
Implementation Complexity and Communication Performance Tradeoffs
in Discrete Multitone Modulation Equalizers

Richard K. Martin Koen Vanbleu
Air Force Institute of Technology, AFIT/ENG Broadcom UK Ltd.
Dept. of Electrical & Computer Engineering 2800 Mechelen, Belgium

Wright-Patt AFB, OH 45433-7765, USA koen.vanbleu@broadcom.com
richard.martin@afit.edu

Ming Ding Geert Ysebaert
Bandspeed, Inc. Alcatel Bell

4301 Westbank Drive, Bldg. B, Suite 100 Francis Wellesplein, 1
Austin, TX 78746, USA 2018 Antwerpen, Belgium

mding@bandspeed.com geert.ysebaert@alcatel.be

Milos Milosevic Brian L. Evans
Schlumberger The University of Texas at Austin

Sugar Land, TX 77478, USA Dept. of Electrical & Computer Engineering
mmilosevic@austin.rr.com Engineering Science Building, Room 433B

1 University Station C0803
Austin, TX 78712-1084, USA
bevans@ece.utexas.edu

Marc Moonen C. Richard Johnson, Jr.
ESAT-SISTA K.U. Leuven Cornell University, 390 Rhodes Hall

Kasteelpark Arenberg 10, Office: 01.69 School of Electrical& Computer Engineering
B-3001 Leuven-Heverlee, Belgium Ithaca, NY 14853, USA

Marc.Moonen@esat.kuleuven.ac.be johnson@ece.cornell.edu

c© 2006 IEEE. To appear inIEEE Transactions on Signal Processing, August 2006. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or toreuse any copyrighted component of this work in other works,must
be obtained from the IEEE. Contact:

IEEE Intellectual Property Rights Office
IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331, USA.
Telephone: + Intl. 732-562-3966.
Fax: + Intl. 732-981-8062.



TO APPEAR IN IEEE TRANSACTIONS ON SIGNAL PROCESSING, AUG. 2006, VOL. 54, NO. 8 1

Implementation Complexity and Communication
Performance Tradeoffs in Discrete Multitone

Modulation Equalizers
Richard K. Martin,Member, IEEE,Koen Vanbleu,Member, IEEE,

Ming Ding, Member, IEEE,Geert Ysebaert,Member, IEEE,
Milos Milosevic, Member, IEEE,Brian L. Evans,Senior Member, IEEE,

Marc Moonen,Member, IEEE,C. Richard Johnson, Jr.,Fellow, IEEE

Abstract— Several high-speed communication standards mod-
ulate encoded data on multiple carrier frequencies using the
inverse Fourier transform (FFT). The real part of the quanti zed
inverse FFT samples form a symbol. The symbol is periodically
extended by prepending a copy of its last few samples, a.k.a.a
cyclic prefix. When the cyclic prefix is longer than the channel
order, amplitude and phase distortion can be equalized entirely
in the frequency domain. In the receiver, prior to the FFT, a time-
domain equalizer, in the form of a finite impulse response filter,
shortens the effective channel impulse response. Alternately, a
bank of equalizers tuned to each carrier frequency can be used.
In earlier work, we unified optimal multicarrier equalizer d esign
algorithms as a product of generalized Rayleigh quotients.In
this paper, we convert the unified theoretical framework into a
framework for fast design algorithms. The relevant literature is
reviewed and classified according to this framework. We analyze
the achieved bit rate vs. implementation complexity (in terms
of multiply-and-accumulate operations) tradeoffs in the original
and fast design algorithms. The comparison includes multiple
implementations of each of 16 different equalizer structures
and design algorithms using synthetic and measured discrete
multitone modulated data.

Index Terms: Multicarrier Equalization, Channel
Shortening, Real-time Implementation.

EDICS Designation: 2-IMPL – algorithm implementation
in hardware and software
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I. I NTRODUCTION

Multicarrier (MC) modulation is currently enjoying a boom
in popularity, largely due to the fact that it allows an efficient
receiver implementation that achieves high throughput [1].
Discrete multitone (DMT) has been implemented in wireline
MC applications such as various digital subscriber line (DSL)
standards [2] and in power line communications standards.
Orthogonal frequency division multiplexing (OFDM) has been
adopted in wireless MC standards such as in IEEE 802.11a [3]
and HIPERLAN2 [4] local area networks, digital video and
audio broadcast (DVB/DAB) [5], [6], and satellite radio [7].
We focus on the wireline case, but the main difference is that
wireless implementations assume a complex-valued baseband
model, whereas wireline implementations use a real-valued
baseband format.

One of the main advantages of MC modulation (relative to
single carrier modulation) is the ease with which equalization
can be performed. If the channel delay spread is shorter than
the guard interval between the transmitted blocks, then the
frequency-selective channel appears as a bank of adjacent flat
fading channels, and equalization can be efficiently performed
in the frequency domain by a bank of scalars. If the channel
delay spread is longer than this guard interval, then a prefilter
is needed at the receiver to shorten the effective channel to
the appropriate length. This prefilter is called a time-domain
equalizer (TEQ). A review of optimal TEQ designs is given
in [1]. An alternative to the TEQ structure is to use a bank
of filters or linear combiners, one per tone, to remove the
intersymbol and intercarrier interference (ISI, ICI) caused by a
long channel. The filters can be placed in the time or frequency
domain, leading to the TEQ filter bank (TEQFB) [8] or the
Per-Tone Equalizer (PTEQ) [9], respectively.

Many equalizer designs are computationally intensive, re-
quiring multiple matrix inversions, eigendecompositions, and
Cholesky decompositions. However, the matrices involved
often have such a structure that many computations can be
reused. Moreover, it is sometimes possible to transform the
problem into a mathematically equivalent problem that re-
quires fewer computations, and sometimes removes the matrix
decompositions and matrix inverses altogether. The goals of
this paper are:

i) to survey the complexity reduction techniques in the
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multicarrier equalization literature,
ii) to categorize these techniques based on their assumptions

and the possible loss of optimality involved,
iii) to compare the computational cost of the original and the

efficient implementations, and
iv) to demonstrate the tradeoff between achievable bit rate

and the complexity of the efficient implementations for
synthetic and measured ADSL channels.

The performance will be assessed in an identical manner for all
designs. Computational cost will be in terms of real multiply-
and-accumulate (MAC) operations. We will generally ignore
terms that are significantly smaller than the leading term. Note
that MAC comparisons are only valid in an “order of” sense,
because there may be some variation in complexity depending
on exactly how each design is implemented (e.g. depending on
what eigen decomposition algorithm is used). Moreover, the
computational cost also involves, e.g., the number of compar-
isons and data transfers (memory accesses), while registers or
extra memory are needed to store intermediate results. The
figures at the end of the paper will provide numbers based
on typical parameter settings, valid in an “order of” sense.
Whether a specific algorithm is suited for implementation on
a certain platform then also depends on a large number of
implementation aspects (such as word lengths, the degree of
parallellism and operator sharing) and the chosen platform
and technology. The used platforms for DSL communication
vary significantly, from a flexible software-based solutionon
a (dedicated) DSP to a more strict (but more cost-effective)
ASIC-based strategy.

This paper is a companion paper to [1]. In [1], it was shown
that almost all TEQ designs take the form of maximizing a
product of generalized Rayleigh quotients, and the maximum
attainable bit rate of each design was assessed. In this paper,
we survey computational complexity reduction techniques,and
compare bit rate vs. complexity for these efficient implemen-
tations. The remainder of this paper is organized as follows.
General complexity reduction techniques and fixed-point im-
plementation issues are described in Section II. Techniques for
single Rayleigh quotient designs are discussed in SectionsIII
and IV, with a single filter or multiple filters, respectively.
Techniques for designs that maximize a product of Rayleigh
quotients are discussed in Section V. Section VI shows the
tradeoffs between computational complexity and achievable
bit rate, and Section VII concludes the paper. The notation
will be:

• N is the (I)DFT size,ν is the prefix length,s = N +ν is
the symbol size,Nu is the number of used tones,S is the
set of used tones,Nz is the number of unused (“null”)
tones,i is the tone index,k is the DMT symbol index,n
is the sample index,∆ is the synchronization delay, and
N∆ is the number of values of∆ that are considered in
a given TEQ design.

