗ equal eigenmodes, whereT ∗ is de-
pendent on the total transmit power constraintP and the
channel norm constraintW . For a multiuser broadcast channel,
we obtain an upper bound on the largest sum capacity when
the user channels have Frobenius norm constraints. It is also
shown that the bound is asymptotically tight for high SNR
when Nt ≥ KNr and all user channels have the same
Frobenius norm constraint.

REFERENCES

[1] I. E. Telatar, “Capacity of Multi-Antenna Gaussian channels,”Euro-
pean Transactions on Telecommunications, vol. 10, no. 6, pp. 585–595,
Nov./Dec. 1999.

2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

M

C
ap

ac
ity

 (
bi

ts
/s

/H
z)

SNR=10, 20, 30, 40, 50 dB 

Fig. 3. Point-to-point MIMO channels. Maximal capacity vs. M, which is
defined asM = min{Nt, Nr}. And SNR , PW .

[2] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Capacity Limits
of MIMO Channels,”IEEE Journal on Selected Area in Communications,
vol. 21, no. 5, p. 684–702, Jun. 2003.

[3] S. K. Jayaweera and H. V. Poor, “Capacity of Multiple-Antenna Systems
with Both Receiver and Transmitter Channel State Information,”IEEE
Transactions on Information Theory, vol. 49, no. 10, pp. 2697–2709,
Oct. 2003.

[4] E. Biglieri, G. Caire, and G. Taricco, “Limiting Performance of Block-
Fading Channels with Multiple Antennas,”IEEE Transactions on Infor-
mation Theory, vol. 47, no. 4, pp. 1273–1289, May 2001.

[5] A. S. Y. Poon, D. N. C. Tse, and R. W. Brodersen, “An Adaptive Multi-
antenna Transceiver for Slowly Flat Fading Channels,”IEEE Transactions
on Communications, vol. 51, no. 11, pp. 1820–1827, Nov. 2003.

[6] Z. Shen, R. W. Heath. Jr., J. G. Andrews, and B. L. Evans, “Comparison
of Space-Time Water-filling and Spatial Water-filling for MIMO Fading
Channels,” inProc. IEEE Global Communications Conference., vol. 1,
pp. 431–435, Dec. 2004.

[7] A. Sayeed, V. Raghavan, and J. Kotecha, “Capacity of Space-Time
Wireless Channels: A Physical Perspective,” inIEEE Information Theory
Workshop, Oct. 2004.

[8] N. Chiurtu and B. Rimoldi, “Varying the Antenna Locations to Optimize
the Capacity of Multi-Antenna Gaussian Channels,” inProc. IEEE
International Conference on Acoustics, Speech, and Signal Processing,
vol. 5, pp. 3121–3123, Jun. 2000.

[9] N. Chiurtu, B. Rimoldi, and E. Telatar, “On the Capacity of Multi-
Antenna Gaussian Channels,” inProc. IEEE International Symposium
on Information Theory, pp. 53, Jun. 2001.

[10] M. Costa, “Writing on Dirty Paper,”IEEE Transactions on Information
Theory, vol. 29, no. 3, pp. 439–441, May 1983.

[11] G. Caire and S. Shamai, “On the Achievable Throughput of a Multi-
antenna Gaussian Broadcast Channel,”IEEE Transactions on Information
Theory, vol. 49, no. 7, pp. 1691–1706, Jul. 2003

[12] P. Viswanath and D. N. C. Tse, “Sum Capacity of the Vector Gaussian
Broadcast Channel and Uplink-Downlink Duality,”IEEE Transactions on
Information Theory, vol. 49, no. 8, pp. 1912–1921 Aug. 2003.

[13] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, Achievable Rates,
and Sum-Rate Capacity of Gaussian MIMO Broadcast Channels,”IEEE
Trans. on Information Theory, vol. 49, no. 10, pp. 2658–2668, Oct. 2003.

[14] W. Yu and J. M. Cioffi, “Sum Capacity of Gaussian Vector Broadcast
Channels,”IEEE Transactions on Information Theory, vol. 50, no. 9, pp.
1875–1892, Sep. 2004.

[15] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative Water-Filling
for Gaussian Vector Multiple-Access Channels,”IEEE Transactions on
Information Theory, vol. 50, no. 1, pp. 145–152, Jan. 2004.

[16] N. Jindal, W. Rhee, S. Vishwanath, S. A. Jafar, and A. Goldsmith,
“Sum Power Iterative Water-filling for Multi-Antenna Gaussian Broadcast
Channels”, to appear inIEEE Trans. on Information Theory, 2005.

[17] T. M. Cover and J. A. Thomas,Elements of Information Theory, John
Wiley & Sons, Inc., 1991.


