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Abstract

Block Diagonaliation (BD) is a precoding technique that eliminates inter-user interference in downlink
multiuser multiple-input-multiple-output (MIMO) systems. The number of simultaneously supportable
users with BD is limited by the number of transmit and receive antennas. In a downlink MIMO system
with a large number of users, the basestation may select a subset of users to serve in order to maximize the
total throughput. The brute-force search for the optimal user set, however, is computationally prohibitive.
We propose two low complexity suboptimal user selection algorithms for multiuser MIMO systems with
BD. Both algorithms aim to select a subset of users such that the total throughput is nearly maximized.
The first user selection algorithm greedily maximizes the total throughput, whereas the criterion of the
second algorithm is based on the channel energy. We show that both algorithms have linear complexity
in the number of users and achieve aro@aé of the total throughput of the complete search method

in simulations.
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I. INTRODUCTION

Multiple-input-multiple-output (MIMO) systems have drawn a lot of attention in the past decade. A
pioneering paper on point-to-point MIMO channel capacity by Telatar [1] showed that the MIMO channel
capacity scales linearly with the minimum number of transmit and receive antennas in Rayleigh fading
channels. For Gaussian broadcast multiuser MIMO channels, it was conjectured in [2] and recently
proven in [3] that Dirty Paper Coding (DPC) [4] can achieve the capacity region. The sum capacity in a
multiuser broadcast channel is defined to be the maximum aggregation of all users’ data rates. Although
DPC can achieve the sum capacity [2], deploying DPC in real-time systems is impractical because
of the complicated encoding and decoding schemes [5]. An alternative and more practical precoding
technique for downlink broadcast MIMO channels is Block Diagonalization (BD) [6]-[10]. With BD,
each user’s signal is multiplied by a precoding matrix before transmission. Every user’s precoding matrix
is restricted to be in the null space of all other users’ channels. Hence if the channel matrices of all users
are perfectly known at the transmitter, each user perceives an interference-free channel. On the other
hand, BD is inferior in terms of sum capacity relative to DPC, since the users’ transmit signal covariance

matrices are generally not optimal.

Due to the rank condition imposed by the fact that each user’s precoding matrix must lie in the null
space of all other users’ channels, the number of users that can be simultaneously supported with BD
is limited by the number of transmit antennas, the number of receive antennas, and the richness of the
channels [6]. In this paper, we consider the problem of choosing a subset of users that maximize the total
throughput (defined as the aggregate error-free capacity) for a multiuser system with a large nhumber of
users. We assume that every user utilizes all his receive antennas. A brute-force complete search over
all possible user sets guarantees that the total throughput is maximized. The complexity, however, is
prohibitive if the number of users in the system is large. For examplE, i the maximum number of
users that can be simultaneously supported by BD /rid the total number of users, then the complete
search for the optimal user set has combinatoric complexity becauseifteryi < K) out of K users
must searched.

A user selection algorithm for downlink multiuser MISO systems has been proposed in [11], where the
users are equipped with one receive antenna and zero-forcing beamforming is performed at the transmitter,
which is equivalent to BD. The algorithm in [11] constructs a set of semi-orthogonal users whose total
throughput is close the sum capacity achieved by DPC. Analogous to the user selection problem is the

antenna selection problem where the transmitter and receiver select a subset of antennas to transmit and
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receive signals. A low complexity antenna selection algorithm is proposed in [12] that achieves almost
the same outage capacity as the optimal selection method. Antenna selection has also been considered in
downlink multiuser MIMO systems with BD [13], where it has been shown that a significant reduction

in symbol error rate can be achieved even with one extra transmit antenna.

In this paper, we propose two suboptimal user selection algorithms for BD with the aim of maximizing
the total throughput while keeping the complexity low. Both algorithms iteratively select users until the
maximum number of simultaneously supportable users are reached. The first user selection algorithm
greedily maximizes the total throughput. In each user selection step, the algorithm selects a user who
provides the maximum total throughput with those already selected users. While the first algorithm
requires frequent singular value decomposition (SVD) of the channel matrices, the second proposed
algorithm selects the users based on the channel energy, thus reducing the computational complexity. We
show that the proposed algorithms achieve ardi¥d of the total throughput with the optimal user set,

and the complexity of the proposed algorithms is linear in the total number of hSers

II. SYSTEM MODEL AND BACKGROUND

In this section, we introduce the system model and briefly describe the block diagonalization method
for multiuser MIMO systems presented in [6] [7]. In a downlink multiuser MIMO system \itlisers,
we denote the number of transmit antenna at the base stationaasl the number of receive antennas
for the jth user asn, ;. The transmitted symbol of usgris denoted as aV;-dimensional vectox;,
which is multiplied by an; x N; precoding matriXT ; and sent to the basestation antenna array.
The received signa}; for user;j can be represented as

