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Abstract— Adaptive OFDM improves the system throughput Xa(n.k) X(n.k) x(n)
by adjusting transmission parameters based on channel state Guard
information (CSI) estimated at or received by the transmitter. _ | Channel [T} Pilotand [} ] ILnster::z:m
The improvement, however, is conditioned on the quality of the =~ 2 Rredetor [ Cuard IFFT Xd0)
CSI, which can be compromised by estimation and quantization Encoder | | Insertion Pagaliebto-
errors, and more significantly by delay. Channel prediction has — — —1 Conv.
been previously proposed to combat feedback delay. In this paper, Ch. Information Wireless
a novel OFDM channel prediction algorithm that uses a2 x Rdok) Y(nk) y(n) Tom!
1—dimensional frequency estimation to determine the time-delays 1 channel — L Guand
and Doppler frequencies of each propagation path is investigated. 1 Estimation [ — F'{';‘;';/Va;
The algorithm assumes a general far-field scatterer, frequency- Outputbits oo | : : FET |G
selective wireless channel model and hence is applicable to a Fﬁf;f;g Serial-to- win)
wide variety of wireless channel conditions. It is shown that the | Equalizer [ | ] e
method requires less feedback information and has better mean-
squared error performance than previous methods. We provide
simulation results for IEEE 802.16e channels. Fig. 1. Adaptive OFDM System Block Diagram

I. INTRODUCTION

Adaptive OFDM systems overcome the limitation of con- . .
ventional OFDM by allowing the transmitter to vary the powe © employ a general far-field _scatterer, frequency—select_we
modulation, and coding on each subcarrier depending on mgeless channel model [5], which models each propagation

current channel state information (CSI) [1].This requires t ath as t'a codmlplex egponenlnal W|th|'turéknc;\wn. D?Egﬁr fre-
transmitter to have knowledge of the CSI, which can be o uency, |m|e fe ay, an corgp ex alr.?pd' u e.t' S|tr'np| I -'th
tained through feedback from the receiver’s channel estimat gnensional frequency and ampiitude estimation aigorithm

or through its own estimates in a time division duplex (TDD at accounts for the specializeq structure in the wireless
reciprocal channel. In high mobility environments, where th annel is proposed. The algorithm has the advantage of

Doppler frequency is high and the channel changes rapi ryctJ_duct[ng rehzble c(;l_a?nel esltlTate?hand thus |s§110|r;thO§DM
the CSI used by the transmitter would be outdated due to |mal!03 tan p.rde Ic I(')nt sofu '.Onl' ehpropolse rdnf 0 cacr;
processing and feedback delays. e applied to a wide variety of wireless channel conditions, an

In [1], delayed CSI was shown to negatively impact thgequires less feedback_ information and has better prediction
capacity and bit error rate of the adaptive OFDM systerR€/formance than previously proposed methods.
Furthermore, it was shown that the use of channel prediction
can improve the performance of the system. In [2], channel Il. SYSTEM MODEL
prediction over a longer range was shown to improve t
performance of adaptive OFDM in a low-mobility environr-}s OFDM System
ment. In [3], decision-directed and adaptive short-term channelThe adaptive OFDM system model considered in this paper
prediction on the time-domain channel taps was proposésl.given in Fig. 1. The input bits are initially mapped by a
In [4], an unbiased channel power predictor was applied t@nk of adaptive encoders inf¥,,,, complex data symbols
the time-domain channel taps, and a preliminary evaluatidfu.:. (1, k) which corresponds to théth subcarrier in the
of frequency domain channel prediction on all the subcarriensh OFDM block. The constellation density for each encoder
was also presented. would depend on the predicted state of the wireless channel,

In this paper, we predict OFDM channels by using classicial which various bit and power allocation strategies may be
estimation principles. These principles assume that the paramed to either maximize the data rate or to minimize the power
eters being estimated are unknown deterministic quantitiggven a bit error rate (BER) constraint [6].



