
IEEE TRANS. ON INFORMATION FORENSICS AND SECURITY (ACCEPTED) 1

A Clustering Based Approach to
Perceptual Image Hashing

Vishal Monga, Student Member, IEEE, Arindam Banerjee, and
Brian L. Evans, Senior Member, IEEE

Abstract—
A perceptual image hash function maps an image to a

short binary string based on an image’s appearance to the
human eye. Perceptual image hashing is useful in image
databases, watermarking, and authentication. In this paper,
we decouple image hashing into feature extraction (inter-
mediate hash) followed by data clustering (final hash). We
show that the decision version of our clustering problem is
NP complete. Then, for any perceptually significant feature
extractor, we propose a polynomial-time heuristic cluster-
ing algorithm that automatically determines the final hash
length needed to satisfy a specified distortion. Based on
the proposed algorithm, we develop two variations to facil-
itate perceptual robustness vs. fragility trade-offs. We vali-
date the perceptual significance of our hash by testing under
Stirmark attacks. Finally, we develop randomized clustering
algorithms for the purposes of secure image hashing.

Index terms— hashing, data clustering, image index-
ing, image authentication

Contact— Dr. Vishal Monga, 1 University Station
C0803, The University of Texas, Austin, TX 78712
USA. Voice: +1-512-425-1306, Fax: +1-512-471-5907,
vishal@ece.utexas.edu

V. Monga and B. L. Evans are with the Embedded Signal Process-
ing Laboratory, and A. Banerjee is with the Laboratory for Artificial
Neural Systems, in the Dept. of Electrical and Computer Engineer-
ing at The University of Texas at Austin, Austin, TX 78712 USA.
{vishal,abanerje,bevans}@ece.utexas.edu. V. Monga and B. L. Evans
were supported by a gift from the Xerox Foundation and A. Banerjee
was supported by an IBM PhD Fellowship.

I. Introduction

An image hash function maps an image to a short binary
string based on the image’s appearance to the human eye.
In particular, a perceptual image hash function should have
the property that two images that look the same to the hu-
man eye map to the same hash value, even if the images
have different digital representations; e.g., being separated
by a large distance in mean squared error. This differ-
entiates a perceptual hash from traditional cryptographic
hashes, such as SHA-1 and MD-5 [1]. SHA-1 and MD-5
hashes are extremely sensitive to the input data, i.e., a one
bit change in the input changes the output dramatically.

A perceptual image hash function would facilitate com-
parisons and searches of images in large databases in which
several “perceptually identical” versions of an image may
exist. Further need for such image descriptors arises for the
purposes of integrity verification. Because of the easy-to-
copy nature of digital media, digital data can be tampered
with and hence, there exists a need to be able to verify
the content of the media to ensure its authenticity. In the
literature, the methods used for media verification can be
classified into two categories: digital signature-based [2],
[3], [4], [5], [6], [7] and watermark-based [8], [9], [10], [11],
[12], [13]. A digital signature is a set of features extracted
from the media that sufficiently represents the content of
the original media. Watermarking, on the other hand, is
a media authentication/protection technique that embeds
invisible (or inaudible) information into the media. For
content authentication, the embedded watermark can be
extracted and used for verification purposes. The major
difference between a watermark and a digital signature is
that the embedding process of the former requires the con-
tent of the media to change. However, for content authen-
tication, both the watermark-based approach and the dig-
ital signature-based approach are expected to be sensitive
to any malicious modification of the media while being able
to tolerate incidental modifications such as JPEG compres-
sion (with compression ratios that do not result in signifi-
cant loss of perceptual quality) or image enhancement. In
other words, the digital signature or hash is required to be
robust to perceptually insignificant changes to the image.
Another application of perceptual image hashing is content
dependent key generation for video watermarking [14], [15].

Let I denote a set of images (e.g., all natural images
of a particular size) with finite cardinality. Also, let K
denote the space of secret keys.1 Our hash function then

1The key space in general can be constructed in several ways. A
necessary but not sufficient condition for secure hashing is that the

IEEE TRANS. ON INFORMATION FORENSICS AND SECURITY (ACCEPTED) 2

takes two inputs, an image I ∈ I and a secret key K ∈ K,
to produce a q-bit binary hash value h = H(I, K). Let
Iident ∈ I denote an image such that Iident looks the same
as I. Likewise, an image in I that is perceptually distinct
from I will be denoted by Idiff . Let Q = {H(I, K) | I ∈
I, K ∈ K}, i.e., the set of all possible realizations of the
hash algorithm on the product space I×K. Also, for a fixed
I0 ∈ I define O(I0) = {H(I0,K) | K ∈ K}. That is, for a
fixed image I0, O(I0) is the set of all possible realizations
of the hash algorithm over the key space K. Then, for some
θ1, θ2 satisfying 0 < θ1, θ2 < 1, three desirable properties
of a perceptual hash are identified as follows:
1. Perceptual robustness:
Probability(H(I, K) = H(Iident,K)) ≥ 1− θ1, for a given
θ1

2. Fragility to visually distinct images:
Probability(H(I, K) 6= H(Idiff ,K)) ≥ 1 − θ2, for a given
θ2

3. Unpredictability of the hash:
Probability(H(I, K) = v) ≈ 1

2q , ∀ v ∈ {0, 1}q

Note that the probability measure in the first two prop-
erties is defined over the set Q. For example, property
1 requires that for any pair of “perceptually identical” im-
ages in I and any K ∈ K, the hash values must be identical
with high probability. The probability measure in the third
property, however, is defined on O(I0). That is, the third
property requires that as the secret key is varied over K
for a fixed input image, the output hash value must be ap-
proximately uniformly distributed among all possible q-bit
outputs.

Remark: The three desired properties as laid out above
are those of an “ideal” hash algorithm. Whether or not
such hash algorithms can even be constructed (especially
in a computationally feasible time) remains an outstanding
open problem in media hashing. We therefore do not claim
to achieve these properties for arbitrary values of θ1, θ2 and
q, but instead provide heuristic solutions that achieve these
goals with an acceptably high probability.

Further, the three desirable hash properties conflict with
one another. The first property amounts to robustness un-
der small perturbations whereas the second one requires
minimization of collision probabilities for perceptually dis-
tinct inputs. There is clearly a trade-off here, e.g., if
very crude features were used, then they would be hard to
change (i.e., robust), but it is likely that one is going to en-
counter collision of perceptually different images. Likewise
for perfect randomization, a uniform distribution on the
output hash values (over the key space) would be needed
which in general, would deter achieving the first property.
From a security viewpoint though, the second and third
properties are very important; i.e., key based randomiza-
tion is introduced to prevent against intentional attacks of
guessing, and forgery. It is desirable for the hash algorithm

key space should be large enough to preclude exhaustive search. For
this paper, unless specified otherwise we will assume the key space
to be the Hamming space of 32-bit binary strings. Also, we choose
32-bits to facilitate simulations presented later in Section VI-C. In
practice, larger key sizes, e.g. 512 bits or higher, may be used.

to achieve these (conflicting) goals to some extent and/or
facilitate trade-offs.

Fig. 1. Block diagram of the hash function.

We partition the problem of deriving an image hash into
two steps, as illustrated in Fig. 1. The first step extracts
a feature vector from the image, whereas the second stage
compresses2 this feature vector to a final hash value. In
the feature extraction step, the two-dimensional image is
mapped to a one-dimensional feature vector. This feature
vector must capture the perceptual qualities of the image.
That is, two images that appear identical to the human
visual system should have feature vectors that are close in
some distance metric. Likewise, two images that are clearly
distinct in appearance must have feature vectors that differ
by a large distance. For such feature vector extraction,
many algorithms could be used, e.g. [16], [17], [18], [19],
[20]. For the rest of the paper, we will refer to this visually
robust feature vector as the “intermediate hash”.

