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ABSTRACT

Surviving geometric attacks in image authentication is con-
sidered to be of great importance. This is because of the
vulnerability of classical watermarking and digital signature
based schemes to geometric image manipulations, particu-
larly local geometric attacks. In this paper, we present a
general framework for image content authentication using
salient feature points. We first develop an iterative feature
detector based on an explicit modeling of the human visual
system. Then, we compare features from two images by de-
veloping a generalized Hausdorff distance measure. The use
of such a distance measure is crucial to the robustness of the
scheme, and accounts for feature detector failure or occlu-
sion, which previously proposed methods do not address.
The proposed algorithm withstands standard benchmark
(e.g. Stirmark) attacks including compression, common sig-
nal processing operations, global as well as local geometric
transformations, and even hard to model distortions such
as print and scan. Content changing (malicious) manipula-
tions of image data are also accurately detected.

1. INTRODUCTION

Traditionally, the methods used for media verification can
be classified into two categories: digital signature-based and
watermark-based. A digital signature is a set of features
extracted from the media that sufficiently represents the
content of the original media. Watermarking, on the other
hand, is a media authentication/protection technique that
embeds invisible (or inaudible) information into the media.
For content authentication, the embedded watermark can
be extracted and used for verification purposes. The ma-
jor difference between a watermark and a digital signature
is that the embedding process of the former requires the
content of the media to change. However, for content au-
thentication, both the watermark-based approach and the
digital signature-based approach are expected to be sensi-
tive to any malicious modification of the media while be-
ing able to tolerate incidental modifications such as JPEG
compression, enhancement, and common signal processing
operations.

An important subset of allowable distortions on an im-
age is geometric manipulations. These can further be de-
composed into two classes: global transformations such as
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scaling, rotations and translations, and local transforma-
tions such as random bending and shearing (e.g. the Stir-
Mark attack). One major drawback of classical watermark-
ing [1, 2, 3, 4] as well as digital signature schemes [5, 6, 7,
8] is the lack of robustness to geometric distortions. For
this reason, significant attention has been devoted in re-
cent years towards developing geometrically invariant wa-
termarking schemes. This includes periodic insertion of the
mark [9, 10, 11], template insertion [12], mark embedding in
geometrically invariant domains [13, 14], and content based
watermarking schemes that extract image feature points
[15, 16, 17, 18].

A common shortcoming of the methods in [9]-[15] is
that they are not robust to local geometric transformations.
While the methods in [16] - [18] exhibit good robustness to
both global and local distortions, they implicitly make very
strong assumptions of the feature point detector. In other
words, feature points from the watermarked original image
and a candidate image are required to exactly match (un-
der a model of the geometric distortion) for the mark to be
successfully detected. In practice, under arbitrary geomet-
ric distortions, such an assumption often proves too opti-
mistic. Also, feature detection is seldom perfect. Feature
points that are detected in the original copy may not be
present in the version that has undergone a (perceptually
insignificant) geometric transformation.

We present a framework for image authentication us-
ing visually significant feature points. However, unlike the
aforementioned methods, our approach is signature (and
not watermark) based. We extract significant image fea-
tures by using a wavelet based feature detection algorithm
based on the characteristics of the visual system [19]. The
key component of our scheme that enables robustness to
geometric transformations is the use of a generalized Haus-
dorff distance to match geometric structures. Experimen-
tal results show that such a distance more accurately cap-
tures visual changes in image content, and also compensates
for occasional failure of the feature detector. Finally, we
propose randomized feature extraction to enhance security
against maliciously generated geometric attacks.

MATLAB code for the authentication scheme described
in this paper is available at:
www.ece.utexas.edu/~bevans/papers/2005/authentication



2. FEATURE EXTRACTION

2.1. End-Stopped Wavelets

Psychovisual studies have identified the presence of certain
cells, called hypercomplex or end-stopped cells, in the pri-
mary visual cortex [19]. For real-world scenes, these cells
respond strongly to extremely robust image features such
as corner like stimuli and points of high curvature in gen-
eral [20], [21]. Bhattacherjee et al. [21] constructed “end-
stopped” wavelets to capture this behavior. Morlet wavelets
can be used to detect linear structures having a specific
orientation. In spatial domain, the two dimensional (2-D)
Morlet wavelet is given by [22]
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where x = (x, y) represents 2-D spatial coordinates, and
k0 = (k0, k1) is the wave-vector of the mother wavelet,
which determines scale-resolving power (SRP) and angular-
resolving power (ARP) of the wavelet [22]. The frequency
domain representation, ψM (k), of a Morlet wavelet is
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Here, k represents the 2-D frequency variable (u, v). In two
dimensions, the end points of linear structures can be de-
tected by applying the first-derivative of Gaussian (FDoG)
filter parallel to the orientation of structures in question.
The two filtering stages, the first to detect lines having a
specific orientation and the second to detect the end-points
of such lines, can be combined into a single filter. This re-
sults in an “end-stopped” wavelet [21]. An example of an
end-stopped wavelet and its 2-D Fourier transform follow:
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Equation (4) shows that ψ̂E is a product of two components.
The first is a Morlet wavelet oriented along the u−axis.
The second factor is a FDoG operator applied along the
frequency-axis v, that is in the direction perpendicular to
the Morlet wavelet. Hence, this wavelet detects line ends
and high curvature points in the vertical direction.

