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Abstract—Block diagonalization (BD) is a precoding technique broadcast MIMO channels is Block Diagonalization (BD) [6]—
that eliminates inter-user interference in downlink multiuser  [10]. With BD, each user’s signal is multiplied by a precoding
multiple-input multiple-output (MIMO) systems. With the as- a4y pefore transmission. Every user's precoding matrix is
sumptions that all users have the same number of receive . . ;
antennas and utilize all receive antennas when scheduled for restnctgd to be in the nuII. space of all other users’ channels.
transmission, the number of simultaneously supportable users Hence if the channel matrices of all users are perfectly known
with BD is limited by the ratio of the number of basestation at the transmitter, each user perceives an interference-free
transmit antennas to the number of user receive antennas. In channel. On the other hand, BD is inferior in terms of sum

a downlink MIMO system with a large number of users, the  anacity relative to DPC, since the users’ transmit signal
basestation may select a subset of users to serve in order to . tri I t optimal
maximize the total throughput. The brute-force search for the covariance matrices are _g.ene_ra y not optimal.
optimal user set, however, is computationally prohibitve. We ~ Due to the rank condition imposed by the fact that each

propose two low-complexity suboptimal user selection algorithms user’s precoding matrix must lie in the null space of all
for multiuser MIMO systems with BD. Both algorithms aim  other users’ channels, the number of users that can be si-
to select a subset of users such that the total throughput is multaneously supported with BD is limited by the number

nearly maximized. The first user selection algorithm greedily ft it ant th b f . ¢ d
maximizes the total throughput, whereas the criterion of the Oof Transmit aniennas, the number or receiveé antennas, an

second algorithm is based on the channel energy. We show thatthe richness of the channels [6]. In this paper, we consider
both algorithms have linear complexity in the total number of the problem of choosing a subset of users that maximize the

users and achieve aroundd5% of the total throughput of the total throughput for a multiuser system with a large number
complete search method in simulations. of users. We assume that every user utilizes all its receive
antennas. A brute-force complete search over all possible user
sets guarantees that the total throughput is maximized. The
complexity, however, is prohibitive if the number of users in
Multiple-input multiple-output (MIMO) systems havethe system is large. For example /ifis the maximum number
drawn a lot of attention in the past decade. A pioneerir@f users that can be simultaneously supported by BD &nd
paper on point-to-point MIMO channel capacity by Telatas the total number of users, then the complete search for the
[1] showed that the MIMO channel capacity scales lineargptimal user set has combinatoric complexity because every
with the minimum number of transmit and receive antenn&é < ¢ < K)) out of K" users must searched.
in Rayleigh fading channels. For Gaussian broadcast multiuseA user selection algorithm for downlink multiuser MISO
MIMO channels, it was conjectured in [2] and recently provesystems has been proposed in [11], where the users are
in [3] that Dirty Paper Coding (DPC) [4] can achieve th&quipped with one receive antenna and zero-forcing beam-
capacity region. The sum capacity in a multiuser broadcdetming is performed at the transmitter, which is equivalent
channel is defined to be the maximum aggregation of all uset¢’ BD. The algorithm in [11] constructs a set of semi-
data rates. Although DPC can achieve the sum capacity [2]thogonal users whose total throughput is close the sum
deploying DPC in real-time systems is impractical because @#pacity achieved by DPC. Analogous to the user selection
the complicated encoding and decoding schemes [5]. An groblem is the antenna selection problem where the transmitter
ternative and more practical precoding technique for downlirgid receiver select a subset of antennas to transmit and receive
signals. A low-complexity antenna selection algorithm is pro-
Z. Shen is supported by Texas Instruments. R. Chen is supported by Spased in [12] that achieves almost the same outage capacity
Laboratories. R. Heath was suppor_ted by the National Science Foundatigd the optimal selection method. Antenna selection has also
under grant CCF-514194 and the Office of Naval Research under grant number . . . . .
en considered in downlink multiuser MIMO systems with

N00014-05-1-0169. All authors are supported by an equipment donation fr - R )
Intel. BD [13], where it has been shown that a significant reduction
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in symbol error rate can be achieved even with one extpaecoding matrixXT ;, such that

transmit antenna. Space division multiple access (SDMA) T, € U(ns, N;)

with scheduling for multimedia services has been studied in / O o

[14]. It was shown in [14] that the system throughput-delay HiT;=0 foralli#j and1<i,j<K, (2)
characteristics can be improved by scheduling the users withereU(n, k) represents the class ofx & unitary matrices,

nearly orthogonal spatial signatures at each time slot. Several the collection of vector§u, ...,ux) whereu; € C" for

other scheduling as well as admission control algorithms fafl 4, and thek-tuple (uy, ..., u;) is orthonormal.