The second step then compresses this intermediate hash
vector to a final hash value. In this paper, we assume the
availability of such an intermediate hash vector that has
been extracted from the image and a model on its distribu-
tion (detailed later in Section IV). The methods previously
proposed for this step include using error correction decod-
ing for compression of binary intermediate hash vectors [16]
and dither-based compression via distributed source cod-
ing [21]. While compression is their primary goal [16], [21],
no explicit attempt was made to ensure that perceptually
identical images are compressed to the same hash value.

The second step will involve clustering of the interme-
diate hash vector of an input source (image) and the in-
termediate hash vectors of its perceptually identical ver-
sions. In this paper, we present a solution to the second
step by developing such a clustering algorithm based on
the distribution of intermediate hash vectors [22]. Another
important issue is the length (or granularity) of the final
hash required to cluster images within a specified distance.
Underestimating this length can adversely affect the per-
ceptual qualities of the hash. A significant contribution
of our work is that this length is determined as a natural
outcome of our proposed clustering algorithm.

Section II formally defines the problem for the feature
vector compression step of the two-step hash function. For
the second step, Section III brings out the limitations of

2In this paper, the term compression is used purely to imply a
significant reduction in the dimensionality of the input feature space.
Traditional compression involves the construction of both encoding
and decoding modules. However, in hashing, only the first module is
designed as irreversibility is desirable. This is also emphasized later
in Section V-A.

IEEE TRANS. ON INFORMATION FORENSICS AND SECURITY (ACCEPTED) 3

traditional vector quantization (VQ) based compression
approaches. Section IV formulates a novel cost function for
feature vector (or intermediate hash) compression for the
perceptual hashing application. Section V presents heuris-
tic clustering algorithms for minimizing the cost function
defined in Section IV. We first present a deterministic al-
gorithm in Section V-A that attempts to retain the per-
ceptual significance of the hash as best as possible. Next, a
randomized clustering is proposed (based on a secret key)
in Section V-B for the purposes of secure hashing. Ran-
domization in the algorithm is of great importance in an
adversarial scenario in which a malicious attacker may try
to generate inputs that defeat the hash algorithm. Ex-
perimental results are presented in Sections VI-A through
VI-C. In Section VI-A, we compare with traditional VQ
as well as error correction decoding approaches [16] and
test under Stirmark [23] attacks to show the efficacy of our
clustering algorithm(s) for perceptual hash compression.
Section VI-B presents a statistical analysis of our algo-
rithm using precision-recall (or receiver operating charac-
teristic (ROC)) curves. Section VI-C then presents results
that demonstrate the security properties of our randomized
clustering algorithm. Section VII concludes the paper with
suggestions for future work.

II. Problem Statement

We first establish notation that will be used throughout
the paper. Let V denote the metric space of intermediate
hash vectors extracted at step 1 of the hash algorithm in
Fig. 1. Let L ⊆ V represent a finite set of vectors {li}n

i=1

on which the clustering/compression algorithm is applied.
Let D : V × V → R+ be the distance metric defined on
the product space. Finally, let C : L → {1, 2, ..., k} denote
the clustering map. Note, in a typical application k << n,
re-emphasizing the fact that the clustering as well as the
overall hash is a many-to-one mapping.

Our goal is to have all images that are visually indis-
tinguishable map to the same hash value with high prob-
ability. In that sense an image hash function is similar to
a vector quantization (VQ) or clustering scheme. We are
attempting to cluster images whose intermediate hash vec-
tors are close in a metric into the same cell. In particular,
it is desired that with high probability

if D(li, lj) < ε then C(li) = C(lj) (1)

if D(li, lj) > δ then C(li) 6= C(lj) (2)

where 0 < ε < δ, and li, lj denote random vectors in L
(following the distribution of the intermediate hash) and
let C(li), C(lj) represent the clusters to which these vectors
map after applying the clustering algorithm.

III. Conventional VQ based Compression
Approaches

The goal of the compression step as discussed above is
to achieve a clustering of the intermediate hash vector of
an image I and the intermediate hash vectors of images

that are identical in appearance to I with high probabil-
ity. In that respect, it is useful to think of perceptually
insignificant modifications or attacks on an image as “dis-
tortions” to the image. We may then look to compress the
intermediate hash vectors while tolerating a specified dis-
tortion. The design problem for a vector quantization or
compression scheme that minimizes an average distortion
is to obtain a K partioning of the space V by designing
codevectors {lk}K−1

k=0 in V such that

K−1∑

k=0

∑

l∈Sk

P (l)D(l, lk) < ε (3)

Here, P (l) denotes the probability of occurrence of vector
l and Sk denotes the kth cluster. Average distance min-
imization is a well known problem in the VQ literature
and a large number of algorithms [24], [25], [26] have been
proposed to solve it.

However, an average distance type cost function as in
(3) is inherently not well suited for the hashing applica-
tion. First, while the design of the codebook in (3) ensures
that the average distortion is less than ε, there is no guar-
antee that perceptually distinct vectors, i.e., intermediate
hash vectors that are separated by more than δ, indeed map
to different clusters. In some applications, such as image
authentication where the goal is to detect content changes,
such guarantees may indeed be required because mapping
perceptually distinct vectors to the same final hash value
would be extremely undesirable. More generally, the na-
ture of the cost function in (3) does not allow trade-offs
between desired properties (1) and (2) of the hash algo-
rithm.

Secondly, the cost in (3) increases linearly as a function
of the distance between the intermediate hash vector(s) and
the codebook vector(s). Intuitively though, it is desirable
to penalize some errors much more strongly than others,
e.g., if vectors really close are not clustered together, or
vectors very far apart are compressed to the same final
hash value. A linear cost function does not reflect this
behavior.

Based on these observations, we propose a new cost func-
tion for the perceptual hashing application that does not
suffer from the limitations of average distance measures.

IV. Formulation of the Cost Function

In this section, we formulate the cost function to be min-
imized by the proposed clustering algorithm. First, we an-
alyze several fundamental properties of our requirements
of (1), (2), and the intermediate hash.

We say that an error is encountered when either (1)
and/or (2) is not satisfied for any pair of vectors (li, lj). In-
tuitively then, we must ensure that errors occur for vectors
that are less likely or that the clustering must necessarily
be dictated by the probability mass function of the vectors
in L.

We now describe the construction of our clustering cost
function. Let P : L × L → [0, 1] be the joint distribution

IEEE TRANS. ON INFORMATION FORENSICS AND SECURITY (ACCEPTED) 4

matrix of intermediate hash pairs

P =




p(1, 1) p(1, 2) · · · p(1, n)
p(2, 1) p(2, 2) · · · p(2, n)

...
...

. . .
...

p(n, 1) p(n, 2) · · · p(n, n)


 (4)

where Pij = p(i, j) = p(i)p(j), i.e. pairwise independence
of (li, lj) is assumed. p(i), p(j) respectively denote the
probability of occurrence of vectors li, lj and n is the total
number of vectors to be clustered.

