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ABSTRACT
Internet traffic primarily consists of packets from Transmis-
sion Control Protocol (TCP) flows. Based on passive, flow
level TCP network measurements, our previous work has fo-
cused on using the principal component method to perform
factor analysis on flow class throughput correlation matri-
ces in order to infer which classes of TCP flows are sharing
bottlenecks in the network. In this paper, we present a first-
order autoregressive model for congestion at a bottleneck to
analyze the need for filtering out a subset of the collected flow
measurements before analysis. We demonstrate the success-
ful application of our statistical methods in inferring con-
gestion sharing after filtering out small- and large-sized flow
samples.

1. INTRODUCTION

Determining which network flows are sharing congested re-
sources might be the first step in analyzing and eliminating
the causes of poor network performance. For instance, in-
formation on congestion sharing might be used by content
providers to replicate content at other locations to reduce the
load on the congested portions of the network, and by ser-
vice providers to diagnose problems and direct traffic sharing
a bottleneck onto disjoint routes. However, deciding which
network flows are sharing congested resources in the Inter-
net is usually difficult without access to the complete routing
information for the network. In general, network managers
have information only about their network domain, and have
little or no information about the properties of the other do-
mains.

Previous research has focused on using packet level
statistics such as packet loss [1, 2], packet delay [2], packet
order [3], or entropy of inter-packet spacing [4] to infer con-
gestion sharing. Our previous work on inferring conges-
tion sharing has differed significantly from the previous ap-
proaches in that we have considered flow level (higher level
traffic object) instead of packet level statistics. Our meth-
ods have relied on passive, flow level Transmission Control
Protocol (TCP) measurements (flow records) collected at a
network node (e.g. router, gateway, server). In particular,
in [5], we have shown that the correlation structure of flow
class throughputs obtained by flow level measurements for a
number of TCP flow classes can often be captured by a fewer
number of latent factors. The latent factors represent con-
gested resources and can be used to infer which flow classes
are sharing resources in the network. In [6], we have applied
factor analysis to analyze voluminous amounts of flow level
TCP network traffic measurements collected at a single mea-
surement site to infer which classes of TCP flows are sharing
congested resources.

In this paper, using a first-order autoregressive (AR(1))
model [7], we analyze the need for filtering out a subset of
the collected TCP flow measurements before factor analy-
sis. We demonstrate that filtering out small- and large-sized

flows enables us to infer congestion sharing flow classes in
the Internet. We present the results of congestion sharing
inferences using two sets of real data.

2. MODEL

A commonly accepted definition of an Internet Protocol (IP)
flow is a unidirectional sequence of packets, which are close
to each other in time and share a common identifier such
as a common source and destination IP address. State-of-
the-art networking equipment that runs traffic monitoring
tools (such as Cisco’s NetFlow) is capable of generating flow
records. A flow record is a measurement object that contains
the source and destination IP addresses, TCP or User Data-
gram Protocol (UDP) port numbers, IP protocol type, type
of service fields in IP headers, start (sf ) and end (ef ) times,
and the number of packets and bytes in a flow f . We de-
fine an IP flow class as a collection, or aggregation, of flows
that are emitted successively and in parallel, and that have a
common attribute (e.g. all flows sharing common source and
destination IP address prefixes). We define the perceived
throughput of a flow as the amount of data it carries (its size
in bits) divided by the duration of the flow (in seconds). The
throughput of a flow class at a given time is an average over
the flows in that class (class average) that are active at that
time.

It has been shown that TCP flows that are operating in
additive-increase multiplicative-decrease mode of congestion
control share the capacity of a bottleneck link roughly fairly
when the flows have similar round-trip times and packet loss
rates [8]. As an example, Fig. 1 illustrates how two tempo-
rally overlapping TCP flows share available bottleneck ca-
pacity in an idealized model. However, in general, TCP flows
take some time to discover the congestion state, or the avail-
able capacity of the network, and especially, very small flows
(due to TCP’s Slow Start) may not have an opportunity to
“learn” the capacity available to them during their sojourn.
As a consequence, the throughput perceived by short flows
will not reflect the congestion state of the network during
their sojourn.

