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Abstract— Adaptive OFDM improves the system throughput
by adjusting transmission parameters based on channel state
information (CSI) estimated at or received by the transmitter.
The improvement, however, is conditioned on the quality of the
CSI, which can be compromised by estimation and quantization
errors, and more significantly by delay. Channel prediction has
been previously proposed to combat feedback delay. In this paper,
a novel OFDM channel prediction algorithm that uses a2 ×
1−dimensional frequency estimation to determine the time-delays
and Doppler frequencies of each propagation path is investigated.
The algorithm assumes a general far-field scatterer, frequency-
selective wireless channel model and hence is applicable to a
wide variety of wireless channel conditions. It is shown that the
method requires less feedback information and has better mean-
squared error performance than previous methods. We provide
simulation results for IEEE 802.16e channels.

I. I NTRODUCTION

Adaptive OFDM systems overcome the limitation of con-
ventional OFDM by allowing the transmitter to vary the power,
modulation, and coding on each subcarrier depending on the
current channel state information (CSI) [1].This requires the
transmitter to have knowledge of the CSI, which can be ob-
tained through feedback from the receiver’s channel estimates,
or through its own estimates in a time division duplex (TDD)
reciprocal channel. In high mobility environments, where the
Doppler frequency is high and the channel changes rapidly,
the CSI used by the transmitter would be outdated due to the
processing and feedback delays.

In [1], delayed CSI was shown to negatively impact the
capacity and bit error rate of the adaptive OFDM system.
Furthermore, it was shown that the use of channel prediction
can improve the performance of the system. In [2], channel
prediction over a longer range was shown to improve the
performance of adaptive OFDM in a low-mobility environ-
ment. In [3], decision-directed and adaptive short-term channel
prediction on the time-domain channel taps was proposed.
In [4], an unbiased channel power predictor was applied to
the time-domain channel taps, and a preliminary evaluation
of frequency domain channel prediction on all the subcarriers
was also presented.

In this paper, we predict OFDM channels by using classical
estimation principles. These principles assume that the param-
eters being estimated are unknown deterministic quantities.
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Fig. 1. Adaptive OFDM System Block Diagram

We employ a general far-field scatterer, frequency-selective
wireless channel model [5], which models each propagation
path as a complex exponential with unknown Doppler fre-
quency, time delay, and complex amplitude. A simplified2×1-
dimensional frequency and amplitude estimation algorithm
that accounts for the specialized structure in the wireless
channel is proposed. The algorithm has the advantage of
producing reliable channel estimates, and thus is a joint OFDM
estimation and prediction solution. The proposed method can
be applied to a wide variety of wireless channel conditions, and
requires less feedback information and has better prediction
performance than previously proposed methods.

II. SYSTEM MODEL

A. OFDM System

The adaptive OFDM system model considered in this paper
is given in Fig. 1. The input bits are initially mapped by a
bank of adaptive encoders intoNdata complex data symbols
Xdata(n, k) which corresponds to thekth subcarrier in the
nth OFDM block. The constellation density for each encoder
would depend on the predicted state of the wireless channel,
in which various bit and power allocation strategies may be
used to either maximize the data rate or to minimize the power
given a bit error rate (BER) constraint [6].



The combination of data, pilot, and guard symbols form the
N -subcarrier OFDM symbolX(n, k). This is subsequently
transformed into a time domain sequence using theN -point
IFFT. In order to avoid intersymbol interference (ISI), and al-
low the output sequence to be effectively circularly convolved
with the channel, the lastν samples of the symbol samples
{xi(n)}N

i=1 are used as a guard interval (GI) and prepended
to the block to form the transmit sequencexi,tx(n) = xl(n),
where l = ((i + N − ν) ⊕ N) for i = 0, 1, · · · , N + ν − 1
and⊕ is the modulo operator. It is assumed thatν is longer
than the delay spread of the channel, and that the effects of
inter-carrier interference can be ignored; hence, the received
signal for thekth subcarrier in thenth OFDM block can
be written asY (n, k) = H(n, k)X(n, k) + W (n, k) where
H(n, k) and W (n, k) are frequency domain channel gain
and additive white Gaussian noise (AWGN) respectively. The
channel estimation block takesY (n, k) as input and forms the
channel estimateŝH(n, k) to detect the transmitted sequence
as X̂data(n, k) = Y (n, k)/Ĥ(n, k).