K

yj = HjTij + Z HkaXk +V; (1)
k=1 k]

where the second item in the right-hand-side (RHS) of (1) is the interference seen byfumarother

users’ signals and; denotes the Additive Gaussian White Noise (AWGN) vector for viseith variance

E|vjvi] = 0°l. Matrix H; € C"*"™ denotes the channel transfer matrix from the basestation to the
jth user, with each entry following an i.i.d. complex Gaussian distribufidf(0, 1) [1], which is a valid

channel model if the transmit and receive antennas are in rich-scattering environments and the antenna
spacing is larger than the coherence distance. Other non-physical and physical MIMO channel models
can be found in [14]. For analytical simplicity, we assume that fdnk = min(n, ;,n;) for all users.

It is also assumed that the channkls experienced by different users are independent. The key idea of
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block diagonalization is to precode each user’s dataith the precoding matrix ;, such that

Tj c U(nt, Nj)

H;T; =0 foralli#j and1<4,j <K, (2)
whereU(n, k) represents the class efx & unitary matrices, i.e. the collection of vectdis, . . ., Ug)
whereu; € C™ for all 4, and thek-tuple (uy, ..., u,) is orthonormal.

Hence with precoding matriceB;, the received signal for usgrcan be simplified to

K
Y, = HjTij—i- Z HkaXk—i-Vj
k=1,k#j
= HjTij + Vj. (3)
Let H; = [HT .-+ HT_, HT,; -~ HE]”. In order to satisfy the constraint in (2J,; shall be in

the null space oH;. Let N; denote the rank ofi;. Let the singular value decomposition Hf; be
H; = U,A;[V; V}]*, whereV; contains the firstN; right singular vectors an; contains the last
(n: — N;) right singular vectors oH ;. The columns in\N/g form a basis set in the null space Ief, and
hence the columns iii; are linear combinations of those \Nfl_?

In the rest of the paper, we assume that every user has and uses the same number of receive antennas,
i.e. {nm}le = n, for simplicity. With the assumption that each elementHn is generated by an
i.i.d. complex Gaussian distribution, it can be inferred from the rank condition in [6] that the maximum
number of simultaneous users F%W where[-] is the ceiling operation.

1. L ow COMPLEXITY USERSELECTION ALGORITHMS

In this section, we first define the sum capacity (i.e. the maximum total throughput) of BD for multiuser
broadcast channels. Two suboptimal user selection algorithms are then proposed to reduce the complexity
of finding the optimal user set.

Consider a set of channe{$—|j}f{:1 for a multiuser MIMO system. Lek = {1,2,---, K} denote
the set of all users, and; be a subset ok, where the cardinality of4; is less than or equal to the
maximum number of simultaneous usé¥s LetH; = H;T; denote the effective channel after precoding
for userj € A;, then the total throughput achieved with BD applied to the usedsetith total power

P can be expressed as

1o
|+ —5HQH; (4)

Cpp(Hy,, P,o?) = max log
(Ha : 10,7 Q,20, 3> T(Q,)<P} ;_
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where Q; = EI[x;Xj] is userj's input covariance matrix of sizé&V; x N; and H 4, denotes the set
of channels for those users j4;. Notice that the solution to the RHS of (4) can be obtained by the
water-filling algorithm over the eigenvalues {ifi;H };c 4, with total power constrainf, as discussed
in [6].

Let A be the set containing all possihlg, i.e. A = {A;, As,-- -}, then the sum capacity (maximum

total throughput) with BD can be defined as
CBD(H1, HQ, ce ,HK,P7 0'2) = ﬁlg)jCBD(HA”P’ 0'2). (5)

Denote k' = [%W as the maximum number of simultaneous users, and the Cardinality isf|.A| =
Zfil kC;, where,,C),, denotes the combination af choosingm. Hence, it is clear that a brute-force

exhaustive search ovet is computationally prohibitive ifX > K.

A. Capacity-Based Suboptimal User Selection Algorithm

The exhaustive search method needs to consider rou@hl\jf() possible user sets. In this section,
we present a suboptimal algorithm whose complexit{D(sf(K).

