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Abstract— We investigate prediction algorithms that exploit
both temporal and spatial correlations in MIMO correlated
narrowband fading wireless channels. We first derive the optimal
two dimensional minimum mean square error (2D-MMSE) pre-
diction filter that maximally exploits the available temporal and
spatial correlations. We then propose a lower complexity 2-step
prediction algorithm, which first exploits temporal correlations
using a classical single-input single-output (SISO) MMSE time-
domain prediction filter for each entry in the MIMO channel,
followed by an MMSE spatial smoothing step to exploit the spatial
correlations. Compared to the SISO and specular prediction
approaches, this approach either achieves lower MSE with a
slight increase in complexity, or comparable MSE with lower
complexity, in a wide range of wireless channel conditions. The
same advantage holds for the average mutual information.

I. INTRODUCTION

In MIMO wireless communications, exploiting channel state
information (CSI) at the transmitter allows for increased link
robustness and/or increased capacity [1]. This CSI is typically
fed back from the receiver using reciprocity in time-division
duplex (TDD) mode, or explicit feedback (full or partial) in
frequency-division duplex (FDD) mode. In mobile environ-
ments where the channel changes rapidly, the CSI that arrives
at the transmitter would be outdated due to feedback delay.
This problem can be overcome by using channel prediction.

Channel prediction algorithms have been studied extensively
in the SISO case (see e.g. [2] [3] [4]), and have been shown
to effectively overcome the outdated CSI problem for single
antenna systems. Recently, the channel prediction concept has
been extended to the MIMO case by several researchers. In
[5] and [6], linear predictors that exploit temporal correlations
similar to the ones used in the SISO case [2] [3] were applied
directly to each of the channel coefficients in the MIMO
channel. This approach, which we term as the SISO approach,
is appealing when the channel responses at each antenna
element in the transmit and receive arrays are uncorrelated,
e.g. when the classical IID (spatially white) channel model is
used. Unfortunately, real world channels typically experience
spatial correlation, which was not exploited in these simple
SISO prediction based approaches. In [7], linear prediction is
performed on each of the dominant right singular vectors of
the stacked channel matrix. Their method showed lower mean
square error versus the SISO approach, but is highly complex
due to the required singular value decomposition (SVD) of a

large matrix. We call this the specular approach as termed by
the authors.

In this paper, we initially derive the optimal 2-dimensional
minimum mean square error (2D-MMSE) narrowband MIMO
channel prediction filter that maximally exploits the available
spatial and temporal correlations. Since designing the 2D-
MMSE filter is highly computationally complex, we propose a
reduced complexity 2-step prediction approach that is able to
exploit the temporal and spatial correlations without signifi-
cant computational burden. This approach first uses a SISO
MMSE time-domain prediction filter for each entry in the
MIMO channel, followed by an MMSE spatial smoothing filter
to exploit the spatial correlations to improve the prediction
performance. This proposed algorithm performs similarly to
the specular approach of [7] with much lower computational
complexity, and outperforms the SISO approach with only a
slight increase in complexity. Thus, our approach presents an
attractive prediction performance versus computational com-
plexity tradeoff in correlated MIMO channels.

II. NARROWBAND MIMO CHANNEL MODEL

Consider an Nt transmit antenna and Nr receive antenna
MIMO wireless system, with narrowband, time-varying, Nr ×
Nt channel matrix H(n) modeled as [1]

H(n) = R1/2
rx Hw(n)R1/2

tx (1)

where Hw(n) is the spatially white Nr × Nt IID MIMO
channel matrix, Rtx and Rrx are the Hermitian-symmetric
positive definite Nr × Nr and Nt × Nt transmit and receive
covariance matrices, and where (·)1/2 represents the Hermitian
square-root of a matrix [1].

We assume that each of the elements of Hw(n) are un-
correlated wide-sense stationary (WSS) complex Gaussian
stochastic processes with zero mean and identical1 time corre-
lation function rt(∆) � E{[Hw(n+∆)]i,j [Hw(n)]∗i,j} ∀i, j
where [·]i,j indicates the (i, j)th component of the matrix
argument. Notice that the spatio-temporal correlation function
is separable, and can be written as

E{[H(n + ∆)]i,j [H(n)]∗k,l} = rt(∆)[RT
tx]j,l[Rrx]i,k, (2)

1We chose to make this assumption to simplify the presentation and
notation, but is not crucial for the development of the algorithm. Our algorithm
can be easily extended to the more general case where each transmit-receive
antenna pair have different temporal correlations.