In [2] [3] [4], channel estimates are fed back to the trans-
mitter to enable prediction. In our method, only the estimated
channel parameters are fed back in order for the channel
prediction block to generate the predicted channel estimates
Ĥ(n + ∆, k), ∆ = 1, . . . , ξ where ξ is the number of steps
ahead to predict.

B. Wireless Channel Model

The complex baseband representation of the time-varying
wireless channel is given as [5]

hc(t, η) =
L−1∑
p=0

γp(t)δ(η − ηp(t)) (1)

whereηp(t) is the delay,γp(t) is the complex amplitude of
the pth multipath tap, andL is the number of propagation
paths. Assuming a far-field discrete scatterer model,γp(t) can
be further decomposed as [5]

γp(t) =
Mp−1∑
r=0

ar,pe
j2πνr,p(t)t (2)

whereMp is the number of rays contributing to thepth path,
and ar,p and νr,p(t) are the complex amplitude and Doppler
frequency, respectively, for therth ray in thepth path. Note
that the random phase from the complex exponentials have
been incorporated intoar,p. Also note that the time delays and
Doppler frequencies are all dependent on time. However, we
can assume that the time delayηp(t) and Doppler frequency
νr,p(t) parameters vary slowly when compared to the OFDM
symbol time, and can be considered constant within the
estimation and prediction time horizons. Tracking algorithms
can also be employed in order to follow the time variations of
these parameters [7], but these are not pursued in this work.

Combining (1) and (2) and taking its Fourier transform, we

get the frequency response of the time-varying channel as

Hc(t, f) =
L−1∑
p=0

Mp−1∑
r=0

ar,pe
j2πνr,pte−j2πηpf (3)

Assuming that the OFDM system with symbol periodTsym

and subcarrier spacing∆f have proper cyclic extension and
sample timing, the sampled channel frequency response at the
kth tone of thenth OFDM block can be expressed as

H(n, k) , Hc(nTsym, k∆f)

=
L−1∑
p=0

Mp−1∑
r=0

ar,pe
j2π(fr,pn−τpk)

(4)

wherefr,p = νr,pTsym is the normalized Doppler frequency
andτp = ηp∆f is the normalized time delay.

III. OFDM CHANNEL PREDICTION ALGORITHM

We assume a pilot-assisted OFDM system, in which a block
of Nblock pilot symbols is indexed in time by the setN =
{ni|i = 1, . . . , Nblock} and spaced∆t apart to be used for
channel estimation. In each OFDM pilot symbol, letK =
{kj |j = 1, . . . , Npilot} denote the set of pilot indices spaced
∆f apart. We can then perform a least-squares estimate of
the channel at the pilot subcarriers using the received signal
Y (ni, kj) and the known pilot symbolsXp(ni, kj) as

Ĥ(ni, kj) = Y (ni, kj)/Xp(ni, kj)
= H(ni, kj) + W (ni, kj)/Xp(ni, kj) (5)

=
L−1∑
p=0

Mp−1∑
r=0

ar,pe
j2π(fr,pni−τpkj) + W̃ (ni, kj)

For notational convenience, let

ĤLS =
[
ĥ1:Npilot

1 | ĥ1:Npilot

2 | . . . | ĥ1:Npilot

Nblock

]
(6)

be theNpilot × Nblock matrix of the least-squares estimates,
where

ĥl:m
i = [Ĥ(ni, kl) Ĥ(ni, kl+1) . . . Ĥ(ni, km)]T (7)

is the column vector of the estimates on time indexni and
pilot indices{kj}m

j=l.
The initial task for the channel predictor is to determine the

unknown parametersL, Mp, ar,p, fr,p, andτp from the least
squares estimates reliably. Since these terms are assumed to
be stationary throughout our estimation and prediction horizon,
the next step would be to simply plug in the future time-index
to our model and generate the predicted channel. Estimating
the parameters in (5) is in the form of a two-dimensional com-
plex sum-of-sinusoids in white noise parameter estimation,
and is quite well studied in the literature for radar and sonar
imaging and other array signal processing applications (see [8]
and references therein). Although a straightforward application
of these techniques may be used, they are too computationally
intensive for cost-effective online implementation, and do not
exploit the special structure of the problem.



We propose using a 2× 1-dimensional sinusoidal parameter
estimation approach. Notice that we can rewrite (5) as

Ĥ(ni, kj) =
L−1∑
p=0

cp(ni)ej2πτpkj + W̃ (ni, kj) (8)

where

cp(ni) =
Mp−1∑
r=0

ar,pe
j2πfr,pni (9)

is the complex gain for thepth propagation path1, and is the
sampled version of (2).