The combination of data, pilot, and guard symbols form thget the frequency response of the time-varying channel as
N-subcarrier OFDM symbolX (n, k). This is subsequently L1 My—1
transformed into a time domain sequence using hgoint _ 21y pt 27
IFFT. In order to avoid intersymbol interference (ISl), and al- Helt, f) = Z Z arpe’ e ®)
low the output sequence to be effectively circularly convolved
with the channel, the last samples of the symbol samplegAssuming that the OFDM system with symbol perigg,,,
{z;(n)}¥, are used as a guard interval (Gl) and prependéfd subcarrier spacind.f have proper cyclic extension and

to the bIock to form the transmit sequeneg;, (n) = ;(n), Sample timing, the sampled channel frequency response at the
wherel = ((i + N —v) @ N) for i = 0,1, ,N +v—1 kthtone of thenth OFDM block can be expressed as

p=0 r=0

and @ is the modulo operator. It is assumed thats longer H(n,k) 2 Ho(nTsym, kAS)

than the delay spread of the channel, and that the effects of ’ LM _“’1 ’

inter-carrier interference can be ignored; hence, the received _ 2 (frpn—Tyk) (4)
signal for the kth subcarrier in thenth OFDM block can - Z Z r.p® '

be written asY'(n,k) = H(n,k)X (n,k) + W(n,k) where
H(n,k) and W (n,k) are frequency domain channel gairwhere f., = v, T, is the normalized Doppler frequency
and additive white Gaussian noise (AWGN) respectively. THd 7, = n,Af is the normalized time delay.

channel estimation block takés(n, k) as input and forms the

channel estimate#l (n, k) to detect the transmitted sequence I1l. OFDM CHANNEL PREDICTION ALGORITHM

astam(m k) =Y(n, k)/]fl(n, k). We assume a pilot-assisted OFDM system, in which a block
In [2] [3] [4], channel estimates are fed back to the tran$f Nuiocr pilot symbols is indexed in time by the s&f =
mitter to enable prediction. In our method, only the estimatedili = 1,..., Nowocr} @nd spacedy, apart to be used for
channel parameters are fed back in order for the chan§gRnnel estimation. In each OFDM pilot symbol, ket =
prediction block to generate the predicted channel estimatés|i = 1,. .., Npitot} denote the set of pilot indices spaced
[ij(n + A k),A =1,...,¢ where¢ is the number of steps Ay apart. We can then perform a least-squares estimate of
ahead to predict. the channel at the pilot subcarriers using the received signal
Y (ni, k;) and the known pilot symbolX,(n;, k;) as
B. Wireless Channel Model ﬁ(m,kj) = Y(ni, k) / Xp(ni, k)
The complex baseband representation of the time-varying = H(ni,kj) + W(ni, kj)/ Xp(ni, kj) (5)
wireless channel is given as [5] L—1M,—1
= 2 D e Wi k)
L-1 p=0 r=0
g - 1 . .
t,1m) pz:%%(t)(S(?? Mp(1)) @ For notational convenience, let
2 _ |1 L:Npitot i~ 1:Npitot " 1:Npitot
wheren,(t) is the delay,y,(t) is the complex amplitude of His = [hl | B L (©)

the pth multipath tap, and’ is the number of propagationpe the N,,;;,; x Ny Matrix of the least-squares estimates,
paths. Assuming a far-field discrete scatterer moggl) can \here

be further decomposed as [5] 0 . . . T
hi™ =[H(n;, k) H(ni,kign) ... H(ng, ky)]" (7)

_ Z ar pejznw,p(t)t @ is the column vector of the estimates on time indgxand
’ pilot indices{k;}7,.

The initial task for the channel predictor is to determine the
where M, is the number of rays contributing to tip¢h path, unknown parameterg, M, a.,, f,,, andr, from the least
anda,, andv, ,(t) are the complex amplitude and Dopplesquares estimates reliably. Since these terms are assumed to
frequency, respectively, for theth ray in thepth path. Note e stationary throughout our estimation and prediction horizon,
that the random phase from the complex exponentials hawe next step would be to simply plug in the future time-index
been incorporated inte, ,. Also note that the time delays andto our model and generate the predicted channel. Estimating
Doppler frequencies are all dependent on time. However, W& parameters in (5) is in the form of a two-dimensional com-
can assume that the time delgy(t) and Doppler frequency plex sum-of-sinusoids in white noise parameter estimation,
vrp(t) parameters vary slowly when compared to the OFDMnd is quite well studied in the literature for radar and sonar
symbol time, and can be considered constant within th@aging and other array signal processing applications (see [8]
estimation and prediction time horizons. Tracking algorithmsnd references therein). Although a straightforward application
can also be employed in order to follow the time variations @ff these techniques may be used, they are too computationally
these parameters [7], but these are not pursued in this woilitensive for cost-effective online implementation, and do not

Combining (1) and (2) and taking its Fourier transform, wexploit the special structure of the problem.