We further assume that we have available causal estimates
of the MIMO channel Ĥ(n) = H(n) + E(n) where E(n)
is the estimation error matrix, whose elements are IID zero-
mean, circular symmetric, complex Gaussian with variance
σ2. We shall occasionally use the vectorized version of the
MIMO channel matrix ĥ(n) = vec(Ĥ(n)), where vec(·) is the
operator that stacks the columns of its argument one of top
of the other into a vertical vector, making ĥ(n) the NrNt × 1
vector version of channel matrix Ĥ(n). We let N = NrNt in
the subsequent discussion for notational brevity.

III. 2D-MMSE PREDICTION

We denote the N × L matrix of L current and previous
estimates of the MIMO channel spaced ∆t apart as

Ĥ = [ĥ(n), ĥ(n − ∆t), . . . , ĥ(n − (L − 1)∆t)] (3)

and its vectorized version as ĥ = vec(Ĥ) with length NL.
We predict the MIMO channel ĥ(n + ∆t) using the NL 2D-
MMSE filter W2D, given as

ĥ(n + ∆t) = W2Dĥ (4)

where W2D = arg min
W

E{‖ h(n + ∆t) − Wĥ ‖2}.
Using the orthogonality principle (see e.g. [8]), the 2D-

MMSE filter should satisfy E{(h(n+∆t)−W2Dĥ)ĥ
H} = 0,

where after some simplification becomes

W2D =
(
rT

t ⊗ Rs

) (
RT

t ⊗ Rs + σ2I
)−1

(5)

where Rt is the Hermitian-symmetric and Toeplitz L × L
temporal autocorrelation matrix with entries [Rt]i,j = rt((i−
j)∆t), rT

t = [rt(∆t), . . . , rt(L∆t)] is the vector of ∆t-
ahead cross-correlations, and Rs = RT

tx ⊗ Rrx is the spatial
autocorrelation matrix. The MMSE is given by

ε2D= (6)

Tr
{
Rs −

(
rT

t ⊗ Rs

) (
RT

t ⊗ Rs + σ2I
)−1

(rt ⊗ Rs)
H
}

We can also use this prediction filter to predict other future
time instances as well. If the prediction length exceeds ∆t,
we can iterate the prediction process by treating the latest
predicted channel as the current channel, and dropping the
channel furthest in the past. This can be repeated as necessary,
although error propagation is a problem, especially for very
long prediction lengths. The channel for time instances that
are not a multiple of ∆t can then be determined using
interpolation. The prediction filter could also be designed for
other time instances explicitly by simply changing the time
lag in cross-correlation vector rt, but it would be much more
complex because (5) needs to be computed separately for each
time lag.

Since the 2D-MMSE prediction filter exploits all the pos-
sible spatio-temporal correlations, we expect it to outperform
the previous SISO approaches [5] [6] when spatial correlation
is present. However, the computation of W2D requires the
inversion of a block Toeplitz matrix, which entails O(N3L2)
operations, and is a huge computational burden for cost-
effective implementation. The prediction filtering operation
itself requires O(N2L), which is also quite complex.

IV. 2-STEP PREDICTION

We reduce the computational burden by exploiting temporal
and spatial correlations using two separate filters. We first
perform time-domain prediction ignoring the spatial corre-
lation, followed by spatial smoothing to exploit the antenna
correlations.

A. Time-domain prediction step

We use a single L-tap time-domain prediction filter wt to
predict the MIMO channel matrix as

h̃t(n + ∆t) = Ĥwt (7)

Note that this is equivalent to the SISO approach of [5], and
wt is simply the SISO linear prediction filter given as

wt = (Rt + σ2I)−1rt (8)

with MSE

εt = N(rt(0) − rH
t (Rt + σ2I)−1rt) (9)

B. Spatial-smoothing step

We now apply a N×N MMSE spatial smoothing filter Ws

to exploit the spatial correlation, i.e.

h̃s(n + ∆t) = Wsh̃t(n + ∆t) (10)

Using the orthogonality principle, Ws should satisfy
E

{(
h(n + ∆t) − Wsh̃t(n + ∆t)