Based on the findings on capacity sharing by TCP flows
at a bottleneck, we consider a simple model of congestion
level seen by a flow1: {B(i)} is an AR(1) process that repre-
sents the instantaneous bandwidth (or capacity) available to
each flow at the bottleneck. {B(i)}, whose mean is denoted
by µB , is then defined by

B(i)− µB = α (B(i− 1)− µB) + Z(i),

where {Z(i)} ∼ N(0, σ2
Z), |α| < 1, and Z(i) is uncorrelated

1We assume that the congestion process is roughly independent
of the flow; i.e., the flow makes only a small contribution to the
overall congestion.
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Figure 1: Sharing of instantaneous available resource capac-
ity by two temporally overlapping flows. The length of the
rectangle corresponds to the flow’s duration. In this particu-
lar example, both flows have similar packet round trip times
and packet loss rates, and the instantaneous bandwidth shar-
ing is roughly fair during the time period over which they
overlap.

with B(j) for each j < i 2. For now, let us assume that start
and end times (sf and ef ) are discrete times. A given flow
f carries an amount of data equal to

Vf =

efX
i=sf

B(i).

In the discrete-time AR(1) model, the duration of a flow f
is given by df = ef − sf + 1. For simplicity, consider two
flows f1 and f2 with given start and end times, and suppose
that sf1 = 0 and sf1 ≤ sf2 without loss of generality. The
throughputs perceived by these flows are

Yf1 =

Pef1
i=0 B(i)

df1

+
Wf1

df1

and Yf2 =

Pef2
j=sf2

B(j)

df2

+
Wf2

df2

,

where Wf1 , Wf2 ∼ N(0, σ2
W ) are included to model the

“noisy” throughputs perceived by short TCP flows, and are
independent of each other, {B(i)}, and {Z(i)}. In this con-
text, a “noisy” throughput means that the throughput per-
ceived by a short flow is not a typical one for the class to
which the flow belongs due to its inability to discover the
congestion state of the network. For flows with long sojourn
times, the “noise” terms become negligible. The autocorre-
lation function of {B(i)} is denoted by γ(h), and is equal to
σ2

Zαh/(1 − α2) for h ≥ 0. The correlation between Yf1 and
Yf2 is

Corr(Yf1 , Yf2) =
1

df1df2σYf1
σYf2

ef1X
i=0

ef2X
j=sf2

γ(|j − i|), (1)

where σYf1
and σYf2

are the standard deviations of through-
puts of f1 and f2, respectively. The standard deviation of
the throughput of f with sf = 0 is given by

σYf =
p

Cov(Yf , Yf ) =

vuut 1

d2
f

 efX
i=0

efX
j=0

γ(|j − i|) + σ2
W

!
.

(2)

2For similar approaches to modeling available bandwidth at
a bottleneck, refer to [9]. Note that in our AR(1) model, avail-
able bandwidth can become negative. However, we introduce this
simple model only to provide an insight into the nature of flow
throughput correlations without attempting an exact traffic model
in any way.
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Figure 2: The effect of flow duration and temporal overlap on
the correlation in (1) between throughputs of f1 and f2 that
share a congested resource. The correlation values shown are
for σ2

W = 0. Flow 1 starts at time 0 and ends at time 20.

Note that perceived throughputs of long flows have smaller
standard deviation than those of short flows since d2

f domi-
nates in (2) [10]. These results agree with the observations
reported for the perceived throughputs of small and large
flows in [11].

In order to illustrate the behavior of (1) with different
flow durations and different amounts of temporal overlap
between the two flows, we set α = 0.5, σ2

Z = 1, and σ2
W = 0

(no noise), and in Figs. 2 and 3, we exhibit the correlation
as a function of sf2 for different df2 values when ef1 = 20
and ef1 = 30. From the AR(1) model, we can draw the
conclusion that the correlation between perceived through-
puts of congestion sharing elastic flows is largely determined
by the amount of temporal overlap between flows relative to
the (product of) durations and standard deviations of flows.
The throughput correlation is high when the two flows tem-
porally overlap, and then decreases with increasing sf2 (i.e.
as the amount of overlap decreases). Furthermore, the cor-
relation between overlapping flows decreases as the duration
of the first flow is increased (see Fig. 3).