• For iterative designs,Ialgorithm is the number of itera-
tions for that algorithm.

• FN and IN are theN -point DFT and IDFT matrices,
respectively;f i is the ith DFT row.

• The transmitted (QAM) frequency domain symbol vector
at timek is Xk; its ith entry isXk

i ; vectorsxk, yk, and

uk contain the transmitted time domain samples, received
samples (before the TEQ), and TEQ output samples,
respectively.

• The vectorsw, h, and c = h ⋆ w contain the TEQ,
channel, and effective channel impulse responses of or-
dersLw, Lh, andLc, respectively, where⋆ denotes linear
convolution.

• 0m×n is the all zero matrix of sizem × n; In is the
identity matrix of sizen × n.

• (·)T , (·)H , (·)∗, E{·} denote transpose, Hermitian, com-
plex conjugate, and expectation, respectively.

II. COMPLEXITY REDUCTION TECHNIQUES AND

FIXED-POINT ISSUES

Almost all TEQ designs can be classified as maximizing a
cost function in the form of a product of generalized Rayleigh
quotients [1],

ŵopt(∆) = arg max
ŵ

M∏

j=1

ŵT Bj(∆) ŵ

ŵT Aj(∆) ŵ
(1)

(or minimization of its inverse), wherêw is usually the TEQ
and where the synchronization delay∆ is a design parameter.
Many TEQ designs reduce to the case of a single general-
ized Rayleigh Quotient (M = 1), which can be maximized
by solving a generalized eigenvalue problem. For the more
difficult case when multiple generalized Rayleigh quotients
are involved (M > 1), numerical methods must be applied
to search for the best solution. However, solutions for both
the M = 1 and M > 1 cases are usually computationally
expensive, and some are infeasible for a cost-effective real-
time implementation, especially on programmable fixed-point
DSPs. Recent literature has therefore contained much work on
computationally efficient methods for calculating the optimum
equalizer coefficients. This section proposes a classification
scheme of these techniques, and discusses other issues relevant
to fixed-point implementation of multicarrier equalizers.

A. Classification of complexity reduction techniques

Some complexity reduction techniques entail no loss of
performance, whereas others use heuristics or approximations
with a possible loss of performance with respect to the designs
they are approximating. We categorize the various techniques
as follows:

(a) exploitation of the structure of theAj andBj matrices
in (1), with no loss of performance

(b) reuse of computations between different values of the
synchronization delay (without affecting performance), or
reduction of the number of delays considered (possibly
degrading performance)

(c) approximation of theAj and Bj matrices (as Toeplitz,
persymmetric, or circulant, for example), with an ex-
pected loss of performance

(d) use of iterative algorithms to approximate an optimal
design, with an expected performance degradation.

WhenAj andBj are structured, type (a) techniques exploit
this structure when performing certain matrix operations.For
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example,Aj andBj are often constructed using correlation
matrices of the transmitted and/or received signals. In [10] it
was pointed out that correlation matrices are block-Toeplitz
matrices and therefore some Toeplitz-based algorithms [11]
could be applied to efficiently compute their inverses. Another
more complicated approach is to re-use computations when
computing the elements ofAj and Bj , as in [12] for the
minimum intersymbol interference (Min-ISI) design [13], as in
[14] for the maximum shortening SNR (MSSNR) design [15],
as in [16] for the minimum interblock interference (MinIBI)
design [17], and as in [16], [18] for the minimum delay spread
(MDS) design [19].

The Aj and Bj generally depend on the synchronization
delay∆, and it is common to optimize designs over a range
of values of ∆. Type (b) complexity reduction techniques
simplify the search for the delay corresponding to optimal
performance. Most designs require the solution of (1) sepa-
rately for each delay, thereby making complexity proportional
to the number of possible delays. IfAj(∆o) and Bj(∆o)
depend on a delay∆o and only change slightly as the delay
is incremented, then it may be possible to deriveAj(∆o + 1)
and Bj(∆o + 1) from Aj(∆o) and Bj(∆o), rather than by
recomputing the matrices entirely [14], [16]. Another approach
is to re-formulate a given design to be less delay dependent,
e.g. by making eitherAj or Bj independent of the delay
[19], [20], [21], [22], [23]. Heuristic approaches may also
be adopted. Some equalizer designs (particularly those that
explicitly optimize bit rate) show a performance which is
smooth and optimal for a number of consecutive delays [8],
[9], [24]; i.e. there exists a flat region on the bit rate versus
synchronization delay curve. One could design the equalizer
for a single delay within the expected flat region (as many
vendors do), or search over a small number of possible delays
[10], [18]. The expected flat region is typically near the delay
of the transmission channel itself.

Type (c) complexity reduction techniques make approxima-
tions inAj or Bj that may induce an acceptable performance
loss. One example is to approximate a Toeplitz matrix by
a circulant matrix [25], [26], which has discrete Fourier
transform basis vectors as eigenvectors [27]. Using the FFT
and IFFT operations, the matrix computations can be carried
out very efficiently.

As another example,Aj andBj can be assumed or forced
to be persymmetric [28] or Toeplitz [29], leading to a linear
phase (symmetric or skew-symmetric) solution forŵ in (1).
Forcing a TEQ to have linear phase leads to a substantial
decrease in implementation complexity at the cost of a limited
loss in bit rate [22], [28], [29], [30]. Other parameter reduction
techniques (besides forcing a TEQ to have linear phase)
include the reparameterization of a long FIR channel or TEQ
as a pole-zero filter with fewer parameters [10], [31], and the
use of the same filter (up to a scalar) for several adjacent
tones in a per-tone equalizer (PTEQ) [9] or TEQ filter bank
(TEQFB) [8], leading to “per group” schemes. The dual-path
TEQ structure [32] can be thought of as an extreme example
of a tone-grouped TEQFB, in which one TEQ is designed for
all of the tones and a second TEQ is designed to maximize
bit rate on a subset of tones.

In some cases, finding the solution of (1) is computationally
too expensive. As a consequence, some authors resort to
iterative and adaptive algorithms to obtain the solution. This
is what we call a type (d) complexity reduction technique.
For instance, when the equalizer design problem can be
described as an eigenvalue problem, candidates to find a
specific eigenvector include the generalized power method
[13], gradient descent algorithms with projections [33], [34],
and stochastic gradient descent algorithms with projections
[35]. In addition, least-squares problems, e.g. with the PTEQ,
can efficiently be solved recursively [36], [37].

Sections III, IV, and V give explicit details regarding the
types (a), (b), (c), and (d) approaches described above for the
casesM = 1 for a single filter,M = 1 for multiple filters,
andM > 1 for a single filter, respectively, withM as in (1).

B. Fixed-point implementation issues

Any fixed-point number can be represented withm bits
for the integer part andn bits for the fractional part. One
example is the Q-format notation in Texas Instruments’ C6000
DSPs. The dynamic range of the problem determinesm and
the required precision determinesn, although the nature of
the underlying DSP induces a practical restriction on the total
number of bits (m+n) that can be used. Commonly, the need
for the integer part is eliminated via appropriate normalization
of the data, which ensures that multiplication will not change
the dynamic range.

In the TEQ design problem, attention should be paid to
some special matrix operations. To solve (1) withM = 1,
which requires a generalized eigendecomposition, one stan-
dard method involves computing the Cholesky factorizationof
the matrixB; see [1]. However, a fixed-point implementation
producesA + ∆A and B + ∆B instead ofA and B. The
error of the computed eigenvalues is bounded by a multiple
of κ(B)µ, where κ(B) is the condition number ofB and
µ is the unit round-off [38]. WhenB is ill-conditioned,
numerical stability can be lost in the Cholesky factorization.
The condition number ofB is often large, so even with careful
choices of the binary data format, the accuracy of Cholesky
factorization can be unacceptable when the dimension ofB

(usually the TEQ length) is large.
The effect of round-off errors, called the digital noise floor,

can be incorporated into the noise model explicity, as in [8],
or implicitly, as in [24].

