
Low-Complexity Adaptive High-Resolution
Channel Prediction for OFDM Systems

Ian C. Wong and Brian L. Evans

Wireless Networking and Communications Group
The University of Texas at Austin, Austin, Texas 78712

Email: {iwong, bevans}@ece.utexas.edu

Abstract— We propose a low-complexity adaptive high-
resolution channel prediction algorithm for pilot symbol assisted
orthogonal frequency division multiplexing (OFDM) systems. The
algorithm is derived assuming a general time- and frequency-
selective ray-based physical channel model, wherein each ray is
parameterized by a complex amplitude, time-delay, and Doppler
frequency. The algorithm is based on an improved rank and
subspace adaptive Estimation of Signal Parameters via Rotational
Invariance Techniques (ESPRIT). The adaptive ESPRIT is used
to efficiently extract the slowly varying time-delays and Doppler
frequencies of each ray, followed by a simple rotational update to
compute the complex amplitudes. Our algorithm has a principal
computational complexity that is linear in the number of pilot
subcarriers used for prediction, in contrast to cubic complexity
required for a non-adaptive block processing based algorithm.
We compare our approach with a previously proposed adaptive
OFDM channel prediction algorithm based on standard least
mean square (LMS) and recursive least squares (RLS) adaptive
filters, and show that our algorithm achieves lower mean square
error at a comparable computational complexity. We provide
simulation results based on the IEEE 802.16e standard.

I. INTRODUCTION

Next-generation OFDM-based wireless networks benefit
greatly from the availability of channel state information (CSI)
at the transmitter, allowing higher capacity and link reliability
by using adaptive transmission techniques, e.g. adaptive power
control, adaptive modulation and coding, and adaptive beam-
forming [1]. Unfortunately, in high mobility environments
where the Doppler frequency is high and the channel changes
rapidly, the CSI used by the transmitter would be outdated due
to the processing and feedback delays. An effective means of
overcoming the feedback delay is channel prediction.

Channel prediction algorithms for flat-fading channels have
been investigated extensively in the past several years (see e.g.
[2] and references therein). More recently, channel prediction
algorithms for time- and frequency-selective fading channels
in the context of OFDM have also been studied. In [3], each
subcarrier in the OFDM symbol is assumed to be a flat-fading
autoregressive wide-sense stationary (WSS) stochastic process,
and a linear prediction filter based on previous downsampled
channel estimates similar to that in [2] was used. In [4],
a Kalman-filtering based channel estimation and unbiased
channel power prediction was used on the pilot-subcarriers.
In [5], adaptive short-term channel prediction on the time
domain (TD) channel taps was proposed. Their approach uses

an IFFT/FFT pair to derive the TD channel taps, perform the
prediction, and then return to the frequency domain (FD). In
[6], we proposed a high-resolution OFDM channel prediction
based on 2-step, 1-dimensional frequency estimation using
ESPRIT. This algorithm was shown to outperform previous
methods, but has cubic computational complexity because of
the required eigenvalue decomposition (EVD).

In this paper, we propose an adaptive version of the 2-step
1-dimensional approach that avoids the EVD by using efficient
subspace tracking methods and a linear complexity adaptive
ESPRIT formulation. The rank and subspace adaptive ESPRIT
is used to efficiently extract the slowly varying time-delays
and Doppler frequencies of each ray, followed by a simple
rotational update to compute the complex amplitudes. We
compare our approach with [5], which is similarly an adaptive
OFDM channel prediction algorithm based on standard LMS
and RLS adaptive filters. We show that our algorithm achieves
lower mean square error (MSE) at a comparable computational
complexity using simulation results based on the IEEE 802.16e
[7] mobile broadband wireless access standard.

II. SYSTEM MODEL

We consider an OFDM system with symbol period Tsym

and subcarrier spacing ∆f having proper cyclic prefix (CP)
extension and sample timing, such that the sampled channel
at the kth subcarrier of the nth OFDM symbol is

H(n, k) =
M−1∑
i=0

αie
jνiej2π(fin−τik) (1)

where αi, νi, fi and τi are the amplitude, phase, discrete-
time Doppler frequency, and discrete-time delay for the ith
ray, respectively (see e.g. [8] for a similar model).