To estimate the probability measure introduced above,
we employ a statistical model on the intermediate
hash/image feature vectors. The fundamental underlying
principle is to define rectangular blocks (or sub-images)
in an image as a real two dimensional homogenous Markov
random field (RF) X(m1,m2) on a finite lattice (m1,m2) ∈
L ⊂ Z2. The basis for connecting such a statistical defini-
tion to perception is the hypothesis first stated by Julesz
[27] and reformulated by several other authors; e.g., [28],
[29] : there exists a set of functions φk(X), k = 1, 2, . . . N
such that samples drawn from any two RFs that are equal
in expectation over this set are visually indistinguishable.

In particular, we employ a universal parametric statis-
tical model for natural images developed by Portilla and
Simoncelli [30] that works with a complex overcomplete
wavelet representation of the image. The image features
that we extract are also based on such a representation
and are described in [20]. Our Markov statistical descrip-
tors, i.e. φks, are then based on pairs of wavelet coeffi-
cients at adjacent spatial locations, orientation and scales.
In particular, we measure the expected product of the raw
coefficient pairs (i.e., correlation), and the expected prod-
uct of their magnitudes. For pairs of coefficients at adja-
cent scales, we also include the expected product of the fine
scaled coefficient with the phase-doubled coarse coefficient.
Finally, we include a small number of marginal statistics of
the image pixels and lowpass wavelet coefficients at differ-
ent scales.

There is no inherent structure to the probability mass
functions associated with these random fields (except the
Markovian property due to spatial correlation in images).
A mathematically attractive choice is a maximum entropy
density [31] of the form

P(~x) ∝
∏

k

e−λkφk(~x) (5)

where ~x ∈ R|L| corresponds to a vectorized sub-image, and
λks are the Lagrange multipliers. The maximum entropy
density is optimal in the sense that it does not introduce
any new constraints on the RF beyond those of perceptual
equivalence under expected values of φks. The density in
(5) is defined on RFs that are portions of natural images.
Since features are functions of RFs a probability density is
in turn induced on the feature vectors.

Our choice of a statistical model vs. using an empirical
distribution on image features is based on the robustness
of model parameters as more samples (images) are added.

By the weak law of large numbers, it can be argued that
the model parameters become nearly invariant once a suffi-
ciently large sample set is considered. In our experiments,
we worked with a set of roughly 2500 natural images. More
details on the model parameters and the typical distribu-
tions on image feature vectors may be found in [30].

Next, we define C1 as the joint cost matrix for violating
(1); i.e., the cost paid if D(li, lj) < ε, yet C(li) 6= C(lj). In
particular, ∀ i, j = 1, 2, ..., n

c1(i, j) =
{

Γ−α1D(li,lj)
1 if D(li, lj) < ε, C(li) 6= C(lj)

0 otherwise
(6)

where α1 > 0 and Γ1 > 1 are algorithm parameters. This
construction follows intuitively because the cost for violat-
ing (1) must be greater for smaller distances, i.e. if the
vectors are really close and not clustered together.

Similarly, C2 is defined as the joint cost matrix for vio-
lating (2)

c2(i, j) =
{

Γα2D(li,lj)
2 if D(li, lj) > δ, C(li) = C(lj)

0 otherwise
(7)

As before, α2 > 0 and Γ2 > 1. In this case however,
the cost is an increasing function of the distance between
(li, lj). This is also natural as we would like to penalize
more if vectors far apart (and hence perceptually distinct)
are clustered together. An exponential cost as opposed
to linear in an average distance VQ, ensures that errors
associated with large distances are penalized severely.
Further, let matrices S1 and S2 be defined as

s1(i, j) =
{

Γ−α1D(li,lj)
1 if D(li, lj) < ε

0 otherwise
(8)

s2(i, j) =
{

Γα2D(li,lj)
2 if D(li, lj) > δ

0 otherwise
(9)

Note, that S1 is different from C1 in the sense that the
entries of S1 include the cost for all possible errors that
can be committed due to (1), while C1 is the cost matrix
due to (1) for the errors actually made by the clustering
algorithm. The same holds for S2 and C2. We normalize
the entries in C1 and C2 to define normalized cost matrices
C̃1 and C̃2 such that

c̃1(i, j) =
c1(i, j)∑

i

∑
j s1(i, j)

(10)

c̃2(i, j) =
c2(i, j)∑

i

∑
j s2(i, j)

(11)

This normalization ensures that c̃1(i, j), c̃2(i, j) ∈ [0, 1].
Finally, we define the total cost function given by

Perr = E[C̃1 + C̃2] (12)

The expectation is taken over the joint distribution of
(li, lj). Assuming pairwise independence of (li, lj), (12)
may be rewritten as

Perr =
∑

i

∑

j

p(i)p(j) (c̃1(i, j) + c̃2(i, j)) (13)

IEEE TRANS. ON INFORMATION FORENSICS AND SECURITY (ACCEPTED) 5

At this point it is worth re-emphasizing that the distance
function D(li, lj) can be any function of li and lj that sat-
isfies metric properties, i.e., non-negativity, symmetry and
triangle inequality. In particular, we are not restricting
ourselves to any class of functions other than requiring
D(·, ·) to be a metric. In practice, the choice of D(·, ·)
is motivated by the nature of features extracted in Stage 1
of the hash algorithm.

The two additive terms in (12), E[C̃1] and E[C̃2] quan-
tify the errors resulting from violating (1) and (2) respec-
tively. In particular, E[C̃1] can be interpreted as the ex-
pected cost of violating (1). Similarly, E[C̃2] signifies the
expected cost incurred by violating (2). It is this structure
of the cost function in (12) that our proposed clustering
algorithm exploits to facilitate trade-offs between goals (1)
and (2) of the hash algorithm. Note in the special case that
α1, α2 = 0, E[C1] and E[C2] represent the total probabil-
ity of violating (1) and (2) respectively.

Indyk et al. [32], [33] have addressed a problem similar
to the one we present in Section II. They introduce the
notion of locally sensitive hashing (LSH) [32] and use it
to develop sublinear time algorithms for the approximate
nearest neighbor search (NNS) problem [34] in high dimen-
sional spaces. The key idea in their work is to use hash
functions [35], [36] such that the probability of collision is
much higher for vectors that are close to each other than
for those that are far apart. However, while they prove the
existence of certain parametrized LSH families [32] they do
not concern themselves with the problem of codebook de-
sign for specific cost functions. Instead, their work focuses
on developing fast algorithms for the NNS problem based
on the availability of such hash codebooks. Our objective
here is to develop a clustering algorithm or equivalently de-
sign a codebook to minimize the cost function in (12) that
is well suited for the perceptual image (or media) hashing
application.

V. Proposed Clustering Algorithms

Finding the optimum clustering that would achieve a
global minimum for the cost function in (12) is a hard
problem. The decision version of the problem: “for a fixed
number of clusters k, is there a clustering with a cost less
than a constant?” is NP-complete. We sketch a proof of
NP completeness in the appendix. Hardness results for the
search version, that actually finds the minimum cost solu-
tion, can be similarly shown. In this paper, we present a
polynomial-time greedy heuristic for solving the problem.

A. Deterministic Clustering

For the following discussion, vectors in L will be referred
to as “data points”. Fig. 2 describes the basic clustering
algorithm. A visualization of the same is shown in Fig. 5.
The data points in the input space are covered to a large
extent by hyperspheres (clusters) of radius ε

2 . For each pair
of points (li, lj) ∈ Sk and cluster center lk, we have

D(li, lj) < D(li, lk) + D(lk, lj) (14)

This is true because D(·, ·) defines a metric. By virtue of
Steps 3 and 5 of the basic clustering algorithm, D(li, lk) <
ε
2 , D(lk, lj) < ε

2 and hence D(li, lj) < ε. The algorithm
therefore attempts to cluster data points within ε of each
other and in addition the cluster centers are chosen based
on the strength of their probability mass function. This
ensures that “perceptually close” data points are clustered
together with high probability.