III. S INGLE QUOTIENT CASES

This section considers reduced-complexity implementations
of TEQ designs for the specific case of maximizing a single
generalized Rayleigh quotient.

A. Methods for eigenvector computation

The maximization of a single generalized Rayleigh quotient
requires computation of the generalized eigenvector corre-
sponding to the largest generalized eigenvalue of the matrix
pair (B,A), as discussed in [1]. This section details general
techniques for this math problem, and subsequent sections
discuss details specific to particular TEQ designs.
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One common iterative eigensolver is the generalized power
method [11], which iterates

B ŵk+1 = A wk (2)

wk+1 =
ŵk+1

‖ŵk+1‖
, (3)

which requires a square root and division at each step for
the normalization, as well as an LU factorization [11] ofB to
solve (2) forŵk+1. A similar approach is to alternate between
gradient descent ofwTAw and renormalization to maintain
wT Bw = 1:

ŵk+1 = wk − µAwk (4)

wk+1 =
ŵk+1

‖ŵk+1‖B

, (5)

where‖w‖2
B

△
= wTBw and µ is a small user-defined step

size.
The expensive renormalization in (3) and (5) can be avoided

through the use of a Lagrangian constraint, as in [17], [39],
which leads to an iterative eigensolver of the form

wk+1 = wk + µ
(
Bwk − Awk

(
wT

k Bwk

))
, (6)

whereµ is a small user-defined step size. If stochastic rank-
one approximations ofB andA are available, as in [35], then
the generalized eigensolver in (6) requiresO(Lw) multiply-
adds per update. If the matricesA andB are used explicitly,
(6) requiresO(L2

w) multiply-adds per update. In either case,
(6) is amenable to fixed-point calculation. For comparison,an
LU factorization or a Cholesky decomposition requiresO(L3

w)
floating point operations, including many divisions.

B. The MMSE family

There are several flavors of MMSE TEQ designs, which are
distinguished based on the constraint used to avoid the trivial
solution b = w = 0. See [1] for details on the different
constraints. For any MMSE method, the correlation matrices
Rxx, R−1

xx , Rxy, Ryx, Ryy, andR−1
yy (definitions in [1] and

[40]) must be computed. We now explain how to efficiently
compute these matrices.

Typically, Rxx is delay invariant and can be approximated
as a diagonal matrix, trivializing the computation ofR−1

xx . In
downstream ADSL, e.g., tones 33–256 are used [2], which
makesRxx almost the identity. The channel output autocorre-
lationRyy is also delay invariant (since it is an autocorrelation
matrix), Toeplitz, and symmetric, but not diagonal. Computing
the inverse of such a matrix, i.e.R−1

yy , requires onlyO
(
3L2

w

)

instead ofO
(
L3

w

)
operations [11, Section 4.7.4]. Moreover,

when R−1
yy is approximated by a circulant matrix [27], its

inverse can be performed by means of DFTs at the cost of
O ((Lw + 1) log2(Lw + 1)) multiply-adds [25], [26], assum-
ing that the TEQ length(Lw + 1) is a power of 2.

If the channel is known explicitly, then the matricesRxy,
Ryx andRyy can be written in terms of the channel coeffi-
cients, as in [41]. Otherwise, computation ofRxy and Ryx

can be simplified by re-using computations from one delay∆
to the next. Note that

[Ryx(∆ + 1)](0:Lw,0:ν−1) = [Ryx(∆)](0:Lw,1:ν) , (7)

which provides the bulk ofRyx(∆ + 1) for free. Moreover,
the matrix [41], [42], [40]

R(∆) = Rxx − RxyR
−1
yy Ryx, (8)

is used for a unit norm constraint onb, for example. This
matrix must also be computed for every delay. Using (7), we
have [14]

[R(∆ + 1)](0:ν−1,0:ν−1) = [R(∆)](1:ν,1:ν) . (9)

In fact, (9) holds for all MMSE designs, not just for the unit
norm constraint onb. For each new delay, only the last column
of R(∆ + 1) must be computed, and the last row is obtained
by symmetry. Moreover, the speed of the computation of the
eigenvector ofR(∆ + 1) can be increased by using a shifted
version of the target impulse response (TIR) for delay∆ to
initialize the eigensolver for delay∆ + 1 [14].

Approximations can be made to further simplify the com-
putations. For instance, [42] first proposes the use of a
representative class of channels, and then pre-computes the
desired TIR for each channel. When an actual channel is
measured, the TIR is selected as the one corresponding to
the pre-defined channel that best matches the actual channel
[42]. The TEQ is then computed to match the given channel
to the precomputed TIR.

Impulse reponses can also be approximated as symmetric.
For an infinite length TEQ, the finite length MMSE TIR will
be symmetric or skew-symmetric [29], despite the fact that the
physical transmission channels are generally not symmetric.
Thus, it is reasonable to enforce a finite-length symmetric TIR.
This reduces the complexity of the eigensolver by a factor of
4, at a loss of about 10% of the bit rate for a 20-tap TEQ
[14].

An alternate approach is to avoid the matrix computation
and eigenvector solver altogether via an iterative algorithm.
The MMSE design was originally proposed in a form similar
to (4) and (5), except with simultaneous gradient descent
on both the TIR and the TEQ [41]. However, this approach
is often slow to converge [2], [43]. Moreover, this adap-
tive algorithm requires time-domain training, which is only
available if there is training on all of the frequency bins in
a given symbol. This is not the case in many multicarrier
standards, for example Digital Video Broadcast [5]; and in
ADSL, the training is only available during the initial start-up
phase and every 69th symbol thereafter. This can in principle
be remedied by using decision-direction if one is willing to
tolerate a delay of an entire block before decisions can be
made, perhaps by updating at the symbol rate rather than at
the sample rate.

The computational complexity for designs in the MMSE
family is summarized in Tables II and III at the end of
Section III.

C. Chow’s TEQ training algorithm

In [43], Chowet al.describe an efficient TEQ training algo-
rithm. It is meant as a computationally inexpensive iterative al-
gorithm (by reusing the available hardware such as FFT/IFFT
blocks) that approximates the MMSE TEQ with unit-norm
constraint onb while avoiding expensive matrix inversions
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[2]. However, the algorithm does not ensure convergence to
the MMSE TEQ.

Each iteration consists of 4 steps: an update of the TIR
b, a windowing ofb to ν + 1 taps, an update of the TEQ
w, and a windowing ofw to Lw + 1 taps. The updates are
performed in the frequency domain (Bwin = FN [bT |0T ]T ,
Wwin = FN [wT |0T ]T , where the0 vectors extend the filters
to lengthN ), either by an instantaneous zero forcing update
or a frequency domain LMS update:

Bi =
Wwin

i Y k
i

Xk
i

or (10)

Bi = Bwin
i + µ(Xk

i )∗(Wwin
i Yi − Bwin

i Xi) and (11)

Wi =
Bwin

i Xk
i

Y k
i

or (12)

Wi = Wwin
i + µ(Y k

i )∗(Bwin
i Xi − Wwin

i Yi) (13)

The time-domain windowing is performed on the inverse FFT
of W and B such that only theLw + 1 and ν + 1 samples
with highest total energy are retained. An algorithm outline
and the computational complexity for Chow’s algorithm are
given in Table I.

TABLE I

OUTLINE AND COMPLEXITY (PER ITERATION) OF CHOW’ S ALGORITHM,

USING DIVISION FORBi IN (10) AND LMS FORWi IN (12). MACS ARE

REAL MULTIPLY-AND-ACCUMULATE OPERATIONS, AND N IS THE FFT

SIZE.