downlink SDMA systems can also be found in [15]. Hence with precoding matrice€B;, the received signal for
In this paper, we propose two suboptimal user selectitiserj can be simplified to

algorithms for BD with the aim of maximizing the total K

throughput while keeping the complexity low. Both algorithms y; = H;T;x;+ Z H;TeXi +V;

iteratively select users until the maximum number of simulta- k=1,k#j

neously supportable users are reached. The first user selection = H;T;x; +vj. 3

algorithm greedily maximizes the total throughput. In eachet H: = [HT .- HT_ HT,, --- HZ]T. In order to satisfy
user selection step, the algorithm selects a user who provides 7 — V'L g—1 7+l Kl " >
the maximum total throughput with those already selectd@® constraintin (2)T; shall be in the null space &f;. Let N;
users. While the first algorithm requires frequent singular val@note the rank of;. Let the singular value decomposition
decomposition (SVD) of the channel matrices, the secoedl H; be H; = U;A;[V; V,]*, whereV; contains the first
proposed algorithm selects the users based on the chaqﬁ]elright singular vectors anf}’? contains the lastn, — Nj)
energy, thus reducing the computational complexity. We Shoerht sinqular vectors ofi.. The columns irf/q form a basis
that the proposed algorithms achieve aro9afs of the total 9 , 9 ~ J

throughput of the optimal user set, and the complexity of ti§! " the null space dfl;, and hence the columns i are
proposed algorithms is linear in the total number of users. linear combinations of those M.

In the rest of the paper, we assume that every user has and
uses the same number of receive antennaspj.e.= n, for
j=1,2,--- K for simplicity. With the assumption that each
f%ement inH; is i.i.d. complex Gaussian, the rank condition

In this section, we introduce the system model and brie ] indicates that the maximum number of simultaneous users
describe the block diagonalization method for multius n, ) N i
2|, where[-] is the ceiling operation.

MIMO systems presented in [6] [7]. In a downlink multiuset® |7
MIMO system withK users, we denote the number of transmit|||. L ow COMPLEXITY USERSELECTION ALGORITHMS
antennas at the base stationrasand the number of receive
antennas for thgth user as, ;. The transmitted symbol of

II. SYSTEM MODEL AND BACKGROUND

In this section, we first define the sum capacity (i.e. the
o ; . S22 maximum total throughput) of BD. Two suboptimal user se-
Userj 1s denoted as de—d|m§n5|onaI_vectomj, which is  joction algorithms are then proposed to reduce the complexity
multiplied by an; x N; precoding matrixT ; and sent to the of finding the optimal user set.
basestation antenna array. Consider a set of channef$i;}, for a multiuser MIMO

The received signeyj for user;j can be represented as system. LeC = {1,2,--- , K} denote the set of all users, and
A; be a subset of, where the cardinality of{; is less than or
equal to the maximum number of simultaneous ugderd et
y; = HiTs% + Z HiTeXs +V; @ H; = H,T; denote the effective channel after precoding for

k=Lk#] userj € A;. The total throughput achieved with BD applied

where the second item in the right-hand-side (RHS) of (1§ the user sei; with total powerP can be expressed as

K

is the interference seen by usgrfrom other users’ signals Cppia;,(Ha,, Po?) =

andv; denotes the Additive Gaussian White Noise (AWGN) 11— .

vector for userj with variance E[v;v*] = o¢2l. Matrix max > log|l + —H,;Q;H; | (4)
_ 13 . {Q;:Q;>0, > Tr(Q;)<P} o

H; € C"i*™ denotes the channel transfer matrix from the JEA; JEA;

basestation to t_h§th user, with each entry fol!owipg an i;i-d-where Q; = E[x;x!] is userj’s input covariance matrix of
complex Gaussian distributia®\'(0, 1) [1], which is a valid  size N; X N; andH_4, denotes the set of channels for those
channel model if the transmit and receive antennas are jgers ind;. Notice that the solution to the RHS of (4) can be
rich-scattering environments and the antenna spacing is |ar98fzail1ed by the water-filling algorithm over the eigenvalues of
than the coherence distance. Other nqn-physmal and phy5|ﬁq!jH;}jeAi with total power constrainf as in [6].