Let s; denote the user index selected in tile iteration, i.e.s; € {1,2,--- K} and1 < i < K.
Let ©2 denote the set of unselected users dhdlenote the set of selected users. The capacity-based
user selection algorithm is described in Table I. In words, the algorithm first selects the single user
with the highest capacity. Then, from the remaining unselected users, it finds the user that provides the
highest total throughput together with those selected users. The algorithm terminate& wisens are
selected or the total throughput drops if more users are selected (the total throughput may decrease with
an additional user because the size of the null space for every user reduces in order to meet the zero
inter-user interference requirement). Clearly, the proposed algorithm needs to search over no more than
KK user sets, which greatly reduces the complexity compared to the exhaustive search method. Since
the user selection criterion is based on the sum capacity, we name the above algorithm the capacity-based

suboptimal user selection algorithm. Its throughput performance will be shown in Section V.

B. Frobenius Norm-Based Suboptimal User Selection Algorithm

Although the capacity-based suboptimal user selection algorithm greatly reduces the size of the search
set, the algorithm still may not be cost-effective for real-time implementation because singular value
decomposition, which is computationally intensive, is required for each user in each iteration to find the

total throughput. In this section, we propose another suboptimal user selection algorithm which is based
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on channel Frobenius norm. The motivation is that the capacity is closely related to eigenvalues of the
effective channel after precoding. Although the channel Frobenius norm cannot characterize the capacity
completely, it is related to the capacity because the Frobenius norm indicates the overall energy of the
channel, i.e. the sum of the eigenvaluesHi* equals||H||%.

Let s; denotes the user index selected in itreiteration, i.e.s; € {1,2,--- , K} and1 <i < K. Let
) denote the set of unselected users dhdenote the set of selected users. WYetbe the basis for the
row vector space dfl; after applying the Gram-Schmidt orthogonalization procedure to the rowds, of
The Frobenius norm-based user selection algorithm is described in Table Il. The idea of the norm-based
user selection algorithm is to select the set of users such that the sum of the effective channel energy
of those selected users is as large as possible. Notice that steps 1 and 2 in the norm-based algorithm
are independent with SNR, i.&. Once thek users are selected, step 3 makes the final user selection
(possibly a subset of th& users chosen by steps 1 and 2) with the capacity-based algorithm, where the
SNR is taken into consideration. Clearly, the norm-based algorithm requires fewer SVD operations than

the capacity-based algorithm. Detailed computational complexity will be analyzed in Section IV.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

Since the primary motivation for the two proposed suboptimal algorithm is their reduced computational
complexity, in the section we quantify their complexity and compare with the brute-force approach. The
complexity is counted as the number of flops, denotegh.a& flop is defined to be a real floating point
operation [17]. A real addition, multiplication, or division is counted as one flop. A complex addition and
multiplication have two flops and six flops, respectively. Although flop counting cannot characterize the
true computational complexity, it captures the order of the computation load, so suffices for the purpose

of the complexity analysis in this paper.

A. Complexity of Typical Matrix Operations

For anm x n complex-valued matri € C™*", we first provide the flop count of several matrix
operations that are frequently used in the suboptimal user selection algorithm. We a&stsnés,
Kn, ~n;, andm < n in this section.

« Frobenius nornj|H||%, takes2mn real multiplications an@mn real additions, hence the flop count

is 4mmn.

« Gram-Schmidt orthogonalization GSRY takes4m?n — 2mn real multiplications;4m?n — 2mn

real additions; an@mn real divisions. The flop count for GSO #&n?n — 2mn.
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« Water-filling overn eigenmodes takes up to(n? 4+ 3n) real multiplication;n? + 3n real additions;
and 3(n? + 3n) real divisions. The flop count for water-filling &:? + 6n.

« The flop count for SVD of real-valueth x n (m > n) matrices isdm?n + 8mn? + 9n? [17]. For
complex-valuedn x n (m < n) matrices, we approximate the flop count2dsnn? 4 48m?n + 54m?

by treating every operation as complex multiplication.

B. Suboptimal User Selection Algorithm I: Capacity-Based Approach

1) i = 1: SVD of Hy, has48n2n; + 24n,n? + 54n? flops, water-filling needgn? + 6n, flops, and
the calculation of total throughput requirgs, flops. In total, step 1 has computational complexity
K (48n%n; + 24n,n? + 54n3 4 2n? + 8n,).

2) i>2:
For eachk € ©, to getTy by SVD needst8(i — 1)?n2n; + 24(i — 1)n,n? + 54(i — 1)3n? flops.
To computeH,;, = H, T, the complexity of this multiplication i$nn,.(n; — (i — 1)n,.). SVD
of Hy, introducest8n? (n; — (i — 1)n,) +24n, (n; — (i — 1)n,)* + 54n3 flops. Water-filling needs
2in,.(in, + 3) flops, whereas the total throughput calculation has complexity.

