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Abstract

Block Diagonaliation (BD) is a precoding technique that eliminates inter-user interference in downlink

multiuser multiple-input-multiple-output (MIMO) systems. The number of simultaneously supportable

users with BD is limited by the number of transmit and receive antennas. In a downlink MIMO system

with a large number of users, the basestation may select a subset of users to serve in order to maximize the

total throughput. The brute-force search for the optimal user set, however, is computationally prohibitive.

We propose two low complexity suboptimal user selection algorithms for multiuser MIMO systems with

BD. Both algorithms aim to select a subset of users such that the total throughput is nearly maximized.

The first user selection algorithm greedily maximizes the total throughput, whereas the criterion of the

second algorithm is based on the channel energy. We show that both algorithms have linear complexity

in the number of users and achieve around95% of the total throughput of the complete search method

in simulations.
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I. I NTRODUCTION

Multiple-input-multiple-output (MIMO) systems have drawn a lot of attention in the past decade. A

pioneering paper on point-to-point MIMO channel capacity by Telatar [1] showed that the MIMO channel

capacity scales linearly with the minimum number of transmit and receive antennas in Rayleigh fading

channels. For Gaussian broadcast multiuser MIMO channels, it was conjectured in [2] and recently

proven in [3] that Dirty Paper Coding (DPC) [4] can achieve the capacity region. The sum capacity in a

multiuser broadcast channel is defined to be the maximum aggregation of all users’ data rates. Although

DPC can achieve the sum capacity [2], deploying DPC in real-time systems is impractical because

of the complicated encoding and decoding schemes [5]. An alternative and more practical precoding

technique for downlink broadcast MIMO channels is Block Diagonalization (BD) [6]–[10]. With BD,

each user’s signal is multiplied by a precoding matrix before transmission. Every user’s precoding matrix

is restricted to be in the null space of all other users’ channels. Hence if the channel matrices of all users

are perfectly known at the transmitter, each user perceives an interference-free channel. On the other

hand, BD is inferior in terms of sum capacity relative to DPC, since the users’ transmit signal covariance

matrices are generally not optimal.

Due to the rank condition imposed by the fact that each user’s precoding matrix must lie in the null

space of all other users’ channels, the number of users that can be simultaneously supported with BD

is limited by the number of transmit antennas, the number of receive antennas, and the richness of the

channels [6]. In this paper, we consider the problem of choosing a subset of users that maximize the total

throughput (defined as the aggregate error-free capacity) for a multiuser system with a large number of

users. We assume that every user utilizes all his receive antennas. A brute-force complete search over

all possible user sets guarantees that the total throughput is maximized. The complexity, however, is

prohibitive if the number of users in the system is large. For example, ifK̂ is the maximum number of

users that can be simultaneously supported by BD andK is the total number of users, then the complete

search for the optimal user set has combinatoric complexity because everyi (1 ≤ i ≤ K̂) out of K users

must searched.

A user selection algorithm for downlink multiuser MISO systems has been proposed in [11], where the

users are equipped with one receive antenna and zero-forcing beamforming is performed at the transmitter,

which is equivalent to BD. The algorithm in [11] constructs a set of semi-orthogonal users whose total

throughput is close the sum capacity achieved by DPC. Analogous to the user selection problem is the

antenna selection problem where the transmitter and receiver select a subset of antennas to transmit and
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receive signals. A low complexity antenna selection algorithm is proposed in [12] that achieves almost

the same outage capacity as the optimal selection method. Antenna selection has also been considered in

downlink multiuser MIMO systems with BD [13], where it has been shown that a significant reduction

in symbol error rate can be achieved even with one extra transmit antenna.

In this paper, we propose two suboptimal user selection algorithms for BD with the aim of maximizing

the total throughput while keeping the complexity low. Both algorithms iteratively select users until the

maximum number of simultaneously supportable users are reached. The first user selection algorithm

greedily maximizes the total throughput. In each user selection step, the algorithm selects a user who

provides the maximum total throughput with those already selected users. While the first algorithm

requires frequent singular value decomposition (SVD) of the channel matrices, the second proposed

algorithm selects the users based on the channel energy, thus reducing the computational complexity. We

show that the proposed algorithms achieve around95% of the total throughput with the optimal user set,

and the complexity of the proposed algorithms is linear in the total number of usersK.