We propose using a 2 1-dimensional sinusoidal parameteB. Estimate the number of patlis

estimation approach. Notice that we can rewrite (5) as Estimation of the number of pattisis essentially a model-
L—1 selection problem, wherein the Minimum Description Length
H(ni k) =S ep(ni)e?> % 4+ W(ny, k;) (8) (MDL) is the method most often used due to its consistency
p=0 [8]. We employ the MDL appropriate for the modified covari-
ance averaging technique [10] given a
where veraging ique [10] giv S
M,—1 _ K Ny - Nytock (K —p)
cp(ni) = ap ped 2T I ©) i : 1 (Hk:qul )\k)
r=0 = arg min — log 174 =~
1spsK-1 Kl—/l, Zk:u-‘rl )\£

is the complex gain for theth propagation path and is the )

sampled version of (2). + Zu(2K — p+ 1) log Nyock
Notice that (8) is now a much simpler one-dimensional 4

complex sum-of-sinusoids parameter estimation, where vari-

ous standard iterative and non-iterative algorithms have bggRere {}i }& | are the non-increasingly ordered estimated

proposed in the literature (see [9] and the references therei@iyenvalues of the estimated autocorrelation maiix
In this type of estimation problem, the difficulty lies in the

estimation of the frequencies of the complex exponentidls Estimate the time-delays, },_,

(1, in our case), since these frequencies enter the model inGjyen the estimated number of paths we can now find
a non-linear fashion. Once these frequencies are estimatgg, time delays{rp}ﬁ .. In [9], the ESPRIT method was
. . p=1- 1
the complex amplitudes:,(n;) are easily computed as ashown to perform better than other eigen-analysis techniques

linear regression. Although the maximum-likelihood estimatgg, frequency estimation. Thus, this is the method we pursue
for the frequencies are desirable, techniques to find thegegyr algorithm. Let

exactly or even approximately are highly complex iterative R
procedures that are not guaranteed to converge [9]. Hence, we Vi=[kx-1 O0x]V (13)
opted to base our algorithm on the non-iterative eigen-analysi
technique Estimation of Signal Parameters via Rotational In-

(12)

variance Techniques (ESPRIT) as described in [9]. We discuss Vo =10k TxalV (14
the steps in estimating the parameters below. wherelx_; is the (K — 1) x (K — 1) identity matrix,0 is a
. . . column vector ofK — 1 zeros, andV/ = [, | ... | V;lis
A. Estimate the autocorrelation matrix a matrix whose columns are the eigenvectors associated with
In order to use eigen-analysis based techniques, the autotde-L largest eigenvalues dk/. Then
relation function of the underlying process has to be estimated. i = —arg(é,)/Dy, p=1,....L (15)

Since there aréV,;,.. OFDM symbols, we can use an average
of the frequency autocorrelation estimates for each symheherearg (z) is the radian phase angle of the complex number

generated using the modified covariance method [9], z, and {€p},§=1 are the eigenvalues of the x I, matrix
Noiock s THX7 \—1xX7H~X;
A 1 1 /4 A b =(V{V ViV 16
RS = 5 (B00) +39(m)"3)  (10) p= (VEVO)TVIV: (16)
block =1 D. Estimate the complex amplitudés, (n;)}L_,
where Given the time delay estimate§’, 521, the maximum-
| Nt o N likelihood estimate for thel, x Ny, matrix C of complex
F(n)=— > (hEJ_K“):’) (hEJ_K“”) (11) amplitudes is given by
pilot =K . . IR
) o o C= (E E) E“H;s a7
andJ is the exchange matrix with ones on the anti-diagonal
and zeros elsewhere, ard is the size of the autocorrelationwhere R . . .
matrix chosen to be greater than the maximum possible C=f[e e | [e o] (18)
number of paths L and less thanV,,;;.;. o . . .
e e CZ'T = [Cp(nq) Cp(anrl) e Cp(nr)}T (19)
INote that this is the common model used for frequency selective fadiagh g
channels, whergc,(n;)}L_, are typical assumed to be uncorrelated wide- eJ2mTiky . eJ2n Tk
sense stationary narrow-]lJ)and complex Gaussian processes with Jakes's power
spectrum [5]. We do not make this assumption here, and is thus a more general E = . (20)
model. ejQﬂ-‘f—lkNpilot elj2ﬂ%ﬁkNpilot

2We make the reasonable assumption thats, is knowna priori. This
value is typically determined by the propagation environment, and the desired . ] )
accuracy of the channel characterization. is the Npior x L Fourier transform matrix.