The received signal for the kth subcarrier of the nth OFDM
symbol is given by Y (n, k) = H(n, k)X(n, k)GT (k)GR(k)+
W (n, k) where GT (k) and GR(k) are the pulse-shaping
transmitter and receiver filter frequency response values at the
kth subcarrier frequency, and W (n, k) is a zero-mean, circular-
symmetric, complex additive white Gaussian noise (AWGN)
with variance σ2. It is reasonable to assume that the used
subcarriers are in the flat region of the transmitter and receiver
filter frequency responses, such that the received signal is

Y (n, k) = H(n, k)X(n, k) + W (n, k). (2)



We further assume that there are Nf equally spaced pilot
subcarriers in every OFDM symbol inserted within the Nu

used subcarriers. Let Df = �Nu/Nf� denote the frequency
spacing in terms of the number of subcarriers between two
adjacent pilot subcarriers. In order to avoid aliasing in the
frequency domain, we require Df ≤ 1/(∆f τ̄) where τ̄ is the
maximum delay spread. We denote the set of pilot subcarrier
indices as kq =

(
Nf

2 − q
)

Df . We also assume that a block of
Nt current and previous OFDM symbols (which we call pilot
symbols) equally spaced in time are available for the channel
prediction algorithm. Let Dt denote the time spacing in terms
of the number of OFDM symbols between pilot symbols. In
order to avoid aliasing in the time domain, we require Dt ≤
1/(2Tsymf̄) where f̄ is the maximum Doppler frequency. We
denote the set of pilot symbol indices as nl = lDt.

Using these Nt × Nf pilot subcarriers, we can perform a
least-squares estimate of the channel at the pilot locations
using the received signal Y (nl, kq) and the known pilot
symbols X(nl, kq), given as

ĤLS(l, q) =
M−1∑
i=0

αie
jφiej(ωil+ϕiq) + W̃ (l, q) (3)

where ωi = 2πfiDt, ϕi = 2πτiDf , and φi = νi − ϕi
Nf

2 .
For notational convenience, let

ĤLS =
[
ĥ0 . . . ĥNt−1

]
(4)

be the Nf × Nt matrix of the least-squares estimates, where

ĥl = [ĤLS(l, 0) . . . ĤLS(l, Nf − 1)]T (5)

III. OFDM CHANNEL PREDICTION ALGORITHM

The main idea of our channel prediction algorithm is to first
estimate the parameters in our deterministic channel model
using the least squares estimates ĤLS in (4), and then simply
extrapolate this model to predict the future channel.

We decompose (3) as

ĤLS(l, q) ≈
L−1∑
p=0

Mp−1∑
r=0

αr,pe
jφr,pej(ωr,pl+ϕpq) + W̃ (l, q)

=
L−1∑
p=0

gp(l)ejϕpq + W̃ (l, q)

where Mp is the number of sinusoidal rays and gp(l) =∑Mp−1
r=0 cr,pe

jωr,pl is the complex gain for the pth propagation
path, with cr,p = αr,pe

jφr,p as the complex amplitude. In this
decomposition, we exploit the fact that several (Mp) sinusoidal
rays actually share the same time-delay value ϕp, and the
total number of rays is M =

∑L−1
p=0 Mp. This is based on the

observation that typical outdoor mobile wireless propagation
environments involve clusters of scatters, e.g. a group of large
buildings, and far away hills. Thus, the numerous propagating
rays typically share a common time delay, which is essentially
the assumption used in the classical tapped-delay line wide-
band channel models [9]. This decomposition allows us to

divide the estimation task into a time delay (ϕp) estimation
step, and then a Doppler frequency (ωr,p) estimation step.
We call this the 2-Step 1-Dimensional approach to channel
parameter estimation. In [6], we proposed an ESPRIT-based
block processing channel prediction algorithm based on this
concept. Unfortunately, this algorithm has cubic computational
complexity, which is high for an efficient implementation.