We make the following observations about the basic clus-
tering algorithm:
• The minimum distance between any two members of two
different clusters has a lower bound of ε and hence there
are no errors from violating (1), which is guaranteed by
Step 4 of the algorithm.
• Within each cluster the maximum distance between any
two points is at most ε, and because 0 < ε < δ, there are
no violations of (2).
• The data points that are left unclustered are less than
3
2ε from some member of at least one cluster.
For perceptual robustness, i.e. achieving (1), we would like
to minimize E[C̃1]. Likewise, in order to maintain fragility
to visually distinct inputs, we would like E[C̃2] to be as
small as possible (ideally zero). Exclusive minimization of
one would compromise the other. Next, we present two dif-
ferent approaches to handle the unclustered data points so
that trade-offs may be facilitated between achieving prop-
erties (1) and (2).

A.1 Approach 1

Fig. 3 describes Approach 1 for handling the unclustered
data points. Step 2 of the algorithm in Fig. 3 looks for the
set of clusters Sδ, such that every point in each of the clus-
ters is less than δ away from the unclustered data point l∗

under consideration. Step 3 then computes the minimum
cost cluster to which to assign l∗. In essence, this approach
tries to minimize the cost in (12) conditioned on the fact
that there are no errors from violating (2). This could
be useful in authentication applications in which mapping

——
1: Obtain user defined parameters ε and δ. Set the num-

ber of clusters k = 1.
2: Select the data point associated with the highest prob-

ability mass, and label it l1

3: Make the first cluster by including all data points lj
such that D(l1, lj) < ε

2
4: k = k + 1. Select the highest probability data

point lk among the unclustered points such that
minS∈C D(lk, S) ≥ 3

2ε where S is any cluster and C
denotes the set of clusters formed till this step of the
algorithm. D(lk, S) is calculated using the notion of
distance from a set given by: D(x, S) = miny∈S D(x, y)

5: Form the kth cluster Sk by including all unclustered
data points lj such that D(lk, lj) < ε

2
6: Repeat steps 4–5 until no more clusters can be formed.

——Fig. 2. Basic clustering algorithm.

IEEE TRANS. ON INFORMATION FORENSICS AND SECURITY (ACCEPTED) 6

perceptually distinct inputs to the same hash may be ex-
tremely undesirable.

A.2 Approach 2

Approach 1 clusters the remaining data points to ensure
that E[C̃2] = 0. The goal in Approach 2 is to effectively
trade-off the minimization of E[C̃1] at the expense of in-
creasing E[C̃2] via a tuning parameter3 β (see Fig. 4). This
can be readily observed by considering extreme values of
β. For β = 1

2 a joint minimization is performed. The other
extreme β = 1 corresponds to the case when the unclus-
tered data points are assigned, so as to exclusively minimize
E[C̃1]. For δ ≥ 5

2ε, Approaches 1 and 2 coincide because
all of the unclustered points are then necessarily within δ of
the existing clusters. Finally, note that a meaningful dual
of Approach 1 does not exist. This is because requiring
E[C̃1] = 0 leads to the trivial solution that all data points
are collected in one big cluster.

In traditional VQ based compression approaches, the
number of codebook vectors or the rate of the vector quan-
tizer [24] is decided in advance and an optimization is car-
ried out to select the best codebook vectors. In our algo-
rithm, the length of the hash (given by dlog2(k)e bits) is
determined adaptively for a given ε, δ and source distribu-
tion. Note however, that we do not claim for this to be
the minimum possible number of clusters that achieves a
particular value of the cost function in (12). Nevertheless,
the length of the hash in bits (or alternatively the num-
ber of clusters) as determined by our proposed clustering
is enough so that the perceptual significance of the hash is
not compromised.
Remark: Note that another difference from compression
applications is the fact that compression entails the design
of reconstruction values as well (in addition to quantization

3β ∈ [1
2
, 1] as opposed to [0, 1]. This is because values of β ∈

[0, 1
2
) do not lead to meaningful clusterings. For example, β = 0

ignores the minimization of E[C̃1] which is the primary objective of
the algorithm.

——–
1: Given the k clusters formed by running the basic clus-

tering algorithm, select the data point l∗ among the un-
clustered points that has the highest probability mass

2: For each existing cluster Si, i = 1, 2...k compute di =
maxx∈Si D(l∗, x)
Let Sδ = {Si such that di ≤ δ}

3: IF Sδ = φ THEN k = k + 1 and Sk = l∗ is a cluster of
its own
ELSE for each Si ∈ Sδ define F (Si) =∑

l∈S̄i
p(l)p(l∗)c1(l, l∗)

where S̄i denotes the complement of Si; i.e., all clusters
in Sδ except Si. Then, l∗ is assigned to the cluster
S∗ = arg minSi F (Si)

4: Repeat steps 1–3.
——Fig. 3. Approach 1 locally minimizes ˜E[C1] conditioned on ˜E[C2] =

0 where C̃2 is defined by (11).

——
1: Given the k clusters formed by running the basic clus-

tering algorithm, select the data point l∗ among the un-
clustered points that has the highest probability mass

2: For each existing cluster Si, i = 1, 2, ...k define
F (Si) = β

∑
l∈S̄i

p(l)p(l∗)c1(l, l∗)+ (1 −
β)

∑
l∈Si

p(l)p(l∗)c2(l, l∗)
where β ∈ [12 , 1], and S̄i denotes the complement
of Si. Then, l∗ is assigned to the cluster S∗ =
arg minSi

F (Si). Analogous to Approach 1, this in-
cludes the case that l∗ is a cluster by itself; in that
case, we increment k.

3: Repeat steps 1–2.
——Fig. 4. Approach 2 enables trade-offs between goals (1) and (2) by

varying the real-valued parameter β.

bins/clusters or Vornoi regions). In the hashing applica-
tion, however, these may be chosen for convenience (e.g.,
a straightforward enumeration using dlog2(k)e bits for k
clusters) as long as the notion of closeness is preserved.

B. Randomized Clustering

The clustering algorithm as presented in the previous sub-
section is a perfectly deterministic map; i.e., a particular in-
put intermediate hash vector always maps to the same out-
put hash value. We now present a randomization scheme to
enhance the security properties of our hash algorithm and
minimize its vulnerability to malicious inputs generated by
an adversary.

Recall that the heuristic employed in the deterministic
algorithm (both for Approaches 1 and 2) was to select
the vector or data point with the highest probability mass
among the candidate unclustered data points as the clus-
ter center. In other words, we select the data point that
has the highest probability mass as the cluster center with
probability one. The randomization rule that we propose
modifies this heuristic to select cluster centers in a proba-
bilistic manner. That is, there is a non-zero probability of
selecting each candidate unclustered data point as the next
cluster center. This probability in turn is determined as a
function of the original probability mass associated with
the data points.

Consider the clustering algorithm with m ≥ 0 clusters
already formed and i < n points clustered. Let X ⊂ L
denote the set of unclustered data points that can be cho-
sen as cluster centers. Note that |X | is not necessarily
n− i. As described in the basic clustering algorithm (Fig.
2) the set X consists of all data points l ∈ L such that
minS∈C D(l, S) ≥ 3

2ε where S is any cluster and C denotes
the set of clusters formed prior to this step of the algo-
rithm. When no more cluster centers can be identified in
this manner, the set X indeed consists of all unclustered
data points.