Operation Complexity per iteration
1. updateB 4N + N log2(N) MACs
2. windowb 2N + N log2(N) MACs
3. normalizeb 1 square root & 1 division
4. updateW 4N + N log2(N) MACs
5. windoww 2N + 2N log2(N) MACs
total: N (12 + 5 log2(N)) MACs + 1 sqrt + 1 division

D. The MSSNR family

This section discusses the MSSNR TEQ design [15] and its
extensions, including symmetric and skew-symmetric MSSNR
TEQs [28], [30] and related methods such as the Minimum
Inter-symbol Interference (Min-ISI) method [13], the Min-
imum Inter-Block Inferference (Min-IBI) method [17], and
Minimum Delay Spread (MDS) methods [19], [20].

First, consider the standard MSSNR design. Following
[15], we defineH as the channel convolution matrix of size
(Lc + 1) × (Lw + 1), Hwin as rows∆ through ∆ + ν of
H (with row indexing starting at zero), andHwall as the
remaining rows ofH. Details can be found in [1]. The MSSNR
design problem can be stated as [44]

max
w


wT HT

winHwin︸ ︷︷ ︸
B

w




subject to wT HT
wallHwall︸ ︷︷ ︸

A

w = 1.

(14)

It has been shown that maximizing the energy of the “win-
dowed” portion of the effective channel with respect to the
energy of the “walled” portion leads to the same TEQ as

maximizing the energy of the “windowed” portion of the
effective channel with respect to the “window” energy plus
the “wall” energy, i.e. the energy of the entire channel [23],
[45]. Thus, (14) is equivalent to

max
w


wT HT

winHwin︸ ︷︷ ︸
B

w


 subject to wT HTH︸ ︷︷ ︸

C

w = 1.

(15)
The solution forw will be the generalized eigenvector of the
matrix pair (B,C) corresponding to the largest generalized
eigenvalueλ; note thatC takes on the role ofA in (1).
Since C is not a function of delay∆, it only needs to be
computed once, and since it is symmetric and Toeplitz, it can
be computed in its entirety by computing only the first column.
Moreover, (14) requires a Cholesky decomposition ofA or B

for each∆, but sinceC is not delay dependent, only one
Cholesky decomposition is needed for (15). Thus, we will
refer to (15) rather than (14). A similar implementation, with
a generalization to reduce noise gain, was proposed in [21].

To solve (15), the(Lw + 1)× (Lw + 1) matrix B must be
computed for each of the possible values of∆, and for each
∆ a generalized eigenvector must be computed. Reducing the
complexity can be accomplished by reducing the computation
of B, or by reducing the computation of the eigenvectors. One
way to re-use computations is to obtain all but the first row
and column ofB(∆ + 1) by shifting in all but the last row
and column ofB(∆) [14],

[B(∆ + 1)](1:Lw,1:Lw) = [B(∆)](0:Lw−1,0:Lw−1) (16)

in a manner similar to (9). The first column ofB(∆ + 1)
can then be quickly obtained as follows. SinceB is nearly
Toeplitz, instead of computing a full(ν+1)-length dot product
to get each element, only two multiply-adds are needed [12]:

B(m,n) =B(m+1,n+1) + h(∆ + ν + 1 − m) h(∆ + ν + 1 − n)

− h(∆ − m) h(∆ − n).
(17)

The first row can then be obtained by transposing the first
column. TheB for the first delay considered can also be
computed almost entirely via (17).

Further reductions in complexity can be obtained by reduc-
ing the number of delay values that are searched (possibly
creating sub-optimal performance), or by using a shifted
version of the TEQ for delay∆ to initialize the eigensolver
for the TEQ for delay∆ + 1 [14].

Similar complexity reduction techniques can be applied to
MSSNR variants such as the Min-ISI method [13], the Min-
IBI method [17], and the Minimum Delay Spread (MDS)
method [19]. For example, in the Min-ISI method, the ISI
is weighted in the frequency domain, leading to a more
complicatedB matrix (see [1]). The above techniques still
apply, although (17) must be modifed as in [12]. For the Min-
IBI method, instead of simply updating theA matrix, one
can form a delay-dependent matrixE of the difference of two
successiveA matrices, and then updateE efficiently [16]. For
the MDS method, a similar technique applies, but a first order
anda second order error matrix must be updated for each delay
increment. This is discussed in [16] with a global delay search,
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TABLE II

COMPLEXITY OF OPTIMAL SINGLE RAYLEIGH QUOTIENT DESIGNS. Lh , Lw , AND Lc ARE THE LENGTHS OF THE CHANNEL, TEQ,AND EFFECTIVE

CHANNEL; ν IS THE CPLENGTH; N IS THE FFT SIZE; AND N∆ IS THE NUMBER OF DELAYS SEARCHED OVER.

Design Original implementation Efficient implementation
MMSE [40]

(
2
3
ν3 + L2

wν + Lwν2
)
N∆

(
2
3
ν3 + L2

w + Lwν
)
N∆ + 2νL2

w

Sym-MMSE [14]
(

1
12

ν3 + L2
wν + Lwν2

)
N∆

(
1
12

ν3 + L2
w + Lwν

)
N∆ + 2νL2

w

MSSNR [15]
(

11
3

L3
w + LcL2

w

)
N∆

8
3
L3

wN∆ + LhLw + 2L2
w

Sym-MSSNR [30], [48]
(

1
2
L3

w + LcL2
w

)
N∆

1
3
L3

wN∆ + LhLw + 2L2
w

MinISI [13]
(

11
3

L3
w + 1

2
sL2

w + 5NLw

)
N∆

(
8
3
L3

w + 3NLw + 5L2
w − 2νLw

)
N∆

Sym-MinISI
(

1
2
L3

w + 1
2
sL2

w + 5NLw

)
N∆

(
1
3
L3

w + 3NLw + 5L2
w − 2νLw

)
N∆

MinIBI [17]
(

11
3

L3
w + LcL2

w

)
N∆

8
3
L3

wN∆ + LcL2
w

MDS [19]
(

8
3
L3

w + LcL2
w

)
N∆

8
3
L3

wN∆ + 2LcL2
w

Dual Path [32]
(
10L3

w + 2LcL2
w + 1

2
sL2

w + 5NLw

)
N∆

(
8L3

w + 2
3
ν3 + 3NLw

)
N∆ + 2LcL2

w

and a similar (and more efficient) method is discussed in [18]
wherein the updates can be performed while only computing
the A matrix for selected delays.

The Min-IBI and MDS designs are part of a larger class
defined in [21]. Consider minimizing

J = α

∑
n f(n − nmid) |cn|

2

∑
n |cn|

2 + (1 − α)
σ2

n

σ2
x‖c‖

2
, (18)

wherenmid is the desired “middle” of the non-zero portion of
the effective channel andf(·) is an arbitrary function. The case
α = 1 andf(n) = n2 leads to an algorithm that minimizes the
delay spread (MDS) of the effective channel [19]. The case
α = 1 and

f(n) =

{
0, − ν

2 ≤ n ≤ ν
2

1, otherwise
(19)

leads to an algorithm which minimizeswT Aw while keeping
wT Cw = 1 [with A andC as in (14) and (15)]. For general
values ofα (“Noise-limited MSSNR,” or NL-MSSNR), (17)
still applies, since the noise term does not change the near-
Toeplitz structure of the matrices.

Hitherto, the MSSNR complexity reduction techniques that
we have discussed have focused on finding the same SSNR-
maximizing solution at a lower cost. An alternate philosophy
is to use approximations or iterative algorithms to find nearly
the same solution at reduced cost. Symmetric MSSNR (Sym-
MSSNR) constrains the impulse response to have linear phase
(symmetric or skew-symmetric), so only half of the TEQ
coefficients need to be computed. This reduces the complexity
of the eigensolver by a factor of 4. However, the bit rates of
the constrained MSSNR solution drop by about 3% for ADSL
and VDSL systems [14], [28], [30].