II. SYSTEM MODEL AND BACKGROUND

In this section, we introduce the system model and briefly describe the block diagonalization method

for multiuser MIMO systems presented in [6] [7]. In a downlink multiuser MIMO system withK users,

we denote the number of transmit antenna at the base station asnt and the number of receive antennas

for the jth user asnr,j . The transmitted symbol of userj is denoted as aNj-dimensional vectorxj ,

which is multiplied by ant ×Nj precoding matrixTj and sent to the basestation antenna array.

The received signalyj for userj can be represented as

yj = HjTjxj +
K∑

k=1,k 6=j

HjTkxk + vj (1)

where the second item in the right-hand-side (RHS) of (1) is the interference seen by userj from other

users’ signals andvj denotes the Additive Gaussian White Noise (AWGN) vector for userj with variance

E[vjv∗j ] = σ2I . Matrix Hj ∈ Cnr,j×nt denotes the channel transfer matrix from the basestation to the

jth user, with each entry following an i.i.d. complex Gaussian distributionCN (0, 1) [1], which is a valid

channel model if the transmit and receive antennas are in rich-scattering environments and the antenna

spacing is larger than the coherence distance. Other non-physical and physical MIMO channel models

can be found in [14]. For analytical simplicity, we assume that rank(Hj) = min(nr,j , nt) for all users.

It is also assumed that the channelsHj experienced by different users are independent. The key idea of
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block diagonalization is to precode each user’s dataxj with the precoding matrixTj , such that

Tj ∈ U(nt, Nj)

HiTj = 0 for all i 6= j and 1 ≤ i, j ≤ K, (2)

whereU(n, k) represents the class ofn × k unitary matrices, i.e. the collection of vectors(u1, . . . , uk)

whereui ∈ Cn for all i, and thek-tuple (u1, . . . , uk) is orthonormal.

Hence with precoding matricesTj , the received signal for userj can be simplified to

yj = HjTjxj +
K∑

k=1,k 6=j

HjTkxk + vj

= HjTjxj + vj . (3)

Let H̃j = [HT
1 · · · HT

j−1 HT
j+1 · · · HT

K ]T . In order to satisfy the constraint in (2),Tj shall be in

the null space of̃Hj . Let Ñj denote the rank of̃Hj . Let the singular value decomposition of̃Hj be

H̃j = ŨjΛ̃j [Ṽ
1

j Ṽ
0

j ]
∗, where Ṽ

1

j contains the firstÑj right singular vectors and̃V
0

j contains the last

(nt− Ñj) right singular vectors of̃Hj . The columns iñV
0

j form a basis set in the null space ofH̃j , and

hence the columns inTj are linear combinations of those iñV
0

j .

In the rest of the paper, we assume that every user has and uses the same number of receive antennas,

i.e. {nr,j}K
j=1 = nr for simplicity. With the assumption that each element inHj is generated by an

i.i.d. complex Gaussian distribution, it can be inferred from the rank condition in [6] that the maximum

number of simultaneous users is
⌈

nt

nr

⌉
, whered·e is the ceiling operation.

III. L OW COMPLEXITY USERSELECTION ALGORITHMS

In this section, we first define the sum capacity (i.e. the maximum total throughput) of BD for multiuser

broadcast channels. Two suboptimal user selection algorithms are then proposed to reduce the complexity

of finding the optimal user set.

Consider a set of channels{Hj}K
j=1 for a multiuser MIMO system. LetK = {1, 2, · · · ,K} denote

the set of all users, andAi be a subset ofK, where the cardinality ofAi is less than or equal to the

maximum number of simultaneous usersK̂. Let Hj = HjTj denote the effective channel after precoding

for userj ∈ Ai, then the total throughput achieved with BD applied to the user setAi with total power

P can be expressed as

CBD(HAi
, P, σ2) = max

{Qj : Qj≥0,
P

j∈Ai

Tr(Qj)≤P}

∑

j∈Ai

log
∣∣∣∣I +

1
σ2

HjQjH
∗
j

∣∣∣∣ (4)
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where Qj = E[xjx∗j ] is user j’s input covariance matrix of sizeNj × Nj and HAi
denotes the set

of channels for those users inAi. Notice that the solution to the RHS of (4) can be obtained by the

water-filling algorithm over the eigenvalues of{HjH
∗
j}j∈Ai

with total power constraintP , as discussed

in [6].