TABLE |

Note that each of théVy;,., columns ofC in (17) is actu-
COMPUTATIONAL COMPLEXITY FOR THE PROPOSED ALGORITHM

ally the time-domain channel tap estimate for the frequency-

selective channel. Hence, we can write H Step ‘ Computation H
H,;, = WC (21) Autocorrelation Estimation éN;,lockIQ ) ]
. ) ] Estimation of No. of Paths (MDL)| L(£1° + I? + M,I — M2)
V'Vhe're theNd_ata X Nylocr, Matrix Hysp is the maximum- Frequency Estimation (ESPRIT) | L(2IM2 + 2M3 + 2M2)
likelihood estimate for the frequency response of the channel s iitude Estimation E(2Nyioek M2 — 2113)
at the Ny, data carrying subcarriers, and thé;,., x L Channel Prediction LN
Fourier transform matrix is given as
pi2ni(ZRL) L e (2R TABLE I
COMPUTATIONAL COMPLEXITY FOR BURG PREDICTION
W= : : (22)
eiznfi(BE41) L ggzndp (B4 [_Step [ Computation ||
MDL and coefficients comp, L3Npjockp?
Using (21) as the channel estimates, demodulation of the Prediction Filtering Lép
o — . e
OFDM symbol can then be performed. Note that minimum Interpolation filter design | L3 B°
mean squared error estimates (MMSE) may also be generated Interpolation L(2BA: +1)¢€

when we assume that the channel is wide-sense-stationary with
uncorrelated scatterers (WSSUS), and this is similar to the
parametric channel estimation algorithm proposed in [7]. IV. PERFORMANCE COMPARISON
. In comparing the proposed algorithm with previous meth-
E. Es'tlmateMp, frp andar, _ ods, it has been shown in [11] that prediction on the time-
Notice that we can now replace the left-hand side of (Yomain channel taps requires less complexity and still per-
¢p(ni) with its corresponding estimaté,(n;), and proceed forms better than prediction on the subcarriers directly. Thus,
similarly as the previous steps. we need only to compare our methods with those that predict
For each patp = 1,..., L, A on the time-domain channel taps [3] [4]. Furthermore, it was
« Estimate the autocorrelation functim across time as in shown in [7] that parametric channel estimation performs
llI-A, but removing the averaging in (10), and replacingetter than its non-parametric counterpart. Thus, comparing

W(n;) with with [3] and [4] directly would give our approach an unfair
1 Notock . advantage since their methods use a non-parametric estimator.
P(p) = Z (ég—Hl):i) (é;i_l""l):i) We compare our algorithm to using standard Wiener linear pre-
Nbtock diction on the downsampled time-domain channel taps in (18).

Furthermore, since the Burg algorithm performs better than
the standard Yule-Walker method in deriving the appropriate
linear prediction coefficients [2], we used the Burg method in
our simulations. We also used the MDL as described in [8]

) W . . ~ . to find the appropriate model orders for the prediction filters.
« Estimate{/.,},2; as in Section Ill-C, by replacind. e call this method the Burg Prediction method. We compare

« Estimate M, with the MDL using the non-increasing
eigenvalues ofR!, which is (12) with thel, K, and
the constant in the penalty term bf4, replaced byZ,,
I, and1/2 respectively.