MIMO channel models can be found in [16]. For analytical |'et” 4 be the set containing all possibld;, i.e. A =
simplicity, we assume that ra(i;) = min(n,;,n¢) forall {4, 4, ...} thenthe sum capacity (maximum total through-
users. It is also assumed that the chanrtjsexperienced pyt) with BD can be defined as

by different users are independent. The key idea of block 5 5
diagonalization is to precode each user's dejawith the Cpp(H1... k. P.o ):E}gﬁCBD\Ai(HA”P’U ) O



TABLE |
CAPACITY-BASED SUBOPTIMAL USERSELECTION ALGORITHM

1) Initially, let @ = {1,2,---,K} and T = 0. Let s1 =
arg maxlog || + 2 HyQuHj| whereTr(Q,,) < P andQ, is semi-
€
positive definite. LetQ? = Q — {s1} and Y = T + {s1}. Let
Cte'mp = I]?éag))(k)g ‘I + ﬁHkaHz‘-
2) fori=2: K
a) For everyk € Q,
i) LetTy =71+ {k}. B
ii) Find the precoding matrif ; for eachj € Yy, and obtain
the effective channet; = H; T, for eachj € Ty.
i) Perform a singular value decomposition (SVD) ldn, and
obtain theM singular values{\; ., }}4,.
iv) Water-fill overA?m for j € T, and1 < m < M. Find

TABLE Il
FROBENIUSNORM-BASED SUBOPTIMAL USER SELECTION ALGORITHM

1) Initially, let Q@ = {1,2,---,K} and T = 0. Let s1 =
argrglaéHHkH%. letV = V5. Let Q = Q — {51} and T =
IS

T—i—{sl}. R
2) fori=2: K
a) For eachk € Q, let H, = Hj, — HLV*V. ThenHy, is in the
null space ofV.
forj=1:i—1
i) Let
... HT

Si—1

HT

Sj+1

ﬂsj,k =MHT ... |-|5Tj71 HTT.
i) Let Wsj,k be the row basis foHS].JC after Gram-Schmidt

orthogonalization.
b) For eachs € T, letHs = Hy — HoW?* , W, ;.. ThenH, is in

the total throughput to the user s§,, denoted ag’},.
b) Lets; = arg Igleaé( Ch.
c) If I;?&’z(c’“ < Ctemp
Algorithm terminated. The selected user sef(is
else
Let Q2 = Q — {s;} andY = T + {s;}. And let Cremp =

max Cl.
keQ

the null space ofi ;. Let

o o2 o2
si = arg max (;HHSHF"'l'HkF) :
S

c) LetQ = Q— {s;} andY = T + {s;}. Apply the Gram-
Schmidt orthogonalization procedure i, and getVs,. Let
V=TV, T.

3) Apply the capacity-based suboptimal user selection algorithm to the

Denotef( _ [%" as the maximum number of simultaneous setY, and get the final selected user set and the total throughput.

users, and the Cardinality of is |A| = Zfil xCi, where
~Cn denotes the combination of choosing m. Hence,
it is clear that a brute-force exhaustive search oweris
computationally prohibitive ifk > K.

because singular value decomposition, which is computation-
ally intensive, is required for each user in each iteration to
find the total throughput. In this section, we propose another
suboptimal user selection algorithm which is based on channel
) i Frobenius norm. The motivation is that the capacity is closely
The exhaustive search method needs to consider roughly,teq to eigenvalues of the effective channel after precoding.
O(K™) possible user sets. In this section, we present ghough the channel Frobenius norm cannot characterize the
suboptimal algorithm whose complexity @(K'K). capacity completely, it is related to the capacity because the
Let s; denote the user index selected in thi iteration, propenjus norm indicates the overall energy of the channel,

le. s € {1,2,---,K}and1l < i < K. Let Q) denote ;e the sum of the eigenvalues iH* equals||H||2..
the set of unselected users atfiddenote the set of selected Let s; denotes the user index selected in flte iteration

users. The capacity-based user selection algorithm is descripgdsi €{1,2,-- K} andl <i< K. Let © denote the set