In this paper, we derive an adaptive version of the 2-
step 1-dimensional ESPRIT-based algorithm that has linear
complexity and is able to efficiently track the slowly time-
varying parameters, and also adapt to the time-varying model
order (see Table I). This can be used as a completely adaptive
stand-alone algorithm, or it can be used for tracking the
channel parameters after being initialized with [6]. Since both
time delay and Doppler frequency estimation entail essentially
the same operations, we shall limit our discussion to the time-
delay estimation step, and explain briefly the modifications
necessary for the Doppler frequency estimation step.

A. Autocorrelation estimation and subspace tracking

We update the matrix of least-squares estimates using an
exponential window, given as

ĤH
LS,n =

[
(1 − β)1/2ĥH

n

β1/2ĤH
LS,n−1

]
(6)

where ĤH
LS,n−1 is the “old” observation matrix, ĥn is the

“new” LS-estimated Nf -length vector, and 0 < β < 1 is the
exponential forgetting factor. This leads to the development
of efficient singular value decomposition (SVD) updating
algorithms for computing the L1 dominant singular values and
right singular vectors of the growing data matrix at each time
step [10], where typically, L � Nf . Our algorithm is based on
the Bi-iterative SVD 3 subspace tracker from [10, Table III],
with the stabilizing modifications proposed in [11, p. 2995]
(see Table II). We chose this algorithm over other algorithms
primarily due to its ability to track the eigenvalues (for model-
order tracking), its guarantee of orthonormality of the singular
vectors (for efficient adaptive ESPRIT implementation, which
will be discussed later), and its low computational complexity.

B. Model-order estimation

Note that by squaring the estimated L singular values,
we have an estimate of the dominant eigenvalues. However,
in order to employ the minimum description length (MDL)
criterion [12], we also require an estimate of the rest of
the Nf − L non-dominant eigenvalues. Theoretically, the
noise eigenvalues should all be equal to the noise power σ2.
Thus, we estimate these non-dominant eigenvalues by simply
equating them to an estimate of the noise power. Note that
ĥ⊥(n) in Step 2 of Table II is the component of ĥ(n) that
lies in the noise subspace. The noise power estimate is then

σ̂2(n) = βσ̂2(n − 1) + (1 − β)
ĥ⊥(n)H ĥ⊥(n)

Nf − L (7)

1We assume that the maximum number of paths L is known à priori. This
value is typically determined by the propagation environment, and the desired
accuracy of the channel characterization.



TABLE I

PROPOSED ALGORITHM STEP 1: TIME-DELAY ESTIMATION

Input: ĥ

Output: L̂, {ϕ̂p}L̂
p=1, ĝ

Operation Comp.
Autocorrelation estimation and subspace tracking
Run subspace tracker −−−−−→

ModBi-SVD3 V̂(n), σ̂,GA, ĥ⊥ 10NfL
Model-order estimation

σ̂2(n) = βσ̂2(n − 1) + (1 − β) ĥ⊥H ĥ⊥
Nf−L Nf

λ̂i
f

=

{
σ̂i

2, i ∈ [1,L]
σ̂2(n), i ∈ [L + 1, Nf ]

L
Ñt = 1−βn

1−β

L̂ = arg min
µ

−log


 Nf∏

k=µ+1
λ̂

f
k

 1
Nf −µ

1
Nf −µ

Nf∑
k=µ+1

λ̂
f
k


Ñt(Nf−µ)

NfL

s.t. µ ∈ [1,L] + 1
2
µ(2Nf − µ) log Ñt

Time-delay estimation using adaptive ESPRIT

ĥ⊥ = ĥ⊥/ ‖ ĥ⊥ ‖
ĥ⊥

1 = [INf−1 0(Nf−1)×1]ĥ
⊥

ĥ⊥
2 = [0(Nf−1)×1 INf−1]ĥ⊥

V̂1(n − 1) = [INf−1 0(Nf−1)×1]V̂(n − 1)