Let A be the set containing all possibleAi, i.e.A = {A1,A2, · · · }, then the sum capacity (maximum

total throughput) with BD can be defined as

CBD(H1, H2, · · · , HK , P, σ2) = max
Ai∈A

CBD(HAi
, P, σ2). (5)

DenoteK̂ =
⌈

nt

nr

⌉
as the maximum number of simultaneous users, and the Cardinality ofA is |A| =

∑K̂
i=1 KCi, wherenCm denotes the combination ofn choosingm. Hence, it is clear that a brute-force

exhaustive search overA is computationally prohibitive ifK À K̂.

A. Capacity-Based Suboptimal User Selection Algorithm

The exhaustive search method needs to consider roughlyO(KK̂) possible user sets. In this section,

we present a suboptimal algorithm whose complexity isO(K̂K).

Let si denote the user index selected in theith iteration, i.e.si ∈ {1, 2, · · · ,K} and 1 ≤ i ≤ K̂.

Let Ω denote the set of unselected users andΥ denote the set of selected users. The capacity-based

user selection algorithm is described in Table I. In words, the algorithm first selects the single user

with the highest capacity. Then, from the remaining unselected users, it finds the user that provides the

highest total throughput together with those selected users. The algorithm terminates whenK̂ users are

selected or the total throughput drops if more users are selected (the total throughput may decrease with

an additional user because the size of the null space for every user reduces in order to meet the zero

inter-user interference requirement). Clearly, the proposed algorithm needs to search over no more than

K̂K user sets, which greatly reduces the complexity compared to the exhaustive search method. Since

the user selection criterion is based on the sum capacity, we name the above algorithm the capacity-based

suboptimal user selection algorithm. Its throughput performance will be shown in Section V.

B. Frobenius Norm-Based Suboptimal User Selection Algorithm

Although the capacity-based suboptimal user selection algorithm greatly reduces the size of the search

set, the algorithm still may not be cost-effective for real-time implementation because singular value

decomposition, which is computationally intensive, is required for each user in each iteration to find the

total throughput. In this section, we propose another suboptimal user selection algorithm which is based
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on channel Frobenius norm. The motivation is that the capacity is closely related to eigenvalues of the

effective channel after precoding. Although the channel Frobenius norm cannot characterize the capacity

completely, it is related to the capacity because the Frobenius norm indicates the overall energy of the

channel, i.e. the sum of the eigenvalues ofHH∗ equals||H||2F .

Let si denotes the user index selected in theith iteration, i.e.si ∈ {1, 2, · · · ,K} and1 ≤ i ≤ K̂. Let

Ω denote the set of unselected users andΥ denote the set of selected users. LetVk be the basis for the

row vector space ofHk after applying the Gram-Schmidt orthogonalization procedure to the rows ofHk.

The Frobenius norm-based user selection algorithm is described in Table II. The idea of the norm-based

user selection algorithm is to select the set of users such that the sum of the effective channel energy

of those selected users is as large as possible. Notice that steps 1 and 2 in the norm-based algorithm

are independent with SNR, i.e.P . Once theK̂ users are selected, step 3 makes the final user selection

(possibly a subset of thêK users chosen by steps 1 and 2) with the capacity-based algorithm, where the

SNR is taken into consideration. Clearly, the norm-based algorithm requires fewer SVD operations than

the capacity-based algorithm. Detailed computational complexity will be analyzed in Section IV.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

Since the primary motivation for the two proposed suboptimal algorithm is their reduced computational

complexity, in the section we quantify their complexity and compare with the brute-force approach. The

complexity is counted as the number of flops, denoted asψ. A flop is defined to be a real floating point

operation [17]. A real addition, multiplication, or division is counted as one flop. A complex addition and

multiplication have two flops and six flops, respectively. Although flop counting cannot characterize the

true computational complexity, it captures the order of the computation load, so suffices for the purpose

of the complexity analysis in this paper.