in Table I. In words, the algorithm first selects the singlgt nselected users anfl denote the set of selected users. Let
user with the highest capacity. Then, from the remaining, pe the basis for the row vector spacerf after applying
unselected users, it finds the user that provides the highest tgtal ram-schmidt orthogonalization procedure to the rows
throughput together with those selected users. The algorithyyy,  The Frobenius norm-based user selection algorithm
terminates wherk' users are selected or the total throughpw qescribed in Table II. The idea of the norm-based user
drops if more users are selected (the total throughput M@ection algorithm is to select the set of users such that the
decrease with an additional user because the size of the il of the effective channel energy of those selected users is
space for every user reduces in order to meet the zero iNtgL-|5rge as possible. Notice that steps 1 and 2 in the norm-
user interference requirement). Clearly, the proposed alg'orltrygsed algorithm are independent with SNR, Fe.Once the
needs to search over no more thaK user sets, which & sers are selected, step 3 makes the final user selection
greatly reduces the complexity compared to the exhaust%ssimy a subset of th& users chosen by steps 1 and 2)
search method. Since the user selection criterion is based Qi the capacity-based algorithm, where the SNR is taken
the sum capacity, we name the above algorithm the capaciye, consideration. Clearly, the norm-based algorithm requires
based suboptimal user selection algorithm. fewer SVD operations than the capacity-based algorithm.

B. Frobenius Norm-Based Suboptimal User Selection Algo-
rithm
Although the capacity-based suboptimal user selection algoJn this section, we compare the performance of the follow-

rithm greatly reduces the size of the search set, the algoritd algorithms:
still may not be cost-effective for real-time implementation « optimal user selection by complete search (optimal),

A. Capacity-Based Suboptimal User Selection Algorithm

IV. SIMULATION RESULTS
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) ] ) ] on the sum capacity. For low SNRs, e§NR = 0 dB, the
. capacny—based user selection algorlth_m (c—algopthm)' proposed algorithms achieve almost the same sum capacity
« Frobenius norm-based user selection algorithm (g the exhaustive search method. This is true because beam-

algorithm), , o forming to the user with the highest capacity, which is the
« round-robin algorithm forK simultaneous users (NOfirst step in the capacity-based user selection algorithm, is
selection). asymptotically optimal for sum capacity of BD in the low SNR

Figs. 1-3 show the ergodic sum capacity (averaged owegime. For high SNRs, although the proposed algorithms may
1000 channel realizations) vs. the number of users(far= not always find the optimal user set due to their reduced search
8,n, = 4), (ny+ = 8n, = 1), and (ny = 12,n, = 4) range, they can still achieve a significant part of the ergodic
MIMO systems, whereK = 2, K = 8 and K = 3 sum capacity of the exhaustive search method because both
respectively. It is shown that the capacity-based and the noralgorithms greedily try to maximize the total throughput.
based user selection algorithms achieve aro9iih of the Fig. 4 shows the average CPU (Pentium M 1.6 GHz PC)
total throughput of the complete search method. The capacityn-time of the two proposed algorithms vs. the number of
based algorithm performs slightly better than the norm-basasders in the systems. For the curves in Fig. 4, the numbers
algorithm because its user selection criterion is directly basefltransmit and receive antennas dr2 and 4, respectively.



Hence, the maximum number of simultaneously supportali# H. weingarten, Y. Steinberg, and S. Shamai (Shitz), “The Capacity Region
users by BD is3. Fig. 4 shows that both of the proposed of the Gaussian MIMO Broadcast channel,”Rnoc. IEEE International

. . . . . Symposium on Information Theonyp. 174, Jun. 2004.
algorlthms have linear compIeX|ty ('n terms of CPU run'ume[)l] M. Costa, “Writing on Dirty Paper,IEEE Transactions on Information

in the number of total users in the system, because no more Theory vol. 29, no. 3, pp. 439-441, May 1983.

. . . MIMO Broadcast ChannelsJEEE Transactions on Information Thegry
based algorithm has higher complexity than the norm-based | 51 'no. 5, pp. 1783-1794, May 2005.

algorithm, since SVD is more frequently performed to obtails] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, “Zero-Forcing Meth-

the MIMO channel eigenvalues. The ergodic sum Capacity ods for Downlink Spatial Multiplexing in Multiuser MIMO Channels,”

. . . . IEEE Transactions on Signal Processingpl. 52, no. 2, pp. 461-471,
of the capacity-based algorithm, however, is higher than the oy 5004 9 e PP

norm-based algorithm as shown in Figs. 1-3. Further, sing® L. U. Choi and R. D. Murch, “A Transmit Preprocessing Technique