)
h̃H

t (n + ∆t)
}

= 0,
whose solution is

Ws = Rhh̃t
R−1

h̃t
(11)

where

Rhh̃t
= E{h(n + ∆t)h̃H

t (n + ∆t)}
=
(
rH

t wt

)
Rs

(12)

is the cross-correlation matrix of the true future channel and
the time-domain predicted channel, and

Rh̃t
= E{h̃t(n + ∆t)h̃H

t (n + ∆t)}
= (wH

t Rtwt)Rs + (wH
t wt)σ2I

(13)

is the autocorrelation of the time-domain predicted channel
(see Appendix I for the derivation). The MSE in this case is

ε2S = Tr
{
Rs − Rhh̃t

R−1

h̃t
RH

hh̃t

}
(14)

In terms of complexity, the time-domain prediction step
requires O(L2) (using e.g. Levinson-Durbin [8]) for the design
of the filter, and O(NL) for prediction. The spatial smoothing
step requires O(L2 + N3) for the design of the filter, and
O(N2) for prediction.

V. PERFORMANCE ANALYSIS AND SIMULATIONS

We analyze the performance of our proposed prediction
algorithms, and compare them with applying SISO linear
prediction on each entry in the MIMO channel matrix [5] [6],
which we call the SISO approach; and with applying SISO
linear prediction on the right singular vectors of the stacked
channel matrix Ĥ (3), which we call the specular approach.



TABLE I

COMPLEXITY OF L-ORDER, Nt-TRANSMIT AND Nr -RECEIVE ANTENNA

MIMO CHANNEL PREDICTION ALGORITHMS WITH N = NrNt .

Algorithm Design Prediction

2D-MMSE O(N3L2) O(N2L)

Specular [7] O(NL2 + N2L) O(NL + N2)

2-step O(L2 + N3) O(NL + N2)

SISO [5][6] O(L2) O(NL)

A. Complexity analysis

The complexity of the design stage and prediction stage
of different prediction algorithms are shown in Table I in
decreasing order. Since L � N in most practical scenarios, the
2D-MMSE and specular approaches are much more complex
than the 2-step and SISO approaches, and 2-step is only
slightly more complex than the SISO approach.

B. Mean square error analysis

We have the following proposition (whose proof is in
Appendix II) in terms of the theoretical MSE performance

Proposition 1: Given the channel model in Sec. II where
Rs and Rt are both non-singular, the mean square error
of the 2D-MMSE (6), 2-step (14), and SISO (9) prediction
approaches have the following relation

ε2D ≤ ε2S ≤ εt (15)

with equality when Rs = IN (spatially white channel) or
when σ2 = 0 (noiseless channel).

Both 2D-MMSE and 2-step approaches are guaranteed to
outperform the SISO approach, except in the (unrealistic) cases
when we have a spatially white or noiseless channel, where
the performance is the same. These results are not surprising
since 2D-MMSE and 2-step exploit the spatial correlation,
which is ignored by the SISO approach. However, the identical
performance when σ2 = 0 is not immediately apparent. The
theoretical MSE relationship of these linear approaches with
the non-linear specular approach is not as straightforward.
Thus, we use simulations for its performance assessment.

C. Monte-Carlo simulations

We consider a time-division-duplex narrowband 2 × 2
MIMO system with parameters given in Table II unless
otherwise specified. We assume that at the start of each uplink
frame, a preamble is present where we estimate the MIMO
channel, and through reciprocity then determine an estimate
of the downlink channel. We then use L = 32 of these previous
estimates, spaced ∆t apart, to predict the channel one round-
trip-time ahead, roughly twice that of the frame length.

We generate the channel H(n) using (1), where the elements
of Hw(n) are generated IID using the modified Jake’s sim-
ulator [9] with 64 rays. The spatial correlation matrices are
generated using the exponential model, i.e., the i, jth entry
of the matrix is given by ri,j = ρ|i−j|, where 0 ≤ ρ ≤ 1
signifies the degree of spatial correlation of the matrix. For

TABLE II

SIMULATION PARAMETERS

Item Value Item Value

Bandwidth 10 kHz Frame length 1 ms

Carrier frequency 2.0 GHz Time-domain spacing 2 ms

Symbol period 50 µs Prediction length 2 ms

Velocity 20 kph Filter order 32

Spatial corr. coef. 0.9 No. of training symbols 500

the following simulation curves, we generated 10000 noisy
channel realizations, with M + 1 time-steps ∆t apart per
realization, where the first M time steps are used to estimate
the time and space autocorrelation functions, given as

r̂t(∆) =
1

NtNr

∑
i,j

M−1−∆∑
n=0

[Ĥ(n + ∆)]i,j [Ĥ(n)]∗i,j (16)