A. Complexity of Typical Matrix Operations

For anm × n complex-valued matrixH ∈ Cm×n, we first provide the flop count of several matrix

operations that are frequently used in the suboptimal user selection algorithm. We assumeK À K̂,

K̂nr ≈ nt, andm ≤ n in this section.

• Frobenius norm‖H‖2
F takes2mn real multiplications and2mn real additions, hence the flop count

is 4mn.

• Gram-Schmidt orthogonalization GSO(H) takes4m2n − 2mn real multiplications;4m2n − 2mn

real additions; and2mn real divisions. The flop count for GSO is8m2n− 2mn.
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• Water-filling overn eigenmodes takes up to12(n2 + 3n) real multiplication;n2 + 3n real additions;

and 1
2(n2 + 3n) real divisions. The flop count for water-filling is2n2 + 6n.

• The flop count for SVD of real-valuedm× n (m ≥ n) matrices is4m2n + 8mn2 + 9n3 [17]. For

complex-valuedm×n (m ≤ n) matrices, we approximate the flop count as24mn2+48m2n+54m3

by treating every operation as complex multiplication.

B. Suboptimal User Selection Algorithm I: Capacity-Based Approach

1) i = 1: SVD of Hk has48n2
rnt + 24nrn

2
t + 54n3

r flops, water-filling needs2n2
r + 6nr flops, and

the calculation of total throughput requires2nr flops. In total, step 1 has computational complexity

K
(
48n2

rnt + 24nrn
2
t + 54n3

r + 2n2
r + 8nr

)
.

2) i ≥ 2:

For eachk ∈ Ω, to getTk by SVD needs48(i− 1)2n2
rnt + 24(i− 1)nrn

2
t + 54(i− 1)3n3

r flops.

To computeHk = HkTk, the complexity of this multiplication is8ntnr(nt − (i − 1)nr). SVD

of Hk introduces48n2
r (nt − (i− 1)nr)+24nr (nt − (i− 1)nr)

2 +54n3
r flops. Water-filling needs

2inr(inr + 3) flops, whereas the total throughput calculation has complexity2inr.

Hence, the flop count of the capacity-based user selection algorithm is

ψc

(a)
<

l
nt
nr

m
∑

i=2

{[
48i(i− 1)2 + 48i

]
n2

rnt

+ [24i(i− 1) + 32i]nrn
2
t +

(
54i(i− 1)3 + 54i

)
n3

r

+2i2n2
r + 8inr

}× (K − i + 1)

+K
(
48n2

rnt + 24nrn
2
t + 54n3

r + 2n2
r + 8nr

)

≈ O
(

K

⌈
nt

nr

⌉5

n3
r

)
≈ O

(
K

⌈
nt

nr

⌉2

n3
t

)
, (6)

where the inequality in(a) is due to the upper bound of(nt − (i− 1)nr) by nt in the calculation ofHk

and the SVD ofHk.

C. Suboptimal User Selection Algorithm II: Frobenius Norm Approach

1) i = 1: The Frobenius norm ofK users needs4Knrnt flop counts.

2) i ≥ 2.

For eachk ∈ Ω, we need18(i− 1)n2
rnt flops for H̃k = Hk −HkV∗V, which include the flops for

both matrix multiplications and additions;8(i − 1)2n2
rnt − 2(i − 1)nrnt flops for Wsj ,k; 18(i −

1)n2
rnt + 4(i− 1)nrnt flops for ‖Hs −HsW∗

s,kWs,k‖2
F ; and4(i− 1)nrnt flops for ‖H̃k‖2

F .
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3) The complexity of applying the capacity-based algorithm to the selectedK̂ =
⌈

nt

nr

⌉
users is

O
{⌈

nt

nr

⌉3
n3

t

}
, which is not dependent onK, and hence negligible compared to the complexity

of steps 1 and 2.