by M, and K by I in (}3)'(17{5)- _ . the two methods in terms of complexity, required feedback
o Estimated, = [a1,,...ay " asinlll-D, given as information, and mean-squared error performance.
ap = (E{"Etf1 Effe, A. Complexity
where We consider only the computations after the channel esti-
. . mation step, i.e. Sections IlI-E and llI-F, since this is where
e]27rf17pn1 - e] Trfjupnl

the two methods differ. Due to space constraints, we present a
E, = : : summary of the computational complexity analysis in Tables
' ' | and IIl. The details of the Burg Prediction can be found
in [2] [11]. The parametep is the prediction filter order,
F. Predict the channel 2BA;+1 is the interpolation filter order, anglis the number
dofsteps ahead to predict. Note that in the proposed algorithm,
if-js the autocorrelation estimation that dominates the required
computations, and has complexity(L Ny, I%). For the
R Burg Prediction, it is the MDL step that dominates, and thus
) L-1Mp—1 o . has complexit)O(ﬁNblock?)pZ). In our numerical simulations,
Hn+ A k)= Y ap,e/?Urs 2778 (23) 1 60, and the average filter order was= 35, thus the
p=0 r=0 complexity of the two methods are comparable.

12T 1o Ny e L eﬂ”fMp"szom

Now that we have estimated all the parameters neede
our model, we just plug in these parameters into our model
(4) to find our predicted channel as



B. Required Feedback Information

In previous methods, the actual channel estimates need
to be known by the transmitter. Thed Nyjoek bytes must
be fed back, assuming each complex channel estimate i
represented by two 32-bit single-precision floating point num-
bers. In the proposed method only the time-delégst -

doppler frequenues{fr,p}r 1; 1» and complex amplitudes
A[ L

{arp},2i ;2 need to be fed back. This amounts4b(1 +
3M) bytes. Using the simulation parameters below, our

proposed method requires on%gﬁ ~ 25% of feedback
required compared to previous methods.

Channel GafB)

p=11

Predicted Channel for path =1, SNR =10 dB

Predicted Channel 1 coherence time ahead, SNR =10 dB
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- |
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Fig. 2. Snapshot of predicted channel with SNRO dB. Channel trace for
the 1st path is shown on the left, and the frequency domain predicted channel

for 1 coherence time ahead is shown on the right.

C. Mean-squared Error

The OFDM system considered is based on the IEEE 802.16€
mobile broadband wireless system [12] in the ETSI "Vehicular

A" channel environment (6-tap frequency-selective Rayleigh
fading channel model). We simulate the Rayleigh fading chan-;
nel using the modified Jakes simulator with propagation 2
paths. The OFDM system has bandwidi/ = 5 MHz,
carrier frequencyf. = 2.6 GHz, and a Doppler frequency of

fa ~ 180H =. A sampling frequency of, = };‘éBW =5.76
MHz, and a guard interval aV,; = 64 samples is used, giving

an OFDM symbol period Ofy,, = (N+Ng;)/ fs = 55.56ps.

In simulating our channel prediction algorithm, we usegfferent

Npior = 26 pilot subcarriers spacefl ; = 8 subcarriers apart
across the middle of the OFDM symbol, aid,;,.,; = 100
OFDM pilot symbols spaced\; = 25 symbols apart. The
autocorrelation matrix size for time-delay estimation in (11)
is chosen to be{ = ( Npior] = 16, and similarly for the [1]
doppler frequency estlmat|oﬁ ( Niiock | = 60.

We ran our proposed algorithm using ML estimates as i

(17) and MMSE estimates as in [7], and compared it with th(—g]
Burg Prediction method. We generated 100 different channel
realizations and 100 iterations for each realization. Figure !
shows a snapshot of the channel prediction algorithm for the
proposed algorithm using ML estimates and Burg Predictiof#]
methods for SNR- 10 dB. It is shown qualitatively that the
proposed method predicts the channel better than Burg Predijg;
tion. Figure 3 shows the prediction normalized mean squareé]
error (NMSE) comparisons for the three different methods
predicting 10¢.,, ahead for varying SNR (left figure), and (7
predicting in varying lengths for SNR#® dB (right figure).
The proposed methods outperform the Burg Prediction method
for all SNR values and prediction lengths, and the advantag
is more pronounced as the SNR and the prediction length
increase. This is because using the parametric model allow3
us to focus our estimation on the principal components of tig,
underlying process, and this greatly enhances the prediction
performance. This is analogous to the performance impro ;f]
ment brought about by using parametric channel estimati
versus non-parametric estimation as observed in [7]. Addmon-
ally, the improvement in using the MMSE estimates versus the
ML estimates is minimal, and is only seen for lower SNRs.
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Normalized mean-squared error (NMSE) performance for the three
methods. The figure on the left shows NMSE vs. SNR, and the figure

on the right shows NMSE vs. prediction length.
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