R̂s =
1
M

M−1∑
n=0

ĥ(n)ĥ(n)H , (17)

and the next time step being the channel ∆t ahead that we wish
to predict. Figs. 1-3 compares the normalized MSE, given as
NMSE(∆t) = E{‖H(n+∆t)−Ĥ(n+∆t)‖2

F }
E{‖H(n+∆t)‖2

F } , for the 2D-MMSE
approach assuming perfect knowledge of the autocorrelation
matrices Rt and Rs (this essentially serves as the benchmark
for the rest of the algorithms); the 2-step and SISO approaches
using estimated autocorrelation matrices; and the specular
approach using the autocorrelation method [8] to determine
the autoregressive parameters. We also assume knowledge of
the noise variance σ2 in all of the above algorithms. Unless
otherwise indicated, we assume a velocity of 20 kph, spatial
correlation coefficient of ρ = 0.9, and M = 500 training
symbols for the autocorrelation estimates.

In Figs. 1-3, the 2D-MMSE approach has the lowest MSE
among all the algorithms for all parameter configurations as
expected. We also observe that the 2-step prediction outper-
forms the SISO approach uniformly for all the configurations.
The specular approach, on the other hand, performs differently
in relation to the linear methods for different configurations.
In Fig. 1, we see that the MSE decreases as we increase SNR,
but increases for higher velocities (higher Doppler frequency).
This is consistent with intuition since noisy and fast varying
channels are harder to predict. We also observe that the
specular approach performs better than the 2-step approach
in cases where the SNR is high and the velocity is high. In
Fig. 2, we observe that increasing the correlation ρ increases
the prediction MSE. This can be explained by the fact that
lower correlations increases the ”diversity” of our channel
observations, and thus exposes the structure of the channel
variations more than highly correlated observations (this is
consistent with the observations in [10]). We also observe that
for low correlations, 2D-MMSE, 2-step, and SISO prediction
perform almost similarly, which is consistent with the fact that
for totally uncorrelated channels ρ = 0, all three prediction
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Fig. 1. Normalized prediction MSE performance for 2×2-MIMO. Simulation
parameters are given in Table II.
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Fig. 2. Normalized prediction MSE performance for 2×2-MIMO. Simulation
parameters are given in Table II.

methods actually end up with the same prediction filter [cf.
Prop. 1]. As for the specular approach, we see the advantage
of its use only in high correlation and high SNR regimes. In
Fig. 3, we see the effect of training length M on the MSE,
and observe that training lengths beyond M = 300 no longer
improves the performance significantly. We also observe that
the specular approach is more sensitive to the training length
than the linear approaches. We observed similar trends for
different Nr × Nt MIMO configurations, but the results are
omitted here due to space constraints.

Fig. 4 shows the ergodic mutual information of a 2 ×
2-MIMO system assuming perfect channel state informa-
tion at the receiver and different assumptions on the chan-
nel state information at the transmitter (CSIT), computed
as 1

C

∑C
i=1 log2

(
det
(
INr

+ 1
Ntσ2 HiRiHH

i

))
where C =

10000 is the number of generated IID channel realizations, Hi

corresponds to the ”future” channel for the ith realization, and
Ri is the transmit symbol covariance matrix corresponding to
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Fig. 3. Normalized prediction MSE performance for 2×2-MIMO. Simulation
parameters are given in Table II.
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Fig. 4. Mutual information of a 2 × 2-MIMO system with SNR = 5 dB.
Simulation parameters are given in Table II.

the following scenarios:
• Perfect CSIT: Ri = ViΓiVH

i where Vi is the matrix
whose columns are the eigenvectors of HH

i Hi, and Γi is
the diagonal gain matrix computed via waterfilling [1].

• Predicted CSIT: Same as the perfect CSIT case but using
the corresponding predicted channel matrix Ĥi.

• No CSIT: Ri = INt

Observe that increasing the velocity causes a degradation in
mutual information for all the prediction algorithms. However,
the 2D-MMSE and 2-step prediction algorithms outperform
the previous SISO and specular approaches. Note also that
having perfect/predicted CSIT outperforms no CSIT.