Notice that (8) is now a much simpler one-dimensional
complex sum-of-sinusoids parameter estimation, where vari-
ous standard iterative and non-iterative algorithms have been
proposed in the literature (see [9] and the references therein).
In this type of estimation problem, the difficulty lies in the
estimation of the frequencies of the complex exponentials
(τp in our case), since these frequencies enter the model in
a non-linear fashion. Once these frequencies are estimated,
the complex amplitudescp(ni) are easily computed as a
linear regression. Although the maximum-likelihood estimates
for the frequencies are desirable, techniques to find these
exactly or even approximately are highly complex iterative
procedures that are not guaranteed to converge [9]. Hence, we
opted to base our algorithm on the non-iterative eigen-analysis
technique Estimation of Signal Parameters via Rotational In-
variance Techniques (ESPRIT) as described in [9]. We discuss
the steps in estimating the parameters below.

A. Estimate the autocorrelation matrix

In order to use eigen-analysis based techniques, the autocor-
relation function of the underlying process has to be estimated.
Since there areNblock OFDM symbols, we can use an average
of the frequency autocorrelation estimates for each symbol
generated using the modified covariance method [9],

R̂f =
1

Nblock

Nblock∑

i=1

1
2

(
Ψ̂(ni) + JΨ̂(ni)HJ

)
(10)

where

Ψ̂(ni) =
1

Npilot

Npilot∑

j=K

(
ĥ(j−K+1):j

i

)(
ĥ(j−K+1):j

i

)H

(11)

andJ is the exchange matrix with ones on the anti-diagonal
and zeros elsewhere, andK is the size of the autocorrelation
matrix chosen to be greater than the maximum possible
number of paths2 Lmax and less thanNpilot.

1Note that this is the common model used for frequency selective fading
channels, where{cp(ni)}L

p=1 are typical assumed to be uncorrelated wide-
sense stationary narrow-band complex Gaussian processes with Jakes’s power
spectrum [5]. We do not make this assumption here, and is thus a more general
model.

2We make the reasonable assumption thatLmax is known à priori . This
value is typically determined by the propagation environment, and the desired
accuracy of the channel characterization.

B. Estimate the number of pathsL

Estimation of the number of pathsL is essentially a model-
selection problem, wherein the Minimum Description Length
(MDL) is the method most often used due to its consistency
[8]. We employ the MDL appropriate for the modified covari-
ance averaging technique [10] given as

L̂ = arg min
1≤µ≤K−1

− log




(∏K
k=µ+1 λ̂f

k

) 1
K−µ

1
K−µ

∑K
k=µ+1 λ̂f

k




Nblock(K−µ)

+
1
4
µ(2K − µ + 1) log Nblock

(12)

where {λ̂f
k}K

k=1 are the non-increasingly ordered estimated
eigenvalues of the estimated autocorrelation matrixR̂f .

C. Estimate the time-delays{τp}L̂
p=1

Given the estimated number of pathsL̂, we can now find
the time delays{τp}L̂

p=1. In [9], the ESPRIT method was
shown to perform better than other eigen-analysis techniques
for frequency estimation. Thus, this is the method we pursue
in our algorithm. Let

V̂1 = [IK−1 0K−1]V (13)

and
V̂2 = [0K−1 IK−1]V (14)

whereIK−1 is the (K − 1)× (K − 1) identity matrix,0 is a
column vector ofK−1 zeros, and̂V = [v̂1 | . . . | v̂L̂] is
a matrix whose columns are the eigenvectors associated with
the L̂ largest eigenvalues of̂Rf . Then

τ̂p = − arg(ε̂p)/Df , p = 1, . . . , L̂ (15)

wherearg (x) is the radian phase angle of the complex number
x, and{ε̂p}L̂

p=1 are the eigenvalues of thêL× L̂ matrix

Φ̂L̂ = (V̂H
1 V̂1)−1V̂H

1 V̂2 (16)

D. Estimate the complex amplitudes{cp(ni)}L̂
p=1

Given the time delay estimates{τ̂p}L̂
p=1, the maximum-

likelihood estimate for thêL × Nblock matrix Ĉ of complex
amplitudes is given by

Ĉ =
(
EHE

)−1
EHĤLS (17)

where
Ĉ = [ĉ1:Nblock

1 | . . . | ĉ1:Nblock

L̂
]T (18)

ĉq:r
p = [ĉp(nq) ĉp(nq+1) . . . ĉp(nr)]T (19)

and

E =




ej2πτ̂1k1 · · · ej2πτ̂L̂k1

...
.. .