2.2. Proposed feature detection method

Our approach to feature detection computes a wavelet trans-
form based on an end-stopped wavelet obtained by applying
the FDoG operator to the Morlet wavelet:

ψE(x, y, θ) = (FDoG) o(ψM (x, y, θ)) (5)

Orientation tuning is given by θ = tan−1( k1
k0

). Let the

orientation range [0, π] be discretized into M intervals and
the scale parameter α be sampled exponentially as αi, i ∈
Z. This results in the wavelet family

�
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�
, α ∈ R, i ∈ Z (6)

————————————–

1. Compute the wavelet transform in Wi(x, y, θ) (7) at
a suitably chosen scale i for several different orien-
tations θ. The coarsest scale (i = 1) is not selected
as it is too sensitive to global variations. Finer the
scale, the more sensitive it is to distortions such as
quantization noise. We choose i = 3.

2. Locations (x, y) in the image that are identified as
candidate feature points satisfy

Wi(x, y, θ) = max
(x′,y′)∈N(x,y)

|Wi(x
′, y′, θ)| (8)

where N(x,y) represents the local neighborhood of
(x, y) within which the search is conducted.

3. From the candidate points selected in step 2, qualify
a location as a final feature point if

max
θ

Wi(x, y, θ) > T (9)

where T is a user-defined threshold.

————————————–

Figure 1: Feature detection method that preserves signifi-
cant image geometry feature points of an image.

where θk = (kπ)/M , k = 0,...,M -1. The transform is

Wi(x, y, θ) =
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The sampling parameter α is chosen to be 2.

Fig. 1 describes the proposed feature detection method.
To obtain the final set of feature points, we use an algorithm
that iteratively employs the feature detector in Fig. 1, until
a fixed point is reached. The iterative procedure is based on
strengthening strong geometrical components of the image
while eliminating weak isolated geometry. Details may be
found in [23].

3. PROPOSED SCHEME FOR IMAGE
AUTHENTICATION

Our proposed image authentication scheme is illustrated
in Fig. 2. The set of feature points N extracted from a
candidate image (using the feature extractor described in
Section 2.2) is transformed by a suitable model T, of the
geometric distortion. The transformed set of points is then
compared against the (pre-computed) set of feature points
M from a reference image using a robust distance measure
D(·, ·). The transformation T is updated using an intelli-
gent search strategy until a local minima of the distance
function is reached. Based on the value of this minimum
distance, we declare the image to be credible or tampered.
Next, we detail the particular choice of various components
in our proposed authentication framework.



Figure 2: Flow chart of the image authentication scheme

3.1. Distortion Modeling

We model the geometric distortion on the feature points via
an affine transformation T such that

T(x) = y = Rx + t (10)

where x = (x1, x2), y = (y1, y2), R is a 2× 2 matrix and t
denotes a 2 × 1 vector. Using an affine transform permits
us to exactly model distortions such as rotation, scaling,
translation, and shearing effects. Also, under a robust dis-
tance measure several other geometric distortions are well
approximated via the affine transform.

3.2. Robust Distance Measure on Image Features

3.2.1. Hausdorff Distance

Given two finite point sets M = {m1, ..., mp} and N =
{n1, ..., nq}, the Hausdorff distance is defined as

H(M,N) = max(h(M,N), h(N,M)) (11)

where

h(M,N) = max
m∈M

min
n∈N

‖ m− n ‖ (12)

and ‖ · ‖ is the underlying norm on the points of M and
N. The function h(M,N) is called the directed Hausdorff
distance from M to N. h(M,N) in effect ranks each point
of M based on its distance to the nearest point of N and
then uses the largest ranked such point as the distance. The
Hausdorff distance H(M,N) is the maximum of h(M,N)
and h(N,M). Thus it measures the degree of mismatch be-
tween any two shapes described by the sets M and N. Our
choice of Hausdorff distance is based on its relative insensi-
tivity to perturbations in feature points, and robustness to
occasional feature detector failure or occlusion [24].