Then, we define a probability measure on the elements

IEEE TRANS. ON INFORMATION FORENSICS AND SECURITY (ACCEPTED) 7

of X as

π
(s)
i =

(pi)s

∑
j∈X (pj)s

(15)

where s ∈ R+ is an algorithm parameter and pi denotes
the probability mass associated with data point li ∈ X .
The data point li ∈ X is then chosen as a cluster center
with a probability equal to π

(s)
i [37].

Example: A hypothetical example is presented in Fig.
6. In the example, the set X consists of four data
points {l1, l2, l3, l4} with probability mass values of 0.4,
0.2, 0.1 and 0.1, respectively. The normalized probabilities
{π(s)

i }4i=1 using s = 1 are given by π
(1)
1 = 0.5, π

(1)
2 = 0.25,

π
(1)
3 = 0.125, and π

(1)
4 = 0.125. A secret key K1 is used to

serve as a seed to a pseudorandom number generator that
generates a uniformly distributed number a in [0,1] which
in turn is used to select one of the data points as the clus-
ter center. Note that the probability that a ∈ [0, 0.5] is 0.5
and hence the data point l1 is selected with a probability of
0.5. In general, any data point li is selected with probabil-
ity π

(s)
i . This is indeed the classical approach of sampling

from a distribution.
The randomization scheme can be summarized by con-

sidering extreme values of s. Note

lim
s→∞

π
(s)
i =

{
1 for the highest probability data point
0 for all other li ∈ X

In other words, s → ∞ corresponds to the deterministic
clustering algorithm. Similarly, the other extreme, i.e. s

= 0, implies that π
(0)
i is a uniform distribution or that

any data point in X is selected as a cluster center with
the same probability equal to 1

|X | . To enhance security,
the parameter s may also be generated in random fashion
using a second secret key K2.

In general, in the absence of the secret keys K1 and K2,
it is not possible to determine the mapping achieved by
the randomized clustering algorithm. We demonstrate the
hardness of generating malicious inputs by means of exper-
imental results in Section VI-C.

VI. Experimental Results

An intermediate hash (or feature) vector extracted from
an image I will be referred to as fv(I). In the presented
experiments, the intermediate hash was generated using
the method by Monga et al. in [20]. They obtain a bi-
nary intermediate hash vector from a set of visually robust
image feature points. Normalized Hamming distance was
used as the distance metric. In particular, they determine
empirically

D(fv(I), fv(Iident)) < 0.2. (16)

D(fv(I), fv(Idiff)) > 0.3. (17)

In our clustering framework, the two equations above yield
ε = 0.2 and δ = 0.3.

A. Deterministic Clustering Results

A.1 Comparison with Error Correction Decoding and Con-
ventional VQ

In our experiments, we extract a binary intermediate
hash vector of length L = 240 bits from the image. V
is, therefore, the Hamming space of dimension L. Further,
we set L = V and hence the total number of vectors to
be clustered i.e., n = 2240. Because of space and com-
plexity constraints it is clearly impractical to apply the
clustering algorithm to that large of a data set. Hence,
we take the approach commonly employed in space con-
strained VQ problems [24]; i.e., we divide the intermediate
hash vector into segments of length M = L

m (where m is
an integer) and apply the clustering on each segment sep-
arately. The resulting binary strings are concatenated to
form the final hash. A similar approach for an irreversible
compression of binary hash values was used by Venkatesan
et al. in [16]. They employ error control decoding using
Reed-Muller codes [38]. In particular, they break the hash
vector to be compressed into segments of length as close as
possible to the length of codevectors in a Reed-Muller error
correcting code. Decoding is then performed by mapping
the segments of the hash vector to the nearest codeword
using the exponential pseudo norm [16].

Tables I, II and III respectively, show values of the cost
function in (12) by compressing the intermediate hash vec-
tor using 1.) our proposed clustering scheme, 2.) the error
control decoding scheme as described in [16] and 3.) an av-
erage distance VQ approach [24]. We generated the results
in Table I by using Approach 2 with β = 1

2 . For the error
control decoding scheme, we use (8,4), (16,5) and (16,11)
Reed-Muller codes. Our proposed clustering algorithm as
well as the average distance VQ compression were also em-
ployed on segments of the same length to yield a meaningful
comparison4. Note that VQ compression [24] based on de-
scent methods that gradually improve the codebook by it-
eratively computing centroids cannot be applied here since
the vectors to be compressed are themselves binary (i.e.,
codebook vector components cannot assume intermediate
values between 0 and 1). For the results in Table III, we
used the binary VQ compression based on “soft-centroids”
proposed by Franti et al. [26].

The results in Tables I, II and III clearly reveal that
the values for the expected cost of violating (1) and (2)
i.e. E[C̃1] and E[C̃2], are orders of magnitude lower when
using our clustering algorithm (even as we achieve better
compression than error correction decoding approaches).
Hence, we show that the codebook as obtained from using
error correcting codes and/or conventional VQ based com-
pression approaches does not fare well for perceptual hash
compression.
Remark: The proposed clustering algorithm can be used

4For an average distance VQ the rate or the number of codebook
vectors is to be decided in advance. We decided on this number by
determining first the number of clusters (or equivalently the hash
length in bits) that result from the application of our proposed clus-
tering and then using a rate slightly higher than that for the average
distance VQ. This ensures a fair comparison across the two methods.

IEEE TRANS. ON INFORMATION FORENSICS AND SECURITY (ACCEPTED) 8

to compress feature vectors as long as the distance mea-
sure defined on the product space V × V satisfies metric
properties. For example, if the features were to be real val-
ued, the number of data points n or equivalently the set
L should be chosen large enough to sufficiently represent
source (feature vector) statistics. A codebook can then be
derived from the set L using the proposed clustering and
feature vectors can be mapped to the nearest vector in the
codebook based on a minimum cost decoding rule [24].

A.2 Perceptual Robustness Vs. Fragility Trade-offs

Table IV compares the value of the cost function in (12)
for the two different clustering approaches. For Approach 2
(rows 2 and 3 of Table IV) the value of E[C̃1] is lower than
that for Approach 1. In particular, it can be shown that
(via our clustering algorithm) the lowest value of the cost
function is obtained using Approach 2 with β = 1

2 . Trade-
offs are facilitated in favor of (1) by minimizing E[C̃1] using
Approach 2 with β ∈ (1

2 , 1]. This trade-off is illustrated in
greater detail in Fig. 8.

Likewise, (2) is favored by employing Approach 1. For
the results in Table IV and Fig. 8, the clustering algorithm
was applied to segments of length M = 20 bits.

A.3 Validating the Perceptual Significance

We applied the two-stage hash algorithm (using Ap-
proach 2 with β = 1

2) on a database of 50 images. The
final hash length obtained was 46 bits. For each image
20 perceptually identical images were generated using the
Stirmark software [23], [39]. The attacks implemented on
the images included JPEG compression with quality fac-
tors varying from 10 to 80, adding white Gaussian noise
(AWGN), enhancing contrast, non-linear (e.g., median) fil-
tering, scaling and random shearing, and small rotation
and cropping. The resulting hash values for the original
image and its perceptually identical versions were the same
in over 95% cases. Then, we compared hash values for all
possible pairings of the 50 distinct images (1225 pairs).
One collision case was observed5. For all other cases the
hash values (on a pairwise basis) were very far off. In gen-
eral, the performance of our hash function is limited by the
robustness of the feature detector.