...
ej2πτ̂1kNpilot · · · ej2πτ̂L̂kNpilot


 (20)

is theNpilot × L̂ Fourier transform matrix.



Note that each of theNblock columns ofĈ in (17) is actu-
ally the time-domain channel tap estimate for the frequency-
selective channel. Hence, we can write

ĤML = WĈ (21)

where theNdata × Nblock matrix ĤML is the maximum-
likelihood estimate for the frequency response of the channel
at the Ndata data carrying subcarriers, and theNdata × L̂
Fourier transform matrix is given as

W =




ej2πτ̂1(
−Nd

2 ) · · · ej2πτ̂L̂(−Nd
2 )

...
.. .

...
ej2πτ̂1(

Nd
2 +1) · · · ej2πτ̂L̂( Nd

2 +1)


 (22)

Using (21) as the channel estimates, demodulation of the
OFDM symbol can then be performed. Note that minimum
mean squared error estimates (MMSE) may also be generated
when we assume that the channel is wide-sense-stationary with
uncorrelated scatterers (WSSUS), and this is similar to the
parametric channel estimation algorithm proposed in [7].

E. EstimateMp, fr,p, and ar,p

Notice that we can now replace the left-hand side of (9)
cp(ni) with its corresponding estimatêcp(ni), and proceed
similarly as the previous steps.

For each pathp = 1, . . . , L̂,

• Estimate the autocorrelation function̂Rt
p across time as in

III-A, but removing the averaging in (10), and replacing
Ψ̂(ni) with

Ψ̂(p) =
1

Nblock

Nblock∑

i=I

(
ĉ(i−I+1):i

p

)(
ĉ(i−I+1):i

p

)H

• EstimateMp with the MDL using the non-increasing
eigenvalues ofR̂t

p, which is (12) with theL̂, K, and
the constant in the penalty term of1/4, replaced byM̂p,
I, and1/2 respectively.

• Estimate{fr,p}M̂p

r=1 as in Section III-C, by replacinĝL
by M̂p andK by I in (13)-(16).

• Estimateâp = [â1,p . . . âM̂p,p]
T as in III-D, given as

âp =
(
EH

t Et

)−1
EH

t ĉp

where

Et =




ej2πf̂1,pn1 · · · e
j2πf̂M̂p

n1

...
. . .

...

ej2πf̂1,pnNblock · · · e
j2πf̂M̂p

nNblock




F. Predict the channel

Now that we have estimated all the parameters needed in
our model, we just plug in these parameters into our model in
(4) to find our predicted channel as

Ĥ(n + ∆, k) =
L̂−1∑
p=0

M̂p−1∑
r=0

âr,pe
j2π(f̂r,p(n+∆)−τ̂pk) (23)

TABLE I

COMPUTATIONAL COMPLEXITY FOR THE PROPOSED ALGORITHM

Step Computation

Autocorrelation Estimation L̂NblockI2

Estimation of No. of Paths (MDL) L̂( 4
3
I3 + I2 + M̂pI − M̂2

p )

Frequency Estimation (ESPRIT) L̂(2IM̂2
p + 2

3
M̂3

p + 2M̂2
p )

Amplitude Estimation L̂(2NblockM̂2
p − 2

3
M̂3

p )

Channel Prediction L̂M̂pξ

TABLE II

COMPUTATIONAL COMPLEXITY FOR BURG PREDICTION

Step Computation

MDL and coefficients comp. L̂3Nblockp2

Prediction Filtering L̂ξp

Interpolation filter design L̂ 4
3
B3

Interpolation L̂(2B∆t + 1)ξ

IV. PERFORMANCECOMPARISON

In comparing the proposed algorithm with previous meth-
ods, it has been shown in [11] that prediction on the time-
domain channel taps requires less complexity and still per-
forms better than prediction on the subcarriers directly. Thus,
we need only to compare our methods with those that predict
on the time-domain channel taps [3] [4]. Furthermore, it was
shown in [7] that parametric channel estimation performs
better than its non-parametric counterpart. Thus, comparing
with [3] and [4] directly would give our approach an unfair
advantage since their methods use a non-parametric estimator.
We compare our algorithm to using standard Wiener linear pre-
diction on the downsampled time-domain channel taps in (18).
Furthermore, since the Burg algorithm performs better than
the standard Yule-Walker method in deriving the appropriate
linear prediction coefficients [2], we used the Burg method in
our simulations. We also used the MDL as described in [8]
to find the appropriate model orders for the prediction filters.
We call this method the Burg Prediction method. We compare
the two methods in terms of complexity, required feedback
information, and mean-squared error performance.