VI. CONCLUSION

We derived two prediction algorithms that exploit both
temporal and spatial correlations for the MIMO narrowband
correlated fading channel. The derived 2D-MMSE prediction
algorithm exploits all the available temporal and spatial cor-
relations using a 2-dimensional filter, but is computationally



prohibitive for practical implementation. Nevertheless, it pro-
vides a good benchmark for what is achievable using linear
MMSE prediction for this class of MIMO channels. The
proposed 2-step prediction algorithm first exploits temporal
correlations using a SISO MMSE time-domain prediction filter
for each entry in the MIMO channel matrix, then exploits
spatial correlations using an MMSE spatial smoothing filter.
We have shown that the 2-step prediction approach presents an
attractive trade-off between complexity and performance, since
it outperforms the SISO prediction approach with a slight in-
crease in complexity; and it performs similarly to the specular
approach with a much lower computational complexity.

APPENDIX I
STATISTICS OF TIME-DOMAIN PREDICTED MIMO

CHANNELS

From (7), we can write the time-domain predicted MIMO
channel as a linear combination of the columns of Ĥ

h̃t(n + ∆n) =
L−1∑
i=0

wiĥ(n − i∆n) (18)

where wi is the ith element of wt given in (8). Thus, using
(18) in (12) and (13) respectively, we have

Rhh̃t
= E

{
h(n + ∆n)

(
L−1∑
i=0

w∗
i ĥ

H(n − i∆n)

)}

=
L−1∑
i=0

w∗
i E

{
h(n + ∆n)ĥH(n − i∆n)

}

=
L−1∑
i=0

w∗
i rn((i + 1)∆n)Rs

= (wH
t rt)Rs

Rh̃t
= E

{(
L−1∑
i=0

wiĥ(n − i∆n)

)(
L−1∑
i=0

w∗
i ĥ

H(n − i∆n)

)}

=
L−1∑
i=0

L−1∑
j=0

wiw
∗
j E

{
ĥ(n − i∆n)ĥH(n − j∆n)

}

=
L−1∑
i=0

L−1∑
j=0

wiw
∗
j rn((j − i)∆n)Rs +

L−1∑
i=0

|wi|2σ2I

= (wH
t Rtwt)Rs + (wH

t wt)σ2I

APPENDIX II
PROOF OF PROPOSITION 1

Proof: We can write both the 2-step and SISO prediction
filters in the same form as (4), where W2D is replaced by

W2S = (wT
t ⊗ Ws) (19)

Wt = (wT
t ⊗ IN ) (20)

for 2-step and SISO respectively. Since W2D is chosen to
minimize the MSE, then ε2D ≤ ε2S and ε2D ≤ εt. Also,
since Ws is chosen to minimize the MSE for the time-domain
predicted channel [cf. Sec. IV-B], and SISO prediction (7)

is simply (10) with Ws = IN , then ε2S ≤ εt. To show
equality of the MSE in the special cases of Rs = IN and
σ2 = 0, we show the stronger condition that the prediction
filters themselves are identical in these cases.

W2D|Rs=IN
=
(
rT

t ⊗ IN

) (
RT

t ⊗ IN + σ2ILN

)−1

=
(
rT

t ⊗ IN

) (
(RT

t + σ2IL) ⊗ IN

)−1

=
(
rT

t ⊗ IN

) (
(RT

t + σ2IL)−1 ⊗ IN

)
=
(
rT

t

(
(Rt + σ2IL)−1

)T)⊗ (IN )

= Wt

W2D|σ2=0 =
(
rT

t ⊗ Rs

) (
RT

t ⊗ Rs

)−1

=
(
rT

t ⊗ Rs

) (
(RT

t )−1 ⊗ R−1
s

)
=
(
rT

t (R−1
t )T

)⊗ (IN )
= Wt|σ2=0

For the 2-step method, the following equations show that the
spatial smoothing filter reduces to the identity matrix when
Rs = IN or when σ2 = 0

Ws|Rs=IN
=
(
rH

t wt

) (
(wH

t Rtwt)IN + (wH
t wt)σ2IN

)−1

=

(
rH

t wt

)(
wH

t (Rt + σ2IL)wt

)IN

=

(
rH

t wt

)(
rH

t wt

)IN = IN

Ws|σ2=0 =
(
rH

t wt

) (
(wH

t Rtwt)IN

)−1

=

(
rH

t wt

)(
rH

t wt

)IN = IN

We thus have W2S = Wt in (19) in either case.
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