One iterative method of solving (15) is the generalized
power method of (2) and (3). Other iterative/adaptive MSSNR
techniques have been proposed in [33] and [35]. These tech-
niques are similar to the power method, but perform a gradient
descent of a cost function (rather than a matrix multiply) with
a periodic renormalization. Alternatively, (6) can be usedto
avoid the renormalization.

The computational complexity for designs in the MSSNR
family is summarized in Tables II and III at the end of
Section III.

E. The CNA adaptive equalizer

In many multicarrier standards [3], [4], [5], [6], the
frequency-domain input signal is zero-padded before transmis-
sion, so some frequency binsXi are null (zero). In the absence
of ISI, each corresponding receiver FFT outputUi is expected
to also be zero; whereas in the presence of ISI, it may not be
zero. The carrier-nulling algorithm (CNA) [46], [47] performs
a stochastic gradient descent of the output energy in the set
of Nz null carriers, where a periodic renormalization is used
to avoidw = 0. This constrained minimization problem is in
fact an eigenvector problem, and the CNA algorithm is a low-
complexity adaptive eigenvector estimator which equalizes
the channel to an impulse, rather than shortening it to a
window [46]. The computational complexity of CNA is given
in Table III at the end of Section III.

F. Complexity comparison

Table II compares the computational complexity of the
optimal single-Rayleigh quotient designs considered in this
section. Formulas are given for the designs as originally
proposed, as well as for the more efficient (yet mathematically
equivalent) implementations discussed in this section. Table III
compares the computational complexity of approximate iter-
ative designs that attempt to maximize a single generalized
Rayleigh quotient. Each table entry was determined by going
through the designs in Sections III-A through III-E line by
line and adding up numbers of operations. The “efficient
implementation” column assumes the use of techniques dis-
cussed in this section such as (16), whereas the “original
implementation” column computes each design as it was
originally presented.

IV. M ULTIPLE FILTERS, EACH WITH A SINGLE QUOTIENT

The per tone equalizer (PTEQ) and time domain equalizer
filter bank (TEQFB) designs treated in this section discontinue
the practice of using only one filter to equalize the channel
across the entire bandwidth, and instead assign each sub-
channel a potentially different equalizing filter. Both methods
use the achievable bit rate as their objective function, thus
breaking away from the practice of earlier methods (e.g. in
Sections II and III) that maximized objective functions that
were not necessarily related to the bit rate of the system.
Both methods were reviewed in [1], focusing on the equalizer
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TABLE III

COMPLEXITY OF ITERATIVE SINGLE RAYLEIGH QUOTIENT DESIGNS. Lh ,

Lw , AND Lc ARE THE LENGTHS OF THE CHANNEL, TEQ,AND EFFECTIVE

CHANNEL; ν IS THE CPLENGTH; N IS THE FFT SIZE; N∆ IS THE

NUMBER OF DELAYS SEARCHED OVER; AND Ix IS THE NUMBER OF

ITERATIONS FOR METHOD“ X .”

Design Complexity
Adaptive MMSE [41] (4ν + 2Lw) ImmseN∆

Chow [43] (12N + 5N log2(N)) Ichow

MDS as in [18] 2LcL2
w + 2

3
L3

wImds

MSSNR via (2)
(
LcL2

w + 3
2
L2

wIpower

)
N∆

MSSNR via (6) L2
w (Lc + 2Imssnr) N∆

MERRY [35] 4LwImerryN∆

SAM [49] 4Lw (Lc − ν) Isam

Nafie & Gatherer [33] 2LwIngN∆

CNA [46] N (Nz + Lw) IcnaN∆

architecture and design premises. This section describes the
implementation of these methods, with emphasis on the com-
putational complexity encountered during equalizer coefficient
initialization and data transmission.

A. Per-tone equalizer

The PTEQ architecture [9] allows one equalizer in the
frequency domainfor each subchannel. PTEQ moves the
equalization after the FFT block and incorporates the functions
of the FEQ as well. The PTEQ derivation (details in [9]) starts
from the conventional single time domain architecture and
uses the linearity of all operations to arrive at the frequency
domain equalizerwi for subchanneli. We can write the
equalized output on tonei as [36]

X̃k
i = v̄T

i Fiy
k (20)

where X̃k
i is the estimate of the transmitted symbolXk

i in
subchanneli, v̄T

i are PTEQ equalizer coefficients for theith

tone [9],yk is a vector ofN + Lw samples in symbolk, and

Fi =

[
ILw

0 −ILw

0 fi

]
(21)

Here, fi computes theith output of theN -point DFT. The
optimal coefficients are then arrived at by minimizing

J(vi) = E[|v̄T
i Fiy

k − Xk
i |

2] (22)

The cost function (22) can be minimized using various direct
methods for solving least-squares or MMSE problems, either
with or without the knowledge of the channel state information
and noise and signal statistics. Direct methods require a
transmission of a training sequence ofK symbols and a large
number of computations, although an adaptive method would
have lower numerical complexity.

An adaptive PTEQ method minimizing (22) based on recur-
sive least squares (RLS) with inverse updating is given in [36].
This RLS-based method estimates the covariance matrix of the
equalizer inputRk

i =
∑k

j=1(Fiy
j)∗(Fiy

j)T and decomposes
it into (Rk

i )−1 = (Lk
i )HLk

i whereLk
i is a lower triangular

matrix. The algorithm then forK iterations directly improves
the estimate ofLk

i [without recomputing(Rk
i )−1] and uses

the byproduct of that refinement in an RLS-based adaptation

for the equalizer coefficientsvk
i . The reader should see [36]

for further details. Most important, the inclusion of the sliding
FFT difference terms induces a special structure inLk

i where
the matrix Lk

i (0 : Lw − 1, 0 : Lw − 1) is real and equal
for all subchannels and only the last row ofLk

i is different
and complex. A combined RLS-LMS initialization technique
is described in [37].

The RLS initialization complexity, assuming that all of
the available subchannels are used, isN

2 (20Lw + 30) +
3L2

w + 7Lw MACs/iteration, while the RLS-LMS complexity
under the same assumptions isN

2 (4Lw + 13) + 3L2
w + 7Lw

MACs/iteration [37].
Note, that in contrast to direct PTEQ initialization methods,

the RLS PTEQ does not need knowledge of the channel state
and the noise statistics. The simulation results reported in [36]
show that for the given examples, the RLS-based initialization
algorithm achieves a data rate similar to the direct methods
for the same number of training symbols.

B. Time domain equalizer filter bank

A per tone method with atime domainequalizer for each
subchannel is the TEQ Filter Bank (TEQFB) [8]. The method
models the subchannel SNR as a single generalized Rayleigh
quotient

SNRi =
wT B̃iw

wT Ãiw
, (23)

where the complex-valued Hermitian symmetric(Lw + 1) ×
(Lw + 1) matrices are

Ãi = 2Sx,i


HT

wall,1ViV
H
i Hwall,1︸ ︷︷ ︸

Ai,h

+HT
wall,2WiW

H
i Hwall,2︸ ︷︷ ︸

Ai,t




+ Qnoise
i Rn

[
Qnoise

i

]H
︸ ︷︷ ︸

Ai,awgn+Ai,next+Ai,adc

+
σ2

DNF

wT w
ILw+1, (24)

B̃i = Sx,iH
TQcirc

i

[
Qcirc

i

]H
H. (25)

Hwall,1 andHwall,2 are convolution matrices composed of
the head and tail portions of the channel,h(0 : ∆ − 1) and
h(∆ + ν + 1 : N), respectively;Vi and Wi are upper and
lower triangular Hankel matrices made from theith row of the
DFT matrix, fi; Qnoise

i andQcirc
i are Hankel matrices made

from fi that account for the DMT symbol structure;Rn is
the noise (AWGN, crosstalk and finite precision of analog-to-
digital converter) covariance matrix; andσ2

DNF is the power
of the noise due to the fixed-point arithmetic [8]. The TEQFB
design involves computing̃Ai and B̃i as in (24) and (25),
then maximizing a generalized Rayleigh quotient for each
subchannel. The derivations ofÃi andB̃i are given in [8], but
only the final equations (23), (24), and (25), are needed for
implementation. The efficient TEQFB initialization procedure
in [50] exploits the structure of these matrices to reduce
the number of computations necessary for their initialization
compared to a straight multiply-update approach that would
be taken if no such structure existed.
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1) Subchannel SNR model numerator:Elementk, j of B̃i

can be written as

B̃i[k, j] = Nfi[k − j]

(
N+Lw−2−k∑

m=0

h[m]fi[m]

)

︸ ︷︷ ︸
ti[k]

×

(
N+Lw−2−j∑

l=0

h[l]fi[−l]

)

︸ ︷︷ ︸
t∗

i
[k]

(26)

where0 ≤ k ≤ Lw. A recursive formula for the computation
of elementsti[k] is given in [50]. Computation of the lower
triangle elements of̃Bi requires orderO

(
max(L2

w, N)
)

real
multiply-accumulate (MAC) operations.