0n|y tens to hundreds of milliseconds are required by the for Multiuser MIMO Systems Using a Decomposition ApproaditEE
. Transactions on Wireless Communicatipwsl. 3, no. 1, pp. 20-24, Jan.
proposed algorithms to seledt out of 30 — 50 users, the 2004.

proposed algorithms are suitable for real-time implementatiojgs K. K. Wong, R. D. Murch, K. B. Letaief, “A Joint-Channel Diagonal-
for systems with slow to medium Doppler frequency spread. ization for Multiuser MIMO Antenna Systems|EEE Transactions on

Th tati | lexit f the t d al Wireless Communicationsol. 2, no. 4, pp. 773-786, Jul. 2003.
€ computational complexity o € two propose agc[Q] Z. Pan, K. K. Wong, and T. S. Ng, “Generalized Multiuser Orthogonal

rithms is mainly from the following operations: Space-Division Multiplexing,IEEE Transactions on Wireless Communi-
. . . cations vol. 3, no. 6, pp. 1969-1973, Nov. 2004.
+ matrix Frobe_nlus norm CE\_|CU|§1'[IOH, [10] R. Chen, J. G. Andrews, and R. W. Heath. Jr., “Multiuser Space-Time
» Gram-Schmidt orthogonalization, Block Coded MIMO System with Downlink Precoding,” Rroc. |IEEE

« water-filling algorithm for optimal power allocation, International Conference on Communicatiousl. 5, pp. 2689-2693, Jun.

: o 2004.
« singular value decomposition. [11] T. Yoo and A. J. Goldsmith, “Optimality of Zero-Forcing Beamforming

A detailed complexity analysis of the proposed algorithms can with Multiuser Diversity,” in Proc. IEEE International Conference on
; Communicationsvol. 1, pp. 542-546, May 2005.
be found in [18]. [12] M. Gharavi-Alkhansari and A. B. Gershman, “Fast Antenna Subset
Selection in MIMO Systems,JEEE Transactions on Signal Processjng
V. CONCLUSION vol. 52, no. 2, pp. 339347, Feb. 2004.
Two suboptimal user selection algorithms for multiusdit3] R. Chen, J. G. Andrews, and R. W. Heath. Jr., “Transmit Selection

. . . - : .. Diversity for Multiuser Spatial Multiplexing Systems,” iRroc. |IEEE
MIMO systems with block diagonalization are proposed in this Global Communications Conferencel. 4, pp. 2625-2629, Dec. 2004.

paper. The goal is to select a subset of users to maximize fhg H. Yin and H. Liu, “Performance of Space-Division Multiple-Access
total throughput while keeping the complexity low. The brute- (_SDMA)IWith Scheduling,"IEEE Transactions on Wireless Communica-
force complete search method yields the optimal user set Wﬁlig]t'ons vol. 1, no. 4, pp. 611-618, Oct. 2002.

. . . D. Bartolome and A. L. Pirez-Neira, “Performance Analysis of Schedul-
the sum capacity achievement. However, the complexity of the ing and Admission Control for Multiuser Downlink SDMAjh Proc.

complete search algorithm is roquKK}, whereK is the IEEE International Conference on Acoustics, Speech, and Signal Process-

. . . _ ing, vol. 2, pp. 333-336, May 2004.
total number of users anld is the maximum number of simul [16] K. Yu and B. Ottersten, “Models for MIMO Propagation Channels,

taneous users. Simulations show that the proposed capacity-a Review” Wiley Journal on Wireless Communications and Mobile
based and norm-based user selection algorithms achieve abougemputing vol 2, no. 7, pp. 653-666, Nov. 2002.

. . . 17] N. Jindal, W. Rhee, S. Vishwanath, S. A. Jafar, and A. Goldsmith,
95% of the sum capacity whereas their complexﬁﬂ@(}. “Sum Power Iterative Water-filling for Multi-Antenna Gaussian Broadcast

Although the proposed user selection algorithms are greedy Channels”|EEE Trans. on Information Theoryol. 51, no. 4, pp. 1570—
in nature, they can be easily extended to incorporate fairne[slgj 1;82}1ADF-R2(8?- 16 And R W, Heath. 31 and B. L. E N

. . . . en, R. en, J. G. Andrews, R. VVv. Heatn, Jr. an . L. Evans, 'Low
e.g. the rate proportlonal fairness in [19]' Complexity User Selection Algorithms for Multiuser MIMO Systems

with Block Diagonalization,” to appear ilEEE Transactions on Signal
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