As a consequence, for a set of flow records, we expect
throughput samples associated with long flows that have
large amounts of temporal overlap to result in high through-
put correlations. However, note that the occurrences of such
samples are rare since the Internet is currently dominated by
short flows [12, 13]. Furthermore, throughput samples asso-
ciated with long flows overlapping with short flows will give a
lower value for throughput correlation. On the other hand,
throughput samples associated with short flows are noisy,
and will not exhibit high throughput correlation. Therefore,
leaving out long and very short flows may be desirable when
estimating throughput correlations that are due to conges-
tion sharing. Since flows with long durations will typically be
large (in size)3, we study the effect of different size thresholds
to filter out large flows, and similarly, consider the impact of
different size thresholds for omitting small flows. Unlike the
duration of a flow, the size of a flow is invariant regardless of
the capacity of network links. Hence, flow size is the proper
flow attribute to consider for filtering out flows.

3Based on the processor sharing approximation of TCP band-
width sharing at a bottleneck, we assume that the flows of different
sizes experience the same slowdown.
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Figure 3: The effect of flow duration and temporal overlap on
the correlation in (1) between throughputs of f1 and f2 that
share a congested resource. The correlation values shown are
for σ2

W = 0. Flow 1 starts at time 0 and ends at time 30.

3. ANALYSIS OF REAL TCP DATA

We apply factor analysis to TCP flow class throughput cor-
relation matrices that are constructed using actual TCP flow
records collected by networking equipment. With actual
TCP flow measurements, a validation of the inferences of flow
classes sharing congestion is extremely hard, if not impossi-
ble, since routing information about all the domains that
flows visit and the congestion status of the servers that pro-
vide the incoming traffic are not available. However, boot-
strap confidence intervals [14] can be used to demonstrate
the statistical accuracy of the inferences. One may refer to
[10] for the 95% bootstrap confidence intervals of the param-
eters that are used in making inferences in this section.

3.1 Description of Datasets

We use NetFlow records collected at the border router of
The University of Texas at Austin (UT Austin) on Novem-
ber 6, 2002, between 12:58 PM and 2:07 PM CST, and on
January 21, 2004, between 12:58 PM and 1:26 PM CST.
The records that are collected in 2002 are referred to as
Dataset2002, and those that are collected in 2004 are re-
ferred to as DataSet2004. Dataset2002 consists of 5,173,385
TCP flow records out of a total of 5,866,602 flow records.
Dataset2004 consists of 4,440,697 TCP flow records out of
a total of 6,556,674 flow records. The records contain both
the incoming and outgoing traffic from UT Austin. The IP
addresses belonging to UT Austin were made anonymous to
protect privacy.

We assume that the packets from a given TCP flow follow
the same route4. Such assumptions, although idealized, are
not completely unrealistic for our one-hour long (or less) flow
measurements.

3.2 Methodology

In NetFlow records, the start time of a flow is the time of
arrival of the first packet in the flow, and the end time is the
time of arrival of the last packet in the flow. Since the time
between the first and the last packet is zero, flow throughput
(size divided by duration) is not defined for flows consist-

4This assumption is supported by the empirical measurements
in [15].

ing of one packet. Hence, one-packet flows will be omitted.
Based on the premises of Section 2, we select to filter out
flow records whose sizes are less than 8 kB or greater than
64 kB. The choices for these thresholds are based on some
practical, empirical considerations: For example, Estan and
Varghese [16] define “small” flows as those that send less
than 0.1% of the link capacity during a given measurement
interval, say 1 second. For instance, for a (bottleneck) OC-1
(optical carrier level 1) link of 51.84 Mbps, a small flow will
be one that transports less than 7 kB. When choosing the
upper threshold value for filtering out flows, we took into
account the measurement studies that find that 50 kB Web
objects (carried by TCP) are becoming common in the In-
ternet [17]. Therefore, we can consider a flow whose size is
larger than 64 kB as “large”. In addition, in the Internet,
packets belonging to flows that consist of only a few pack-
ets can sometimes arrive back to back (or with a very small
inter-packet spacing). In this case, it is unreasonable to as-
sume that such large flow throughputs are typical for that
flow class. Hence, we will also omit all flows whose durations
are shorter than one second5.