Therefore, the total flops of the norm-based user selection algorithm is

ψn ≈

l
nt
nr

m
∑

i=2

{[
8(i− 1)3 + 18(i− 1)2 + 18(i− 1)

]
n2

rnt+

[2(i− 1)2 + 4(i− 1)]nrnt

}× (K − i + 1) + 4Knrnt

≈ O
(

K

⌈
nt

nr

⌉4

n2
rnt

)
≈ O

(
K

⌈
nt

nr

⌉2

n3
t

)
. (7)

D. Optimal User Selection Algorithm: Complete Search

In the optimal user selection algorithm, the base-station conducts an exhaustive search over the
∑l

nt
nr

m
i=1 KCi possible user sets. The complexity of this complete search method is

ψcs

(a)

≥ KCl nt
nr

m ⌈
nt

nr

⌉[(
48

(⌈
nt

nr

⌉
− 1

)2

+ 8

)
n2

rnt + 24
(⌈

nt

nr

⌉
− 1

)
nrn

2
t

+

(
54

(⌈
nt

nr

⌉
− 1

)3

+ 2
⌈

nt

nr

⌉2

+ 126

)
n3

r + 8
⌈

nt

nr

⌉
nr

]

≈ O
(

KCl nt
nr

m ⌈
nt

nr

⌉
n3

t

)
(8)

where the inequality in(a) holds because only the case of pickingK̂ =
⌈

nt

nr

⌉
out ofK users is considered

to simplify the complexity analysis.

In summary, the proposed two suboptimal user selection algorithms have only a fraction of the

complexity of the complete search method approximately equal to

η ≈
K

⌈
nt

nr

⌉

KCl nt
nr

m . (9)

Both the capacity-based and the Frobenius norm-based algorithms have linear complexity withK, because

no more thanK̂K user sets need to be searched over. The norm-based algorithm has slightly lower

complexity than the capacity-based one because SVD is less frequently used in the norm-based algorithm.

In our Matlab7.0 implementation of the two proposed suboptimal algorithms, we observed that both

algorithms take tens to hundreds of milliseconds (on a Pentium M1.6 GHz PC) to select a user set, and

the CPU run time is linear in the number of users. Further, the norm-based algorithm runs roughly two

times faster than the capacity-based algorithm, for systems with a large number of users.
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V. SIMULATION RESULTS

In this section, we compare the performance of the following algorithms:

• iterative water-filling for dirty paper coding [15] (DPC),

• optimal user selection by complete search (BD Optimal),

• capacity-based user selection algorithm (BD c-algorithm),

• Frobenius norm-based user selection algorithm (BD n-algorithm),

• round-robin algorithm forK̂ simultaneous users (BD no selection).

Figs. 1–3 show the ergodic sum capacity (averaged over1000 channel realizations) vs. the number

of users for(nt = 4, nr = 2), (nt = 12, nr = 4), and (nt = 8, nr = 1) MIMO systems, where

K̂ = 2, 3, 8, respectively. Fig. 3 shows only up to16 users in the system due to the complexity of

the exhaustive search method. In all simulations, the capacity-based and the norm-based user selection

algorithms achieve around95% of the total throughput of the complete search method. The capacity-based

algorithm performs slightly better than the norm-based algorithm because its user selection criterion is

directly based on the sum capacity. For low SNRs, e.g.SNR = 0 dB, the proposed algorithms achieve

almost the same sum capacity as the exhaustive search method. This is true because beamforming to the

user with the highest capacity, which is the first step in the capacity-based user selection algorithm, is

asymptotically optimal for sum capacity of BD in the low SNR regime. For high SNRs, although the

proposed algorithms may not always find the optimal user set due to their reduced search range, they

can still achieve a significant part of the ergodic sum capacity of the exhaustive search method because

both algorithms greedily try to maximize the total throughput. The sum capacity achieved by dirty paper

coding (DPC) is also plotted in Figs. 1–3. In general, DPC achieves higher sum capacity than BD because

DPC is optimal for the sum capacity of MIMO broadcast channels [2][3]. BD, however, still achieves a

significant part of the DPC sum capacity. Further, the low complexity property of the BD algorithm (e.g.

without the requirement for successively encoding and decoding user signals) makes it more suitable for

practical implementations.