V̂2(n − 1) = [0(Nf−1)×1 INf−1]V̂(n − 1)[
ΥL(n) ∗

∗ ∗
]

= G(n)×[
Υ(n − 1) V̂H

1 (n − 1)ĥ⊥
2

ĥ⊥H
1 V̂2(n − 1) ĥ⊥H

1 ĥ⊥
2 (n)

]
GH(n) 2NfL

ΥL(n)
−−−−−−−−−−−−−−→
Extract L̂ × L̂ top-left submatrix ΥL̂(n)

V̂(n)
−−−−−−−−−−−−−−−−→
Extract L̂ bottom-left-most row vector v̂H

L̂,1
(n)

Φ̂L̂(n) = ΥL̂(n) +
v̂

L̂,1(n)
(
Υ

L̂
(n)H v̂

L̂,1(n)
)H

1−‖v̂
L̂,1(n)‖2 L̂2

Φ̂L̂(n)−→EVD

L̂∑
p=1

ε̂pupuH
p O(L̂3)

ϕ̂p = arg(ε̂p), p = 0, . . . , L̂ − 1 L̂
Complex amplitude estimation
∆ϕ̂p(n) = ϕ̂p(n) − ϕ̂p(n − 1), p = 1, . . . , L̂ L̂

∆ϕ̂(n) = diag{ej∆ϕ̂0(n), . . . , ej∆ϕ̂
L̂

(n)} L̂
Q(n) = Q(n − 1)

R(n) = R(n − 1)∆ϕ̂(n) L̂2/2

R(n)ĝ(n) = QH(n)ĥ(n) −−−−−−→
Backsubstitution ĝ(n) Nf L̂ + L̂2

2

Therefore, our eigenvalue estimates can be written as

λ̂i
f
(n) =

{
σ̂i

2(n), i ∈ [1,L]
σ̂2(n), i ∈ [L + 1, Nf ]

(8)

where σ̂i(n) is the ith element of the singular value estimates
given in Step 11 of Table II. Finally, by using the effective
window length at time n, given as Ñt(n) = 1−βn

1−β , we derive
the time-varying model order estimate as

L̂ = arg min
µ

−log



(
Nf∏

k=µ+1

λ̂f
k(n)

) 1
Nf −µ

1
Nf−µ

Nf∑
k=µ+1

λ̂f
k(n)



Ñt(n)(Nf−µ)

(9)

s.t. µ ∈ [1,L] +
1
2
µ(2Nf − µ) log Ñt(n)

TABLE II

SUBSPACE TRACKER BI-SVD 3 [10] MODIFIED BY [11, P. 2995].

GA(n) IS A SEQUENCE OF (2L − 1) GIVENS ROTATIONS.

Input: ĥ(n)

Output: V̂(n), σ̂(n),GA(n), ĥ⊥(n)
Operation Comp.

1 d(n) = V̂H(n − 1)ĥ(n) NfL
2 ĥ⊥(n) = ĥ(n) − V̂(n − 1)d(n) NfL
3 D(n) = RB(n − 1)ΘA(n − 1) L3/3

4

[
(1 − β)1/2dH(n)

β1/2D(n)

]
−−−→
Givens QR

[
RB(n)
01×L

]
2L3

5 dH
R (n)RB(n) = dH(n) −−−−−−→

Back substitution dH
R (n) L2/2

6 DR(n)RB(n) = D(n) −−−−−−→
Back substitution DR(n) L3/3

7 RA(n − 1)DR(n) −−−−−−−−−−−−→
Extract upper triangular portion T

8

[
RA(n)
01×L

]
= GA(n)

[
βT + (1 − β)d(n)dH

R (n)

(1 − β) ‖ ĥ⊥(n) ‖ dH
R (n)

]
4L2

9
[
V̂(n) q(n)

]
=

[
V̂(n − 1)

ĥ⊥(n)

‖ĥ⊥(n)‖

]
GH

A (n) 8NfL
10 GH

A (n) −−−−−−−−−−−−−−→
Extract upper left L square matrix ΘA(n)