A. Complexity

We consider only the computations after the channel esti-
mation step, i.e. Sections III-E and III-F, since this is where
the two methods differ. Due to space constraints, we present a
summary of the computational complexity analysis in Tables
I and II. The details of the Burg Prediction can be found
in [2] [11]. The parameterp is the prediction filter order,
2B∆t +1 is the interpolation filter order, andξ is the number
of steps ahead to predict. Note that in the proposed algorithm,
it is the autocorrelation estimation that dominates the required
computations, and has complexityO(L̂NblockI2). For the
Burg Prediction, it is the MDL step that dominates, and thus
has complexityO(L̂Nblock3p2). In our numerical simulations,
I = 60, and the average filter order wasp = 35, thus the
complexity of the two methods are comparable.



B. Required Feedback Information

In previous methods, the actual channel estimates need
to be known by the transmitter. Thus8L̂Nblock bytes must
be fed back, assuming each complex channel estimate is
represented by two 32-bit single-precision floating point num-
bers. In the proposed method, only the time-delays{τ̂p}L̂

p=1,

doppler frequencies{fr,p}M̂p,L̂p

r=1,p=1, and complex amplitudes

{ar,p}M̂p,L̂p

r=1,p=1 need to be fed back. This amounts to4L̂(1 +
3M̂p) bytes. Using the simulation parameters below, our

proposed method requires only1+3M̂p

2Nblock
≈ 25% of feedback

required compared to previous methods.

C. Mean-squared Error

The OFDM system considered is based on the IEEE 802.16e
mobile broadband wireless system [12] in the ETSI ”Vehicular
A” channel environment (6-tap frequency-selective Rayleigh
fading channel model). We simulate the Rayleigh fading chan-
nel using the modified Jakes simulator with32 propagation
paths. The OFDM system has bandwidthBW = 5 MHz,
carrier frequencyfc = 2.6 GHz, and a Doppler frequency of
fd ≈ 180Hz. A sampling frequency offs = 144

125BW = 5.76
MHz, and a guard interval ofNgi = 64 samples is used, giving
an OFDM symbol period oftsym = (N+Ngi)/fs = 55.56µs.

In simulating our channel prediction algorithm, we used
Npilot = 26 pilot subcarriers spaced∆f = 8 subcarriers apart
across the middle of the OFDM symbol, andNblock = 100
OFDM pilot symbols spaced∆t = 25 symbols apart. The
autocorrelation matrix size for time-delay estimation in (11)
is chosen to beK = d 3

5Npilote = 16, and similarly for the
doppler frequency estimationI = d 3

5Nblocke = 60.
We ran our proposed algorithm using ML estimates as in

(17) and MMSE estimates as in [7], and compared it with the
Burg Prediction method. We generated 100 different channel
realizations and 100 iterations for each realization. Figure 2
shows a snapshot of the channel prediction algorithm for the
proposed algorithm using ML estimates and Burg Prediction
methods for SNR= 10 dB. It is shown qualitatively that the
proposed method predicts the channel better than Burg Predic-
tion. Figure 3 shows the prediction normalized mean square
error (NMSE) comparisons for the three different methods
predicting 10tcoh ahead for varying SNR (left figure), and
predicting in varying lengths for SNR=10 dB (right figure).
The proposed methods outperform the Burg Prediction method
for all SNR values and prediction lengths, and the advantage
is more pronounced as the SNR and the prediction length
increase. This is because using the parametric model allows
us to focus our estimation on the principal components of the
underlying process, and this greatly enhances the prediction
performance. This is analogous to the performance improve-
ment brought about by using parametric channel estimation
versus non-parametric estimation as observed in [7]. Addition-
ally, the improvement in using the MMSE estimates versus the
ML estimates is minimal, and is only seen for lower SNRs.
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Fig. 2. Snapshot of predicted channel with SNR= 10 dB. Channel trace for
the 1st path is shown on the left, and the frequency domain predicted channel
for 1 coherence time ahead is shown on the right.
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