For the same set of images, using an average distance
VQ for feature vector compression resulted in about a 70%
success rate of mapping perceptually identical versions to
the same hash value. In addition, 40 collision cases (same
hash value for perceptually distinct images) were observed.

B. Precision Recall or ROC Analysis

We now present a detailed statistical comparison of our
proposed clustering with the average distance VQ and error
correcting decoding using precision-recall (or ROC) curves
[40].

5The results for the randomized clustering algorithm by appropri-
ately choosing s (detailed in Section VI-C) were very similar to the
ones reported here. In particular, we observed the same trend over
several different choices of the secret key K1.

The precision-recall terminology comes from document
retrieval, where precision quantifies (for a given query)
what fraction of the returned documents are correct. Re-
call, on the other hand, measures what fraction of the
correct documents were returned. Fig. 7 illustrates this
scenario. In this case, recall can be improved by simply
returning as large a set as possible. This, however, will
heavily compromise the precision of the search.

A precision-recall curve illustrates this trade-off and pro-
vides valuable insight especially for problems in which ab-
solute maximization of precision and/or recall is possible
only via trivial solutions. For our problem in Section II, we
employ the notion of pairwise precision [40] in the following
manner

Precε =
|XS ∩XA|
|XA| (18)

where XS = {(li, lj) | D(li, lj) < ε} is the set of all pairs
that should be in the same cluster. XA then denotes the set
of pairs that a given algorithm A puts in the same cluster.

Similarly, pairwise recall

Recε =
|XS ∩XA|
|XS | (19)

Clearly, 0 ≤ Precε ≤ 1, 0 ≤ Recε ≤ 1 (recall may triv-
ially be made 1 by putting all vectors in the same cluster).
Fig. 9 shows an analysis of three algorithms: 1.) average
distance VQ, 2.) error correction decoding (ECD) and 3.)
the proposed clustering via precision-recall curves. Each
point on the curve(s) in Fig. 9 is a precision-recall pair for
a particular value of ε; i.e., the precision and recall values
computed using (18) and (19) when the algorithm is run
for that ε. As indicated in Fig. 9 we varied ε in the range
[0.1, 0.5].

Comparing the precison-recall curves for the average dis-
tance VQ and ECD we observe that the average distance
VQ affords a better recall rate at the cost of loosing pre-
cision which is higher for ECD. This explains partially the
higher number of collisions in the hash values for percep-
tually distinct images using the average distance VQ. Note
that both the precision as well as recall values are much
higher using our proposed clustering algorithm.

Note also that there are three different curves for our
proposed clustering algorithm. These correspond to differ-
ent choices of δ (as a function of ε) in our algorithm. The
average distance VQ and ECD do not have a δ parameter;
hence, we present results of our clustering for different δ to
ensure a fair comparison between the three schemes. This
also provides insight on how δ may be chosen for a given ε
(which is typically determined empirically from the feature
space) to attain greater flexibility in the precision-recall
trade-offs.

In the classical detection theoretic framework, ROC
curves are reported as: probability of miss PM ; i.e., prob-
ability that perceptually identical images map to differ-
ent hash values vs. probability of false alarm PF ; i.e.,
probability that perceptually distinct images map to the
same hash value. Note that, PM = 1 − Recε. How-
ever, there is no straightforward relationship between PF

IEEE TRANS. ON INFORMATION FORENSICS AND SECURITY (ACCEPTED) 9

and (Precε, Recε). We presented a precision-recall analysis
then for two reasons: 1.) in our experiments the probabil-
ity of false alarm PF was too small to be noticed on the
ROC curves, and 2.) Precε is a more informative quantity
than PF from the viewpoint of image database search.

C. Security Experiments

An important observation underlying the need for ran-
domization is the fact that feature extraction is seldom
perfect. That is by means of thorough analysis it may be
possible for an adversary to manipulate image content and
yet generate vectors over the feature space that are close.
The goal of randomization is hence to make the job of de-
feating the hash algorithm significantly harder.

A malicious adversary may try to accomplish the same
in one of two ways.
1. The adversary may try to generate perceptually iden-
tical inputs for which hash algorithm generates different
hash values, or
2. The adversary may attempt to tamper with the content
so as to cause significant perceptual changes such that the
hash algorithm generates the same hash value.
We assume here, that the adversary has complete knowl-
edge of the intermediate hash (or feature) vector extraction
as well as the deterministic clustering algorithm for inter-
mediate hash vector compression. Hence, the adversary is
capable of analyzing the algorithm and would attempt to
generate inputs over the set E ⊂ U , where U represents the
set of all possible pairs of intermediate hash vectors and E
is the set of intermediate hash vector pairs over which the
deterministic clustering algorithm makes errors.

C.1 Security Via Randomization

For the results presented next, the randomized cluster-
ing algorithm in Section V-B was employed with Approach
2 and β = 1

2 . Fig. 10 shows a plot of the cost in (12) com-
puted over the set E against values of s decreasing from ∞
to 0. It can be seen that the cost decreases with s (though
not monotonically) and is reduced by orders of magnitude
for values of s < 1000. Decreasing s is tantamount to in-
creasing randomness. Hence, the plot in Fig. 10 reveals
that as randomness is increased beyond a certain level, the
adversary meets with very little success by generating input
intermediate hash pairs over the set E.

C.2 Randomness vs. Perceptual Significance Trade-offs

Let Ē denote the complement set of E; i.e., the set of all
intermediate hash vector pairs over which no errors are
made by the deterministic clustering algorithm. Fig. 11
then shows the plot of the clustering cost function against
decreasing s as before. In this case, the cost increases with
decreasing s (again not monotonically). As s →∞ the cost
is zero since the deterministic clustering algorithm makes
no errors over the set Ē.

Fig. 12 shows a sum of the cost in the two plots in Figs.
10 and 11. This plot therefore shows the total cost com-
puted over the set U as a function of s. Figs. 13 and
14 respectively show the same cost function plots as in

Figs. 11 and 12 but with the y−axis in log-scale. As s ap-
proaches 0, the value of the cost is increased significantly
over the cost incurred by the deterministic algorithm. The
cost achieved by the deterministic algorithm is the value of
the cost function in Fig. 12 (or Fig. 14) as s →∞ and equal
to 7.43×10−9. At s = 0, the total cost is 6.12×10−5. This
increase is intuitive as complete randomness (i.e., s = 0)
would affect the perceptual qualities of the hash.

It is of interest to observe the values of the cost function
in Fig. 12 for 40 < s < 1000. This region is zoomed in
and plotted in Fig. 15. It can be observed from Fig. 15
that the total cost is of the order of the cost incurred by
the deterministic algorithm. Further, we know from Fig.
10 that the cost over the set E for s < 1000 decreases
to the extent that the adversary cannot gain anything by
generating input pairs on this set. By choosing a value of s
in this range we can largely retain the perceptual qualities
of the hash and also reduce the vulnerability of the hash
algorithm to malicious inputs generated by the adversary.

C.3 Distribution of Final Hash Values

Finally, we evaluate our success in meeting the third de-
sired property of the hash, i.e. the closeness to uniform
distribution. We employ the widely used Kullback Leibler
(KL) distance [31] given by

D(h||u) =
∑

x∈C

h(x) log
h(x)
u(x)

(20)

where C = {x : h(x) > 0} represents the support set of
h(x). Here h(x) denotes the distribution of hash values
generated by our algorithm and u(x) denotes the uniform
distribution over the set C. The set C was obtained by
generating the hash values for a given image used in our
experiments over the key space (of K1).