11 σ̂(n) = diag(RB(n)ΘA(n)) L3/3

C. Time-delay estimation using adaptive ESPRIT

Fast adaptive ESPRIT algorithms have already been inves-
tigated in the past [13] [14] [15]. However, they are either
unstable for closely spaced sinusoids (e.g. [13] as observed
in [11] and [15]); or are stable but not model-order adaptive
[14] [15]. Thus, we develop our own fast adaptive ESPRIT
algorithm for time-delay estimation with O(NfL) complexity
that is both stable and model-order adaptive.

Let V̂L̂(n) be the matrix composed of the dominant (left-
most) L̂ eigenvector columns of V̂(n), the output of the
subspace tracker from Table II. Perform the partitions

V̂L̂(n) =

[
V̂L̂,1(n)
v̂H

L̂,1
(n)

]
=

[
v̂H

L̂,2
(n)

V̂L̂,2(n)

]
(10)

where V̂L̂,1(n) and V̂L̂,2(n) are the (Nf − 1)× L̂ upper and
lower submatrices of V̂L̂(n); v̂H

L̂,1
(n) and v̂H

L̂,2
(n) are the

bottommost and topmost row vectors of the same matrix. The
adaptive equivalent of the ESPRIT spectral matrix [6] is

Φ̂L̂(n) =
(
V̂H

L̂,1
(n)V̂L̂,1(n)

)−1

V̂H
L̂,1

(n)V̂L̂,2(n) (11)

Our initial objective is to derive an O(NfL) updating
scheme for Φ̂L̂(n), where we proceed similarly as in [15,
Sec. 3.1]. Since V̂L̂(n) has orthonormal columns, we have
V̂H

L̂,1
(n)V̂L̂,1(n) = IL̂ − v̂L̂,1(n)v̂H

L̂,1
(n), which is sim-

ply a rank-one modification of the L̂ × L̂ identity ma-
trix. Using the matrix inversion lemma [16], we can write(
V̂H

L̂,1
(n)V̂L̂,1(n)

)−1

= IL̂ +
v̂L̂,1(n)v̂H

L̂,1
(n)

1−‖v̂L̂,1(n)‖2 . Using this in
(11), we have

Φ̂L̂(n) = ΥL̂(n) +
v̂L̂,1(n)

(
ΥL̂(n)H v̂L̂,1(n)

)H

1− ‖ v̂L̂,1(n) ‖2
(12)

ΥL̂(n) = V̂H
L̂,1

(n)V̂L̂,2(n) (13)



Note that the spectral matrix (12) is simply an O(L̂2) rank-one
update to (13), but computing (13) directly requires O(Nf L̂2).
In [15, Sec. 3.1], they proceed to use subspace trackers that
employ rank-one updates to derive an O(NfL) update for (13).
Unfortunately, these subspace trackers do not track the actual
eigenvalues, and are therefore unable to estimate and track
the time-varying model order L̂. Thus, we proceed to derive
a novel O(NfL) recursion for (13).

The main subspace update step of the modified Bi-SVD 3
is given by (cf. Step 9 of Table II)[

V̂(n) q(n)
]

=
[
V̂(n − 1) ĥ⊥(n)

]
GH(n) (14)

where ĥ⊥(n) = ĥ⊥(n)

‖ĥ⊥(n)‖ . By pre-multiplying both sides of

(14) by [INf−1 0(Nf−1)×1] and [0(Nf−1)×1 INf−1], we get
the (Nf − 1) × (L + 1) top submatrix[

V̂1(n) q1(n)
]

=
[
V̂1(n − 1) ĥ⊥

1 (n)
]
GH(n) (15)

and the (Nf − 1) × (L + 1) bottom submatrix[
V̂2(n) q2(n)

]
=
[
V̂2(n − 1) ĥ⊥

2 (n)
]
GH(n) (16)

respectively. Taking the Hermitian transpose of both sides of
(15) and pre-multiplying it to (16), we have[