Figure 3: The directed Hausdorff distance is large just be-
cause of a single outlier

3.2.2. Modifying the Hausdorff Distance

The original Hausdorff distance in (11) is of limited utility in
a robust authentication application because of its sensitivity
to outliers. This is illustrated in Fig. 3. Therefore, we
develop a generalized directed distance given by

hg(M,N) =
X

i=1..|M|
αi min

n∈N
‖ mi − n ‖, where

X
i

αi = 1

(13)
The generalized Hausdorff distance Hg(M,N) is the maxi-
mum of hg(M,N) and hg(N,M).

Note this distance is generalized1 because for the case
that only one of the αi’s is equal to one (corresponding to
mi ∈ M that is farthest away from the closest point in N)
and rest are zero, (13) reduces to the directed Hausdorff
distance in (12). Also, if each of the αi = 1

|M| then this re-

duces to an average Hausdorff distance proposed for pattern
matching by Jain et al. [25].

3.3. Authentication Procedure

After extracting the feature point set N from a received
image, we find the affine transformation T∗ that best ap-
proximates the geometric distortion. That is,

T∗ = arg min
T

Hg(M,ToN) (14)

The search strategy to find T∗ is based on a divide and
conquer rule and is detailed in [26].

Finally, Hg(M,T∗oN) is compared against predefined
thresholds ε and δ (0 < ε < δ) to determine the credibility
of image content. Note that to be able to fix ε and δ, we
need a normalized distance (between zero and a constant).
However, there is no natural way to normalize the distance
in this case. For this reason, we normalize the data sets M
and N, i.e. recompute their coordinates such that the mean
is zero and variance is set to unity. Then, we determine
empirically ε = 0.15 and δ = 0.2.

4. RESULTS

Fig. 4 (a) shows the original bridge image with the extracted
feature points overlayed. Three modified versions of this im-
age under both global and local geometric distortions are
shown in Figs. 4 (b) though (d). From a visual inspection of
Figs. 4 (a)-(d) it can be ascertained that the features largely
follow the geometric transformation on the image. This val-
idates the capability of the feature detector to successfully
capture information about the geometric distortion on the

1The αi’s in (13) were empirically optimized.



(a) Original Image (b) 250 rotation

(c) JPEG, QF = 10 (d) Stirmark local geo-
metric attack

Figure 4: Examples of geometrically distorted images. Fea-
ture points are overlayed.

image. For each of the distorted images, we also show in
Fig. 4, the estimate of the geometric transformation as de-
termined by our authentication procedure, and the final
generalized Hausdorff distance between image features un-
der this estimated transformation. Table 1 then tabulates
this distance for three different images across several differ-
ent (allowable) geometric distortions. The distorted images
were generated using the Stirmark benchmark software [27].
The deviation is less than 0.15 except for very large crop-
ping (more than 25%).

We also tested under several content changing attacks
including object insertion and removal, addition of exces-
sive noise, alteration of the position of image elements, and
alteration of a significant image characteristic such as tex-
ture and structure. In all cases, the detection was accurate.
That is, the generalized Hausdorff distance between the fea-
tures of original and attacked images was greater than 0.2.
Visual as well as quantitative results for many more images,
and attacks may be found at
www.ece.utexas.edu/~bevans/projects/hashing/geometric

5. SECURITY VIA RANDOMIZATION

We propose to enhance algorithm security by using a ran-
domized subspace projection scheme. In particular, we first
extract a large feature set A = {a1, ..., aQ}, and then (pseudo)
randomly project it to a much smaller feature space spanned
by the set B = {b1, ..., bP }, P < Q, which is finally used in
image comparisons. This is accomplished via a secret key
K which is used as a seed to a random number genera-

Attack Lena Bridge Peppers

JPEG, QF = 10 0.0857 0.1112 0.105
Scaling by 50% 0.0000 0.0020 0.1110
Rotation by 15o 0.0030 0.1277 0.0078
Random Bending 0.0345 0.0244 0.0866
Print and Scan 0.0905 0.1244 0.1091
Cropping by 10% 0.0833 0.0025 0.1117
Cropping by 25% 0.2414 0.2207 0.2766

Table 1: Generalized Hausdorff distance (Hg(M,T∗oN))
between features of original and distorted images.

tor. This ensures that with high probability, the features
that are extracted will not be the same unless the secret
key is available. In practice, this significantly reduces the
vulnerability to attacks by an adversary who attempts to
generate malicious inputs (images) that defeat the authen-
tication scheme.
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