2) Subchannel SNR model denominator:
a) AWGN and ADC component:The AWGN and ADC

contribution is captured inAi,awgn + Ai,adc, which is a
Hermitian symmetric and Toeplitz matrix. Thus, it is only
necessary to compute its first column. The remaining elements
are then defined by the Hermitian Toeplitz structure.

b) Near-end crosstalk component:The matrixAi,next =

Qnoise
i Rnext

[
Qnoise

i

]H
where the noise covariance matrix

Rnext is symmetric and Toeplitz. Hence,

Ai,next[k, j] =
N−1∑

n=0

N−1∑

m=0

Rnext[|n − m + i − j|, 0]fi[m − n]

(27)
The dependence of the elementAi,next[k, j] on the indexi−j

of matrix Rnext means thatAi,next also is symmetric and
Toeplitz and only the first column needs to be calculated. The
algorithm requiresO (4N + 15Lw) real MACs [50].

c) Channel tail component:Define the temporary Hankel
matrix Xi = HT

wall,2Wi. It is shown in [50] that the element
A

k,j
i,t is recursively defined as

Ai,t[Lw − 1, j] =

∆−1∑

g=Lw−1

Xi[0, g]

∆−Lw+j∑

s=0

XH
i [0, s], (28)

Ai,t[k, j] =Ai,t[k + 1, j + 1] + Xi[0, k]XH
i [0, j].

(29)

Computation of the lower triangle half ofAi,t requires exactly
7L2

w + 4Lw∆ + 5∆ − 3Lw MACs.
d) Channel head component:Define Zi = HT

wall,1Vi.
A recursive relationship can be defined between the elements
of the kth row of Zi:

Zi[k, j+1] = fi[1]Zi[k, j]+h[(N+Lw−2)−k−(j+1)]. (30)

This algorithm for calculation ofAi,h will update the value of
all of the matrix elements with the contribution of the product
the jth column of Zi and thejth row of ZH

i for 0 < j <

N − ν−∆+Lw −1. The algorithm requires orderO
(
NL2

w

)

MACs.
The term ofO

(
NL2

w

)
dominates the complexity of the sub-

channel SNR calculation. Once the subchannel SNRs are cal-
culated, a generalized eigenvector problem must be solved for
each of theNu used tones. Solving a symmetric generalized
eigenvector problem of dimensionLw takes approximately

14L3
w operations [11, p.464]. The initialization complexity of

a TEQ, a PTEQ, and a TEQFB are compared in Table IV. (In
Section VI, specifically in Fig. 4, typical parameter valuesare
substituted into Table V to provide a graphical comparison.)

TABLE IV

EQUALIZER INITIALIZATION COMPUTATIONAL COMPLEXITY, ASSUMING
N
2

DATA -CARRYING SUBCHANNELS. Lh AND Lw ARE THE LENGTHS OF

THE CHANNEL AND TEQ;N IS THE FFT SIZE; s = N + ν IS THE SYMBOL

SIZE; N∆ IS THE NUMBER OF DELAYS SEARCHED OVER; AND Ix IS THE

NUMBER OF ITERATIONS FOR METHOD“ X .”

Architecture MACs
TEQ (via MSSNR) 8

3
L3

wN∆ + LhLw + 2L2
w

PTEQ 1
2
N
(
9Lws2 + 8L2

ws
)

PTEQ (via RLS)
(

N
2

(20Lw + 30) + 3L2
w

)
Irls

PTEQ (via RLS+LMS)
(

N
2

(4Lw + 13) + 3L2
w

)
Ilms

TEQFB 1
2
N
(
NL2

w + 14L3
w

)

C. Data transmission complexity

The computational complexity and memory requirements
during data transmission (as opposed to initialization) for the
TEQ, TEQFB, and PTEQ architectures are shown in Table V.
(In Section VI, specifically in Fig. 4, typical parameter values
are substituted into Table V to provide a graphical compar-
ison.) Memory requirements depend more on the equalizer
architecture that is used (i.e. TEQ, TEQ-FB, PTEQ) than on
the algorithm used to design the equalizer, hence this is the
only section of the paper in which we compare memory use.
Thus, a TEQFB can have lower memory needs than a PTEQ;

TABLE V

DATA TRANSMISSIONCOMPUTATIONAL COMPLEXITY FOR SAMPLE RATE

fs = 2.208 MHZ, SYMBOL RATE fsym = 4 KHZ, AND ASSUMING N
2

DATA -CARRYING SUBCHANNELS. Lw IS THE TEQ LENGTH, N IS THE FFT

SIZE, AND ν IS THE CP LENGTH.

TEQ MACs / s Storage Words
convolution N(Lw + 1)fsym (Lw + 1)
FFT 2N log2 Nfsym 4N + 2ν
FEQ 2Nfsym N

PTEQ MACs / s Storage Words
FFT 2N log2 Nfsym 4N + 2ν
Difference terms Lwfsym Lw

Combiner N(Lw + 2)fsym N(Lw + 1)
TEQFB MACs / s Storage Words
TEQ FB N

2
Lwfs

N
2

(Lw + 1)
Goertzel FB (N2 + N)fsym 4N
FEQ 2Nfsym N

however, a TEQFB has significantly higher computational re-
quirements during data transmission that make it too expensive
for cost-effective embedded implementation today. If equaliza-
tion should take at most 5% of the processor time and 17-tap
subchannel equalizers are used, a TEQFB becomes feasible
for single-core processors running at 240 MHz (multiple core
processors can do with a lower speed due to the possibility of
a highly parallelized TEQFB implementation).

V. M ORE THAN ONERAYLEIGH QUOTIENT

Although the most popular single TEQ design methods
are based on solving a generalized eigenvalue problem (see
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Section III), they are in general not optimal in the sense of
bit rate maximization. Several attempts have been made to
design a TEQ that maximizes bit rate. As in Section IV,
the bit rate is the underlying objective function, but in this
section we are focusing onsingleTEQ design. These designs
vary in nature, but they can all be described in a common
way as a maximization of a product of multiple Rayleigh
quotients, and hence lead to a non-linear optimization problem
[1]. In this section, each method is briefly reviewed, some non-
linear optimization procedures are presented, and complexity
is tabulated.

A. Maximum geometric signal-to-noise ratio (MGSNR)
method

The geometric SNR for a DMT system [40], [51], [52], [53]
is defined as

SNRgeom =

(
∏

i∈S

SNRi

) 1

Nu

, (31)

where S is the set of tones that carry data andNu is
the number of tones in that set. For high SNR and fixed
transmission bandwidth, maximizing the bit rate is equivalent
to maximizing the geometric SNR in (31) [40], [52]. Assuming
equal power distribution in all subchannels and that the TEQ
w and the TIR b are related throughRyxb = Ryyw,
maximization of (31) can be rewritten as [40], [52]

b
opt
GSNR = argmax

b

∑

i∈S

lnbT Gib (32)

s.t. bT b = 1 and bTR∆b ≤ MSEmax, (33)

whereR∆ is given in (8),Gi is a matrix with DFT coefficients
related to tonei, and the second constraint avoids equalization
to a single spike.