ΥL(n) ∗
∗ ∗

]
= G(n)×[

ΥL(n − 1) V̂H
1 (n − 1)ĥ⊥

2 (n)
ĥ⊥H

1 (n)V̂2(n − 1) ĥ⊥H
1 (n)ĥ⊥

2 (n)

]
GH(n)

(17)

ΥL(n) = V̂H
1 (n)V̂2(n) (18)

and ’∗’ represents unused quantities. Observe that once we
initialize (18), we no longer need to perform this O(NfL2)
matrix multiplication, since we can simply update it as a single
L×L matrix. Furthermore, since G(n) represents a sequence
of 2L−1 Givens plane rotations [17], we can update ΥL(n) in
just 8L operations. Also notice that by partitioning V̂1(n) =
[V̂L̂,1(n) ∗] and V̂2(n) = [V̂L̂,2(n) ∗],

ΥL(n) =
[

ΥL̂(n) ∗
∗ ∗

]
(19)

where ΥL̂(n) is given by (13). Thus, by extracting the L̂× L̂
upper-left submatrix of the left hand side of (17) and using
it in (12), we arrive at an efficient adaptive ESPRIT spectral
matrix updating algorithm with principal complexity O(NfL).
Finally, we extract the radian phase of each of the complex
eigenvalues of the small L̂× L̂ matrix Φ̂L̂(n) (12), giving an
estimate of the time-delays {ϕ̂p}L̂

p=1.

D. Complex amplitude estimation

Given the time delay estimates {ϕ̂p}L̂
p=1, the maximum-

likelihood estimate for the L̂ × Nt matrix ĜML of complex
amplitudes can be computed using back-substitution of

RĜML = QHĤLS (20)

where ĜML = [ĝ0 . . . ĝL̂]T with ĝp = [ĝp(n) . . . ĝp(n−Nt +
1)]T , and

QR = E =

 ejϕ̂00 · · · ejϕ̂L̂−10

...
. . .

...
ejϕ̂0(Nf−1) · · · ejϕ̂L̂−1(Nf−1)

 (21)

is the “skinny” QR decomposition of the Nf ×L̂ Fourier trans-
form matrix E. Let ∆ϕ̂i(n) = ϕ̂i(n) − ϕ̂i(n − 1) denote the
difference between the time-delay estimates at two consecutive
time steps, and let ∆ϕ̂(n) = diag{ej∆ϕ̂0(n), . . . , ej∆ϕ̂L̂(n)}
be the diagonal L̂ × L̂ phase-difference matrix. Suppose that
we have at hand the previous “skinny” QR decomposition of
E(n − 1) = Q(n − 1)R(n − 1), we can then write

E(n) = E(n − 1)∆ϕ̂(n)
= Q(n − 1)R(n − 1)∆ϕ̂(n)

(22)

which gives us E(n) = Q(n)R(n) where Q(n) = Q(n − 1)
and R(n) = R(n − 1)∆ϕ̂(n) which is still upper triangular.
Thus, the only update to the QR decomposition is the multi-
plication of the diagonal phase-difference matrix to R(n−1),
which can be performed in L̂2/2 operations. Finally, the new
complex amplitude least-squares estimate is given as

R(n)ĝ(n) = QH(n)ĥ(n) (23)

The above discussion assumes that the model order is static
between iterations, which is the case most often encountered
since the time delays are slowly varying. However, it is
conceivable that there are small model order changes (e.g.
1 or 2) from one iteration to the next. We can use the same
framework above in conjunction with efficient column deleting
and appending procedures for the QR decomposition [17],
which have complexity O(L̂2) and O(Nf L̂) respectively.

In tracking the Doppler-frequencies, we can use the same
procedure for each path p = 1, . . . , L̂, with ĝp as the Nt-
length observation vector for the pth path, and where we track
the Mp-dimension dominant subspace. This can be done with
O(NtM) principal computational complexity, where M =∑L̂−1

p=0 Mp. To complete the channel prediction algorithm,
we simply substitute the estimated parameters to the channel
model in (1) with the future time index we wish to predict.