Fig. 16 shows the plot of the KL measure against values
of s decreasing from ∞ to 0. Even as s →∞ this value is
pretty low (≈ 0.2) and for s < 1000 i.e., the desired range
for secure hashing we achieve a near uniform distribution.
Very similar results were observed for all of the 50 images
in our experiments.

VII. Discussions & Conclusion

This paper presents a two-stage framework for
perceptually-based image hashing. The framework facil-
itates trade-offs between robustness and fragility of the
hash. Within the framework, we present a randomization
scheme for secure hashing.

In the framework, the first step extracts visually sig-
nificant features from an image to produce an intermedi-
ate hash. A variety of feature detectors may be applied.
The second step clusters perceptually identical inputs while
minimizing (in a rigorous sense) the likelihood of collision
for perceptually distinct inputs to compress the interme-
diate hash to a final hash. The clusters are invariant for
perceptually identical images with a very high probability.

One possible future direction is in audio hashing. Since
the second step is media independent, an appropriate fea-
ture detector may be applied in the first step to make the

IEEE TRANS. ON INFORMATION FORENSICS AND SECURITY (ACCEPTED) 10

framework applicable to other media data sets. Another
possible future direction is to analyze the secure percep-
tual media (image/audio) hashing problem formally in a
game theoretic setting.

References

[1] A. Menezes, V. Oorschot, and S. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1998.

[2] M. Schneider and S. F. Chang, “A robust content based digital
signature for image authentication,” Proc. IEEE Conf. on Image
Processing, vol. 3, pp. 227–230, Sept. 1996.

[3] C. Kailasanathan and R. S. Naini, “Image authentication sur-
viving acceptable modifications using statistical measures and
k-mean segmentation,” IEEE-EURASIP Work. Nonlinear Sig.
and Image Processing, vol. 1, June 2001.

[4] C. Y. Lin and S. F. Chang, “Generating robust digital signature
for image/video authentication,” Proc. ACM Multimedia and
Security Workshop, Sept. 1998.

[5] C. Y. Lin and S. F. Chang, “A robust image authentication
system distingushing JPEG compression from malicious manip-
ulation,” IEEE Trans. on Circuits and Systems for Video Tech-
nology, vol. 11, pp. 153–168, Feb. 2001.

[6] S. Bhatacherjee and M. Kutter, “Compression tolerant image
authentication,” Proc. IEEE Conf. on Image Processing, vol. 1,
pp. 435–439, 1998.

[7] J. Dittman, A. Steinmetz, and R. Steinmetz, “Content based
digital signature for motion picture authentication and content-
fragile watermarking,” Proc. IEEE Int. Conf. on Multimedia
Computing and Systems, vol. 2, pp. 209–213, 1999.

[8] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure
spread spectrum watermarking for multimedia,” IEEE Trans.
on Image Processing, vol. 6, no. 12, pp. 243–246, Dec. 1996.

[9] E. T. Lin and E. J. Delp, “A review of fragile image watermarks,”
Proc. ACM Multimedia and Security Workshop, vol. 1, pp. 25–
29, Oct. 1999.

[10] M. M. Yeung and F. Mintzer, “An invisible watermarking
scheme for image verification,” Proc. IEEE Conf. on Image
Processing, vol. 1, pp. 680–683, Oct. 1997.

[11] M. Wu and B. Liu, “Watermarking for image authentication,”
Proc. IEEE Conf. on Image Processing, vol. 2, pp. 437–441, Oct.
1998.

[12] R. B. Wolfgang and E. J. Delp, “Fragile watermarking using the
VW2D watermark,” Proc. SPIE/IS&T Int. Conf. Security and
Watermarking of Multimedia Contents, pp. 204–213, Jan. 1999.

[13] L. Xie and G. R. Arce, “A class of authentication digital water-
marks for secure multimedia communication,” IEEE Trans. on
Image Processing, vol. 10, no. 11, pp. 1754–1764, Nov. 2001.

[14] G. L. Friedman, “The trustworthy digital camera: restoring
credibility to the photographic image,” IEEE Trans. on Con-
sumer Electronics, vol. 39, pp. 905–910, Nov. 1993.

[15] M. K. Mihcak and R. Venkatesan, “Video watermarking us-
ing image hashing,” Microsoft Research Technical Report, Jan.
2001.

[16] R. Venkatesan, S. M. Koon, M. H. Jakubowski, and P. Moulin,
“Robust image hashing,” Proc. IEEE Conf. on Image Process-
ing, vol. 3, pp. 664–666, Sept. 2000.

[17] J. Fridrich and M. Goljan, “Robust hash functions for digital
watermarking,” Proc. IEEE Int. Conf. on Information Tech-
nology: Coding and Computing, pp. 178–183, Mar. 2000.

[18] K. Mihcak and R. Venkatesan, “New iterative geometric tech-
niques for robust image hashing,” Proc. ACM Workshop on
Security and Privacy in Digital Rights Management, Nov. 2001.

[19] C.-S. Lu and H.-Y. M. Liao, “Structural digital signature for
image authentication,” IEEE Trans. on Multimedia, vol. 5, pp.
161–173, June 2003.

[20] V. Monga and B. L. Evans, “Robust perceptual image hashing
using feature points,” Proc. IEEE Conf. on Image Processing,
vol. 1, pp. 677–680, Oct. 2004.

[21] M. Johnson and K. Ramachandran, “Dither-based secure image
hashing using distributed coding,” Proc. IEEE Conf. on Image
Processing, vol. 3, pp. 14–17, Sept. 2003.

[22] V. Monga, A. Banerjee, and B. L. Evans, “Clustering algorithms
for perceptual image hashing,” Proc. IEEE Digital Sig. Process-
ing Workshop, pp. 283–287, Aug. 2004.

[23] “Fair evaluation procedures for watermarking systems,”
http://www.petitcolas.net/fabien/watermarking/stirmark,
2000.

[24] A. Gersho and R. M. Gray, Vector Quantization and Signal
Compression, Kluwer Academic, 1991.

[25] X. Wu, “Adaptive binary vector quantization using hamming
codes,” Proc. IEEE Conf. on Image Processing, vol. 3, pp. 93–
96, Oct. 1995.

IEEE TRANS. ON INFORMATION FORENSICS AND SECURITY (ACCEPTED) 11

[26] P. Franti and T. Kaukoranta, “Binary vector quantizer design
using soft-centroids,” Signal Processing: Image Communica-
tion, vol. 14, pp. 677–681, Sept. 1999.

[27] B. Julesz, “Visual pattern discrimination,” IEEE Trans. on
Information Theory, vol. 8, pp. 84–92, Feb. 1962.

[28] J. I. Yellott, “Images, statistics and textures: Implications of
triple correlation uniqueness for texture statistics and the julesz
conjecture,” Journal of Optical Society of America, vol. 10, pp.
777–793, Oct. 1993.

[29] S. Zhu, Y. N. Wu, and D. Mudford, “Filters, random fields
and maximum entropy (frame) - towards the unified theory for
texture modeling,” ACM Int. Journal of Computer Vision, vol.
27, pp. 107–126, Mar. 1998.

[30] J. Portilla and E. P. Simoncelli, “A parametric texture model
based on joint statistics of complex wavelet coefficients,” Kluwer
Int. Journal of Computer Vision, vol. 40, pp. 49–71, Jan. 2000.