The optimization problem in (32) is a constrained nonlinear
optimization problem and does not have a closed form solu-
tion. In [40], [52], the MATLABr optimization toolbox was
used to solve (32). Recently, Laskarian and Kiaei proposed

TABLE VI

ALGORITHM OUTLINE AND COMPLEXITY TO SOLVE (32) [34].Lw IS THE

TEQ LENGTH, N IS THE FFT SIZE, AND ν IS THE CPLENGTH.

Operation Complexity (flops)
1. Initialization:
1.1 Calculation ofR∆

13
4

L2
w + L2

wν + Lwν2

1.2 Eigenvalue decomposition ofR∆ (ν + 1)3

2. Per iteration:
2.1 Gradient computation 3Nuν2 + 2Nuν
2.2 Descent update ν + 1
2.3 Projection onto convex set 2 (ν + 1)

to use the gradient projection method in conjunction with
projection onto convex sets as a means to find the solution of
(32) [34], [54]. First, they remove the unit-norm constraint on
the TIR since the origin is not a trivial solution of the problem.
Then they observe that the second constraint represents a
closed convex set in the(ν +1)-dimensional Euclidean space:
{b ∈ IRν+1|bTR∆b ≤ MSEmax}. Using the convexity
property of the constraint set along with a suitable iterative

descent method efficiently leads them to a stationary point.A
feasible descent direction is obtained by taking a step along the
negative gradient of the cost function followed by a projection
on the constraint set. Based on [34], an outline of the algorithm
and its complexity are given in Table VI.

B. Maximum bit rate (MBR) method

In [13] and [55] the Maximum Bit Rate (MBR) TEQ design
method was presented to maximize the bit rateat the TEQ
output. The approximate subchannel SNR model is given by

S̃NRi(w) =
wTAiw

wTBiw
, (34)

whereAi andBi describe the signal and noise components for
tonei respectively (see [13], [55] for details). The approximate
bit allocation is then given by

bDMT(w) =
∑

i∈S

log2

(
1 +

S̃NRi(w)

Γ

)
, (35)

and the bit rate isfsym · bDMT(w), wherefsym = 4 kHz
is the symbol rate. Arslan, Evans and Kiaei [13] propose
to maximize this non-linear bit rate equation by using an
advanced iterative Newton-like optimization algorithm, such
as the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton al-
gorithm [56] in the MATLABr optimization toolbox. The
authors conclude that the MBR procedure is computationally
expensive and not well-suited for real-time implementation on
a programmable digital signal processor.

C. Bit rate maximizing TEQ (BM-TEQ) and maximum data
rate TEQ (MDR-TEQ)

The TEQ procedures of Sections V-A and V-B contain
many approximations. Vanbleuet al. and Milosevic et al.
independently suggested very similar TEQ design procedures
for bit rate maximization, referred to as the bit rate maximizing
TEQ (BM-TEQ) in [24] and the maximum data rate (MDR)
TEQ in [57]. In both cases, the bit rate maximization problem
can be written as

arg max
w

bDMT(w) = arg min
w

∑

i∈S

log2

wT Biw

wT Aiw
, (36)

whereAi andBi are tone dependent matrices (see [8], [24]
for details). In [24], the bit rate is maximizedat the FEQ
output while the authors of [8] have chosen to maximize a
slightly differently defined bit rateat the FFT output(or FEQ
input).

Minimizing (36) is an unconstrained nonlinear optimization
problem. Due to the difficulty of solving such a problem,
in this section we focus on solving the optimization prob-
lem rather than on efficiently computingAi and Bi. When
channel knowledge and noise statistics are available, standard
non-linear iterative optimization algorithms, such as iterative
(quasi-)Newton and simplex algorithms, can be applied to
solve (36). Milosevicet al. [8] use the Almogy-Levin iteration
[58] to find a root of the gradient of (36) corresponding to the
closestlocal maximum to the initial point. The initialw can
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be the TEQFB subchannel equalizer that results in the highest
value of (36) for all subchannels of interest.

In [24], the authors observed (without proof) that, although
the BM-TEQ cost function is often multimodal, the different
local minima yield nearly optimal performance. Therefore,a
recursiveTEQ update based on a Gauss-Newton-like search
direction was proposed to solve (36),

wk = wk−1 − (Hk(wk−1))† gk(wk−1), (37)

wheregk(wk−1) is the gradient of the cost function,(·)† is
the pseudo-inverse, andHk(wk−1) is a positive semidefinite
approximation of the Hessian of the cost function. The algo-
rithm is recursive (or adaptive) since the TEQ update is based
on continuously incoming data and not on noise statistics
nor channel knowledge. The gradient and Hessian in (37) are
obtained by [59]

• recursively estimating the Cholesky factor of
E{[Y k

i ∆T yk]T [(Y k
i )∗ ∆Tyk]} and the

crosscorrelations E{∆yk(Xk
i )∗}, E{Y k

i (Xk
i )∗} for

∀i ∈ S, whereY k
i is the DFT output of the received

signal for tonei, ∆yk are Lw difference terms of the
received time-domain signal, andXk

i is the transmitted
frequency domain symbol for tonei,

• evaluating the expressions forHk andgk as functions of
wk−1.

An outline of the algorithm of [59] and its complexity are
given in Table VII. The algorithm converges very fast (less
than 100 iterations) and allows for further adaptation and
tracking during data transmission.

TABLE VII

ALGORITHM OUTLINE AND COMPLEXITY TO SOLVE (36) [59].Lw IS THE

TEQ LENGTH, N IS THE FFT SIZE, AND ν IS THE CPLENGTH.

Operation Complexity (flops/iteration)
1. Statistics update L2

w + 2NuLw

2. Gradient and Hessian computation 2NuL2
w + NuLw

3. Pseudo-inverse calculation of HessianL3
w

4. TEQ update L2
w

VI. COMMUNICATIONS PERFORMANCE EVALUATION

This section presents a performance comparison of popu-
lar optimal designs and the low-complexity implementations
presented in this paper. Section VI-A describes the commu-
nications performance measure, Section VI-B describes the
synthetic data environment, and Section VI-C describes the
data sets from which we extracted channel measurements,
Section VI-D discusses the bit rate results, and Section VI-
E compares the computational complexity of optimal and
efficient designs.

A. Performance and complexity measures

The performance measure adopted in this paper is the
achievable bit rate for a fixed probability of error (10−7). Bit
allocation on subcarrieri is calculated by

bi = log2

(
1 +

SNRi

Γsim

)
(38)

where SNRi is the measuredSNR at the ith subcarrier,
obtained by averaging the output signal to interference and
noise ratio at the FEQ output, and

Γsim (in dB) = Γgap + system margin− coding gain. (39)

Here, the “SNR gap”Γgap = 9.8 dB corresponds to10−7 bit
error rate, the system margin is6 dB, and the coding gain is
5 dB [60]. The achievable bit rate is thenR = fsym

∑
i bi,

where fsym = 4 kHz is the symbol rate and
∑

i bi is the
number of bits per DMT symbol.

We will assess computational complexity in terms of the
number of multiply-and-accumulate operations required. The
comparison is only valid in an “order-of” sense, since there
will be some variation in the numbers depending on exactly
how the design is implemented. The goal of this section
is to quantify the trade-offs between these performance and
complexity measures.

B. Synthetic data simulation environment

The physical media for ADSL channels are telephone lines,
which are metallic twisted pairs of wires. This paper uses
a group of eight loops widely used in research simulations,
called the carrier serving area (CSA) loops, which were
proposed by Bell Systems in the early 1970s. The impulse
responses of these test loops can be obtained by using the
LINEMOD software [61], which is based on two-port network
transmission line theory [2, Sec. 3.5]. The simulations use
the 8 CSA loops (available in [62]) in series with a5th order
Chebyshev Type I high-pass filter with cut-on frequency at
4.8 KHz and a high-pass filter with cut-on at138 kHz, which
serve to filter out the telephone voiceband signal and to filter
out the upstream signals, respectively.