VI. CONCLUSION

Two suboptimal user selection algorithms for multiuser MIMO systems with block diagonalization are

proposed in this paper. The goal is to select a subset of users to maximize the total throughput while

keeping the complexity low. The brute-force complete search method yields the optimal user set with the

sum capacity achievement. However, the complexity of the complete search algorithm is roughlyO{KK̂},
whereK is the total number of users and̂K is the maximum number of simultaneous users. Simulations
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show that the proposed capacity-based and norm-based user selection algorithms achieve about95% of

the sum capacity whereas their complexity isO{KK̂}. Although the proposed user selection algorithms

are greedy in nature, they can be easily extended to incorporate fairness, e.g. the rate proportional fairness

in [16].
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Fig. 1. Ergodic sum capacity vs. the number of users, where the number of transmit antennas isnt = 4, the number of receive

antennas isnr = 2, and the maximum number of simultaneous users served by the block diagonalization algorithm isK̂ = 2.
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Fig. 2. Ergodic sum capacity vs. the number of users, where the number of transmit antennas isnt = 12, the number of

receive antennas isnr = 4, and the maximum number of simultaneous users served by the block diagonalization algorithm is

K̂ = 3.
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Fig. 3. Ergodic sum capacity vs. the number of users, where the number of transmit antennas isnt = 8, the number of receive

antennas isnr = 1, and the maximum number of simultaneous users served by the block diagonalization algorithm isK̂ = 8.
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TABLE I

CAPACITY-BASED SUBOPTIMAL USERSELECTION ALGORITHM

1) Initially, let Ω = {1, 2, · · · , K} and Υ = ∅. Let s1 = arg max
k∈Ω

log
��I + 1

σ2 HkQkH∗k
�� whereTr(Qk) ≤ P and Qk is

semi-positive definite. LetΩ = Ω− {s1} andΥ = Υ + {s1}. Let Ctemp = max
k∈Ω

log
��I + 1

σ2 HkQkH∗k
��.

2) for i = 2 : K̂

a) For everyk ∈ Ω,

i) Let Υk = Υ + {k}.
ii) Find the precoding matrixTj for eachj ∈ Υk, and obtain the effective channelHj = HjTj for eachj ∈ Υk.

iii) Perform a singular value decomposition (SVD) onHj , and obtain theM singular values{λj,m}M
i=1.

iv) Water-fill overλ2
j,m for j ∈ Υk and1 ≤ m ≤ M . Find the total throughput to the user setΥk, denoted asCk.

b) Let si = arg max
k∈Ω

Ck.

c) If max
k∈Ω

Ck < Ctemp

Algorithm terminated. The selected user set isΥ.

else

Let Ω = Ω− {si} andΥ = Υ + {si}. And let Ctemp = max
k∈Ω

Ck.

TABLE II

FROBENIUSNORM-BASED SUBOPTIMAL USERSELECTION ALGORITHM

1) Initially, let Ω = {1, 2, · · · , K} and Υ = ∅. Let s1 = arg max
k∈Ω

||Hk||2F . Let V = Vs1 . Let Ω = Ω − {s1} and

Υ = Υ + {s1}.
2) for i = 2 : K̂

a) For eachk ∈ Ω, let eHk = Hk − HkV∗V. Then eHk is in the null space ofV.

for j = 1 : i− 1

i) Let

Ĥsj ,k = [HT
s1 · · · HT

sj−1 HT
sj+1 · · · HT

si−1 HT
k ]T .

ii) Let Wsj ,k be the row basis for̂Hsj ,k after Gram-Schmidt orthogonalization.

b) For eachs ∈ Υ, let eHs = Hs − HsW∗
s,kWs,k. Then eHs is in the null space of̂Hs,k. Let

si = arg max
k∈Ω

 X
s∈Υ

||eHs||2F + ||eHk||2F
!

.

c) Let Ω = Ω− {si} andΥ = Υ + {si}. Apply the Gram-Schmidt orthogonalization procedure toeHsi and geteVsi .

Let V = [VT eVT

si
]T .

3) Apply the capacity-based suboptimal user selection algorithm to the setΥ, and get the final selected user set and the

total throughput.
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