We choose to analyze incoming traffic (flow records with
source IP addresses) associated with AOL and HotMail,
since one can reasonably expect that traffic belonging to
these content providers potentially experience congestion at
their source due to high demand for their content. We define
two flow classes for traffic from each provider: AOL1 and
AOL2 (class 1 and class 2) from AOL, and HotMail1 and
HotMail2 (class 3 and class 4) from Microsoft Corporation.
Assignment of flows into AOL1 or AOL2 (and similarly for
HotMail1 and HotMail2) is performed by randomly splitting
all flows from AOL (and HotMail) into two sets.

After filtering out small and large flows, we use temporal
throughput samples of the remaining flow records on a dis-
cretized time axis to compute pairwise correlations between
throughputs of p flow classes (see Fig. 4). Since throughputs
of congestion sharing flows exhibit positive correlation when
they temporally overlap (see Section 2)), we use the samples
from (discrete) times when both flow classes are active to
compute pairwise correlations. A p × p correlation matrix
R is then constructed using the pairwise correlations. Using
the orthogonal factor model [18], one can express R as

R = Λ∗Λ∗T + Ψ

where Λ∗ denotes a p×m (rotated) loading matrix, and Ψ is
a diagonal matrix. The number of latent factors m is deter-
mined by the number of eigenvalues of R that are above 1
[10]. The elements of the loading matrix Λ∗, Λ∗ij , capture the
degree of correlation exhibited between a given factor (cor-
responding column in Λ∗) and variable (corresponding row
in Λ∗). The elements of the diagonal matrix Ψ, ψi, are used
to compute the explanatory power of factors: 1−Pp

i=1 ψi/p.
Explanatory power gives an indication about the sufficiency
of the number of common factors that are used in the model.
Estimates Λ̂ and Ψ̂ for Λ and Ψ can be determined by using
the principal component method. The flow classes that have
the largest (the most significant) loading (in magnitude) with
a common factor are identified as classes that are likely to
share a congested resource in the network [10].

3.3 Results

Using 95% (bootstrap) confidence intervals, we find that R
has two eigenvalues that are above 1 (i.e. m = 2) in both
datasets: Four classes share two different network infrastruc-

5Flows can also be categorized according to their duration.
Brownlee and Claffy [17] term flows whose durations are less than
2 seconds as “dragonflies”.
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Figure 4: An example arrangement of flow records belonging
to three classes on a discretized time axis. The length of the
rectangles correspond to durations of flows.

tures. We then estimate factor loadings of four class through-
puts based on m = 2 latent factors. For DataSet2002,

Λ̂∗ =

0BBB@
0.7933 0.0711

0.7289 −0.1315

−0.0842 0.9088

0.0501 0.9240

1CCCA
and Ψ̂ = diag (0.3656, 0.4514, 0.1669, 0.1437). For
Dataset2004,

Λ̂∗ =

0BBB@
0.8378 −0.0451

0.8411 0.0044

0.0200 -0.7415

0.0260 -0.7351

1CCCA
and Ψ̂ = diag (0.2961, 0.2926, 0.4497, 0.4589).

The explanatory power of the two factors is 72% in the
case of Dataset2002 and 63% in the case of Dataset2004.
By inspecting the significant loadings (which are boxed) on
the loading matrices, we can conclude that classes 1 and 2
(flows belonging to AOL) share factor 1, and classes 3 and
4 (flows belonging to HotMail) share factor 2. In this case,
factor 1 would be interpreted as the networking infrastruc-
ture belonging to AOL, and factor 2 would be the networking
infrastructure belonging to Microsoft Corporation.

3.4 Discussion of Results

The potential power of this inference technique may be illus-
trated by considering the results in Section 3.3. For exam-
ple, suppose that the users belonging to classes AOL1 and
AOL2 at UT Austin were experiencing poor performance
(long download times). Treating the external network as a
“black box” (i.e., no knowledge about the utilization factors
of access links or routing information of outside network),
network managers could infer that poor performance was not
due to the access links connecting UT Austin to the Inter-
net, because the flow classes did not have one common factor
that would indicate a bottleneck shared by all classes. The
network managers could then hypothesize that the cause for
poor performance was either at the content provider’s server
or a corresponding bottleneck link visited by pairs of flow
classes (1 & 2 and 3 & 4) in the Internet.
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