E. Computational complexity

Table III summarizes the computational complexity of the
proposed adaptive channel prediction algorithm, initialized
using [6]. We compare this with the adaptive algorithm using
LMS and RLS proposed in [5], initialized with the reduced
complexity MMSE TD prediction also proposed in [5]. Typ-
ically, N > Nf 	 L ≥ L̂, Nt 	 Mp ≥ M̂p and Ncp > L̂,
where Ncp is the cyclic prefix length. Thus, we can see that
in the initialization stage, the proposed algorithm is more
complex than that of [5]. In the tracking stage, our algorithm
is slightly more complex than LMS, but is much less complex
than RLS. In the prediction stage, [5] is more complex than our
algorithm. The initialization stage only needs to be performed
once, whereas both prediction and tracking are performed for
each OFDM symbol to be predicted.



TABLE III

COMPUTATIONAL COMPLEXITY

Stage Proposed Algorithm Algorithm from [5]

Initialization O(N3
f + L̂N3

t ) [6] O(N log2 N + NcpN2
t )

Tracking O(NfL + NtM) LMS - O(NcpNt)
RLS - O(NcpN2

t )

Prediction O(NL̂ + M̂) O(N log2 N + NcpNt)

TABLE IV

SIMULATION PARAMETERS

Parameter Value Parameter Value
Subcarriers (N) 512 Used Subcarriers (Nu) 426
CP length (Ncp) 16 Forgetting factor (β) 0.99

Bandwidth 5 MHz TD pilots (Nt) 100
Sampling Freq. 5.7 Ms/s FD pilots (Nf ) 142

Carrier Freq. 2.6 GHz TD pilot spacing (Dt) 22
Symbol Period 92.44 µs FD pilot spacing (Df ) 3

Max. Delay (τ̄) 2.5 µs Max. paths (L) 10
Max. Dopp. (f̄) 180.6 Hz Max. rays/path (Mp) 20

Paths (L) 6 Estim. paths (E{L̂}) 6
Rays/path (Mp) 16 Estim. rays/path (E{M̂p}) 16

IV. SIMULATION RESULTS

We provide simulation results for an outdoor mobile OFDM
system based on the IEEE 802.16e standard [7] using time-
division duplexing with a TsymDt = 2 ms frame length,
whose parameters are given in Table IV. We estimate the
channel during the preambles spaced Dt = 22 symbols apart,
and we predict a whole frame (22 symbols) ahead. We assume
a wireless channel following the ITU-Vehicular A [18] power
delay profile with L = 6 paths, where each path is simulated
using the modified Jakes method with Mp = 16 rays per path.
We allow both time-delays and Doppler frequencies to vary
linearly over time to simulate the non-stationary channel.

We initialized the adaptive prediction algorithm using [6] for
Nt = 100 frames, and then used the adaptive algorithm for the
next 500 frames. We then compared the performance of our
proposed algorithm with the algorithm proposed in [5]. This
method used an IFFT of the channel estimates from the Nu =
426 used subcarriers to derive the first Ncp TD channel taps.
These TD channel taps are then used to perform P th-order
linear MMSE prediction. An FFT of the predicted TD taps are
finally used to estimate the frequency response of the future
channel. After designing the prediction filter, conventional
LMS and RLS adaptive filters are then used to track the non-
stationary channel. We ran this algorithm with P = Nt = 100
to match the complexity of our algorithm. Figure 1 shows
the MSE performance for 20 channel realizations, with 500
frames per realization, for mobile velocities 30 and 75 kph. It
can be seen that our algorithm outperforms [5] except for the
case of very low SNR, where the MDL model-order selection
is unable to detect the weakest paths, resulting in higher
MSE when compared to using Ncp TD taps. In any case, the
proposed algorithm presents a good MSE vs. computational
complexity tradeoff for medium to high SNR regimes.
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Fig. 1. Prediction MSE results for the proposed algorithm and the algorithms
in [5] using simulation parameters given in Table IV.
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