Sources of DSL noise can be classified as impulse noise,
background noise, and crosstalk between wires. Impulse noise
consists of impulses occurring at random times, and back-
ground noise is usually modelled as additive white Gaussian
noise (AWGN). Crosstalk is further divided into near-end
crosstalk (NEXT) and far-end crosstalk (FEXT). NEXT tends
to be dominant in ADSL transmissions [2]. Our simulations
use NEXT corresponding to 5 ISDN disturbers plus AWGN at
-140 dBm/Hz, distributed over the entire bandwidth (relative
to 23 dBm input signal power).

C. AST data set

Applied Signal Technology has generously provided the
authors with several measured ADSL data signals. The voltage
signal from a telephone line was recorded, sampled at 2.5
MHz, and digitized. The signal was frequency-duplexed so
that the upstream and downstream channels lay in two distinct
frequency bands [2].

We resampled the data to exactly 2.208 MHz, and then used
the C-REVERB2 training sequence to perform a (downstream)
channel estimate. The estimated channel is given by

ĥ = FN
−1

(
1

1000

1000∑

k=1

FNxk

FNyk

)
, (40)
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where vector division is performed pointwise. Here,FN is the
DFT matrix,xk is thekth period of the chosen C-REVERB2
signal, andyk is the corresponding received signal over the
same period. The C-REVERB2 signal is generated according
to [63, Sec. 10.4.5]. Fig. 1 shows the impulse responses of the
estimated channels for two sets of recorded data, includingall
transmit and receive filters. The x-axis is the sample number.
There are246.4µs per symbol and 544 samples per symbol,
hence one sample is approximately0.45µs. The y-axis is the
amplitude of the samples of the channel impulse response.

D. Bit rate assessment

The FFT size isN = 512 and the CP length isν = 32, as
in the G.DMT standard for downstream transmission. Delay
optimization has been applied to all methods. The TEQ length
is 17 taps, which is a common choice in practice. Fig. 2(a)
compares the bit rate, averaged over the eight CSA test loops,
for 16 common equalizer designs, and Fig. 2(b) shows the bit
rates for the measured channels from Fig. 1.

The dual path TEQ computed the MMSE, MSSNR, and
MDS TEQs, and picked the best one for one path, then
designed a Min-ISI TEQ optimized over a subset of tones for
the second path. As such, it outperforms the other designs in
Fig. 2. The designs that make use of approximations usually
induce a small loss in bit rate with respect to their optimal
counterparts. The SAM algorithm seems to become stuck in
false local (but not global) minima of the SAM cost function,
leading to a performance loss. The last six algorithms, which
explicitly attempt to maximize the bit rate, are listed in order
of fewer approximations and more general structures; hence
performance is expected to (and generally does) increase as
we move left to right on the bar chart.

E. Complexity comparison

In this section, we plot the computational complexity of
various equalizer designs, architectures, and implementations,
for typical parameter values. The FFT size isN = 512, the CP
length isν = 32, the DMT symbol length iss = N+ν = 544,
the equalizer length isLw = 16, the number of tones used for
data transmission isNu = 256, the length of the channel
estimate isLh = 512, and the symbol rate isfs = 2.208 · 106

symbols/second. The figures in this section simply plot the
values obtained by substituting these parameter values into
the tables throughout Sections III to V.

All of the single Rayleigh quotient designs search over
64 delay values, except for Lopez-Valcarce’s MDS imple-
mentation (which explicitly reduces the number of delays),
Chow’s algorithm (which includes a delay search as part
of the iteration), and SAM (which automatically selects a
delay without a search). All of the algorithms which explicitly
attempt to maximize the bit rate are relatively insensitiveto the
delay (within a certain range), hence only one delay is tested
for these algorithms. The number of iterations for the iterative
designs are given in Table VIII. These numbers were chosen
based on the convergence rates reported when the algorithms
were proposed.

The left side of Fig. 3 gives the complexity of TEQ designs
that maximize a single generalized Rayleigh quotient: the

TABLE VIII

NUMBERS OF ITERATIONS FOR ITERATIVE DESIGNS.

Design Iterations
Iterative MDS 10
Iterative MGSNR 20
MSSNR (power method & iterative method) 20
Chow, BM-TEQ, RLS and RLS-LMS PTEQ 100
MMSE, MERRY, CNA, Nafie & Gatherer 500
SAM 2000

MMSE design [40], the Symmetric MMSE design [14], the
MSSNR design [15], the Symmetric MSSNR design [30],
[48], the MinISI design [13], the Symmetric MinISI design,
the MinIBI design [17], the MDS design [19], and the dual-
path TEQ [32]. Values are also given for efficient versions
of these designs that make use of the techniques in [12],
[16], [64]. The MMSE design is cheap because it involves
a standard eigenvector problem rather than a generalized
eigenvector problem. The dual-path TEQ is the most expensive
because it computes the MMSE, MSSNR, MinISI, and MDS
TEQs as part of its design process.

The right side of Fig. 3 gives the complexity of iterative
and adaptive TEQ designs: the adaptive MMSE design [41],
Chow’s algorithm [43], Lopez-Valcarce’s MDS implementa-
tion [18], the MSSNR design via the power method as in
(2), the MSSNR design via iterating (6), MERRY [35], SAM
[49], Nafie & Gatherer’s design [33], and CNA [46]. The
cheapest by far is the MDS design, since it only searches
about 10 delays and each iteration is cheap. However, it does
not explicitly consider the size of the cyclic prefix; rather,
it simply minimizes the delay spread, which is a heuristic
approach.

Fig. 4 gives the complexity of equalizer designs that ex-
plicitly attempt to maximize the bit rate. The TEQ designs
considered are the iterative MGSNR implementation in [34]
and the BM-TEQ [24]. The filter bank designs are the TEQ-
FB [8], the PTEQ [9], and the RLS implementation of the
PTEQ [36], [37]. The basic implementation of the PTEQ
has the highest initialization complexity, although this can be
fixed by using RLS. The TEQ-FB architecture has the highest
complexity during data transmission.

VII. C ONCLUSION

Equalizer design for multicarrier systems can be a com-
putationally intensive procedure. We have surveyed the TEQ
design literature for complexity reduction techniques, and
categorized them in terms of whether or not (and how)
the designs depart mathematically from the optimal design.
We have tabulated the complexity requirements of the most
popular algorithms for their original and reduced-complexity
implementations. This tabulation was used to demonstrate the
trade-offs between the bit rate performance and the complexity
of these efficient implementations, for both synthetic and
measured ADSL channels. For ADSL channels, most designs
yield bit rates that only differ by about 10%, but computational
requirements can vary by several orders of magnitude. By
using complexity reduction techniques, the complexity of
these designs can be reduced by several orders of magnitude
for many of the designs.
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Fig. 1. Estimated channel impulse responses for measured signals 1 and 2 from the Applied Signal Technology data set.
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Fig. 2. (a) Bit rate comparison, averaged over the eight CSA test loops. (b) Bit rate for the two measured ADSL channels. The channel impulse responses
are given in Fig. 1. This data was reported in [1] and is summarized here in order to provide a performance vs. complexity tradeoff in the next section.
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Fig. 3. Left: computational complexity of single Rayleigh quotient TEQ designs, for equalizer initialization. (Complexity during data transmission is the
same for all single TEQ designs, hence it does not vary withinthis figure.) Values are given for the original implementation of each design as well as for the
most computationally efficient implementation which is mathematically equivalent. Right: complexity of iterative single Rayleigh quotient designs.

Choosing the best equalizer design depends on your bit rate
and complexity targets. The PTEQ has the highest achievable
bit rate, yet its implementation cost is higher than that of
most other designs. The iterative MDS TEQ has the lowest

implementation cost, with average performance. The dual-path
TEQ has nearly optimal performance with an implementation
cost that is slightly above average.
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