[31] T. M. Cover and J. A. Thomas, Elements of Information The-
ory, Wiley Interscience, 1998.

[32] P. Indyk and R. Motwani, “Approximate nearest neighbor: to-
wards removing the curse of dimensionality,” Proc. 30th Annu.
ACM Symp. Comput. Geometry, pp. 604–613, May 1998.

[33] P. Indyk, High-dimensional computational geometry, PhD The-
sis, Stanford University, 2001.

[34] J. E. Goodman and J. O’Rourke, Handbook of Discrete and
Computational Geometry, CRC Press, 1997.

[35] M. L. Fredman, J. Komlos, and E. Szemeredi, “Storing a sparse
table with O(1) worst case access time,” Journal of the ACM,
vol. 31, pp. 538–544, June 1984.

[36] M. L. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm
for finding best matches in logarithmic expected time,” ACM
Trans. on Mathematical Software, pp. 209–226, Sept. 1977.

[37] A. Papoulis and S. U. Pillai, Probability, Random Variables and
Stochastic Processes, McGraw Hill College Series, 2000.

[38] R. E. Blahut, Theory and Practice of Error Control Codes,
Addison-Wesley Publishing Company, 1983.

[39] F. A. P. Petitcolas and R. J. Anderson, “Evaluation of copy-
right marking systems,” Proc. IEEE Int. Conf. on Multimedia
Systems, pp. 574–579, June 1999.

[40] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of
Statistical Learning, Springer-Verlag, 2001.

[41] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W. H. Freeman &
Co., 1979.

Appendix

I. Proof of NP-completeness

In this section, we prove that a decision version of the
clustering problem that asks if it is possible to have a k-
clustering such that the cost function in (13) is below a
certain constant is NP-complete. We achieve this by a re-
duction (details skipped for brevity) to the decision version
of the k-way graph-cut problem [41].
Proof. (Sketch) Let G = (V, E) be a graph where V is
the set of vertices and E is the set of edges. It is useful
to think of V as the set of points to be clustered, and the
edge eij between vi and vj denoting unit distance between
the points vi and vj . The k-way graph-cut problem asks
if there is a subset A ⊆ E of edges with |A| ≤ K0, where
K0 is a constant, such that the graph G′ = (V, E \ A) has
k pairwise disjoint subgraphs. We sketch a reduction of
(the decision version) of the clustering problem in (13) for
a fixed k to the graph-cut problem, i.e., we show that the
input to the graph-cut problem can be converted into the
input to the clustering problem and that solving the clus-
tering problem yields a solution to the graph-cut problem.
Since the graph-cut problem in NP-complete, it will fol-
low that the clustering problem in (13) is NP-complete as
well. The reduction is quite simple: Consider the cluster-

ing problem with D(li, lj) ≤ δ for a suitably large choice of
δ. Further, the distance function is such that D(li, lj) < ε
if eij ∈ E. Then, choosing either Γ1 = 1 or α1 = 0, we have
s1(i, j) = |E|. Hence, for any clustering C, the normalized
cost matrix C̃1 is given by c̃1(i, j) = 1/|E| if eij ∈ E and
C(li) = C(lj), and 0 otherwise. Note that C̃2 is a zero
matrix since all points are within δ of one another. As-
suming the intermediate hash distribution p to be uniform,
i.e., p(i) = 1

n where n is the total number of intermedi-
ate hash vectors, the cost associated with the clustering as
in (13) is proportional to the cost of the k-way cut with
a proportionality constant of 1

n2|E| . Hence, the question
whether there is a k-way cut A with |A| ≤ K0 exists is
same as asking if there is a clustering C whose cost is less
than K0

n2|E| , and the solution of the latter gives a solution
of the former. That completes the reduction.

IEEE TRANS. ON INFORMATION FORENSICS AND SECURITY (ACCEPTED) 12

Fig. 5. Visualization of the Clustering Algorithm

Fig. 6. Example: Selection of data points as cluster centers in a
probabilistic sense

Fig. 7. Illustration of Precision and Recall in a document retrieval
scenario

M E[C̃1] E[C̃2] Final Hash Length
8 1.86× 10−5 2.372× 10−7 102 bits
16 1.219× 10−7 5.70× 10−9 54 bits

TABLE I

Compression of intermediate hash vectors using the

proposed clustering. M is the segment length in bits. C̃1

and C̃2 are defined in (10) and (11) respectively. E[C̃1] and

E[C̃2] represent the measures of violating desirable hash

properties in (1) and (2) respectively.

M E[C̃1] E[C̃2] Final Hash Length
8 1.526× 10−3 5.55× 10−4 120 bits
16 9.535× 10−2 6.127× 10−3 75 bits
16 5.96× 10−4 3.65× 10−5 165 bits

TABLE II

Compression of intermediate hash vectors using error

control decoding. M is the segment length in bits. C̃1 and

C̃2 are defined in (10) and (11) respectively. E[C̃1] and

E[C̃2] represent the measures of violating desirable hash

properties in (1) and (2) respectively.

M E[C̃1] E[C̃2] Final Hash Length
8 1.44× 10−3 5.88× 10−4 120 bits
16 3.65× 10−4 7.77× 10−5 60 bits

TABLE III

Compression of intermediate hash vectors using a

conventional average distance VQ. M is the segment length

in bits. C̃1 and C̃2 are defined in (10) and (11) respectively.

E[C̃1] and E[C̃2] represent the measures of violating

desirable hash properties in (1) and (2) respectively.

IEEE TRANS. ON INFORMATION FORENSICS AND SECURITY (ACCEPTED) 13

Fig. 8. Perceptual robustness vs. fragility trade-offs by varying
β ∈ [1

2
, 1].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pairwise Precision

P
ai

rw
is

e
R

ec
al

l

Error Correction Decoding
Average Distance VQ
Proposed Clustering δ = 2.00 ε
Proposed Clustering δ = 2.5 ε
Proposed Clustering δ = 1.5 ε

ε = 0.1

ε = 0.5

Fig. 9. Precision-recall curves for three compression approaches:
traditional VQ, Error Correction Decoding, Proposed Clustering

Fig. 10. Clustering cost function computed over the set E. E is the
set of intermediate hash vector pairs over which the deterministic
clustering makes errors and s is the randomization parameter.

Fig. 11. Clustering cost function over the set Ē. Ē denotes the
complement set of E and s is the randomization parameter.

Clustering Algorithm E[C̃1] E[C̃2]
Approach 1 7.64× 10−8 0
Approach 2, β = 1

2 7.43× 10−9 7.464× 10−10

Approach 2, β = 1 4.17× 10−10 4.87× 10−8

TABLE IV

Cost function values using Approaches 1 and 2 with

trade-offs numerically quantified.

IEEE TRANS. ON INFORMATION FORENSICS AND SECURITY (ACCEPTED) 14

Fig. 12. Clustering cost function over the complete set U of in-
termediate hash pairs. U = E ∪ Ē and s is the randomization
parameter.

Fig. 13. Clustering cost function over the set Ē with the vertical
axis on a log scale to show more detail of Fig. 11.

Fig. 14. Clustering cost function over the complete set U with the
vertical axis on a log scale to show more detail of Fig. 12.

Fig. 15. Clustering cost function over the set U of intermediate hash
pairs in the region 40 < s < 1000

IEEE TRANS. ON INFORMATION FORENSICS AND SECURITY (ACCEPTED) 15

Fig. 16. Kullback-Leibler distance of the hash distribution measured
with the uniform distribution as the reference. Here s is the
randomization parameter.