Hence, the flop count of the capacity-based user selection algorithm is

e 2 g {[48i(i — 1)? + 48i] n2n,

1=2

+[24i(i — 1) + 32 nyni + (54i(i — 1)® + 544) n?

+2i*n2 + 8in, } x (K —i+1)

+K (48n3nt + 24n,n? + 54n? 4 2n? + 8nr)

5 2
~ O (K Vﬂ n§> ~ O <K [ﬂ n§> , 6)
Ny Ny

where the inequality ifa) is due to the upper bound 6f,; — (i — 1)n,.) by n; in the calculation off,
and the SVD ofHj,.

C. Suboptimal User Selection Algorithm II: Frobenius Norm Approach

1) i = 1. The Frobenius norm of{ users needdKkn,n; flop counts.

2) i>2.
For eachk € ), we need18(i — 1)n2n, flops forH, = Hj, — H,V*V, which include the flops for
both matrix multiplications and additions{i — 1)?nZn; — 2(i — 1)n,n; flops for Wy, ; 18(i —

Dnzng + 4(i — 1)n,ny flops for |[Hy — HsW?, W [|%; and4(i — 1)n,n, flops for | H||%.
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3) The complexity of applying the capacity-based algorithm to the selehfee [%W users is

T

3
@) { [MW n?} which is not dependent o, and hence negligible compared to the complexity

of steps 1 and 2.

Therefore, the total flops of the norm-based user selection algorithm is

)

21 — 1)? +4(i — D]nyne } x (K — i+ 1) + 4Kn,my
O <K mrnino ~ 0 (K MT@) . @)

D. Optimal User Selection Algorithm: Complete Search

FIE

Q

Un {[8(i —1)® + 18(i — 1)* + 18(i — 1)] nZns+

||
N

Q

In the optimal user selection algorithm, the base-station conducts an exhaustive search over the

ng

szl xC; possible user sets. The complexity of this complete search method is

Yo 2 KOl L’ﬂ [(48 G;’ﬂ = 1>2 + 8) n2n; + 24 q:ﬂ - 1) npn
+ (54 d:ﬂ - 1>3 +2 WT v 126) n? 4 8 Hﬂ n]

~ 0wz [32] ) ©

where the inequality ifla) holds because only the case of pickiiig= [%1 out of K users is considered

—

3

to simplify the complexity analysis.

In summary, the proposed two suboptimal user selection algorithms have only a fraction of the
complexity of the complete search method approximately equal to

i

"]

L

: (9)

Both the capacity-based and the Frobenius horm-based algorithms have linear complexity béttause

no more thank K user sets need to be searched over. The norm-based algorithm has slightly lower
complexity than the capacity-based one because SVD is less frequently used in the norm-based algorithm.
In our Matlab7.0 implementation of the two proposed suboptimal algorithms, we observed that both
algorithms take tens to hundreds of milliseconds (on a PentiumoMcHz PC) to select a user set, and

the CPU run time is linear in the number of users. Further, the norm-based algorithm runs roughly two

times faster than the capacity-based algorithm, for systems with a large number of users.

DRAFT September 10, 2005



V. SIMULATION RESULTS

In this section, we compare the performance of the following algorithms:

« iterative water-filling for dirty paper coding [15] (DPC),

» optimal user selection by complete search (BD Optimal),

« capacity-based user selection algorithm (BD c-algorithm),

« Frobenius norm-based user selection algorithm (BD n-algorithm),

« round-robin algorithm fork” simultaneous users (BD no selection).

Figs. 1-3 show the ergodic sum capacity (averaged ©9@0® channel realizations) vs. the number
of users for(n; = 4,n, = 2), (ny = 12,n, = 4), and (ny = 8,n, = 1) MIMO systems, where
K = 2,3,8, respectively. Fig. 3 shows only up t users in the system due to the complexity of
the exhaustive search method. In all simulations, the capacity-based and the norm-based user selection
algorithms achieve arourth% of the total throughput of the complete search method. The capacity-based
algorithm performs slightly better than the norm-based algorithm because its user selection criterion is
directly based on the sum capacity. For low SNRs, S4.R = 0 dB, the proposed algorithms achieve
almost the same sum capacity as the exhaustive search method. This is true because beamforming to the
user with the highest capacity, which is the first step in the capacity-based user selection algorithm, is
asymptotically optimal for sum capacity of BD in the low SNR regime. For high SNRs, although the
proposed algorithms may not always find the optimal user set due to their reduced search range, they
can still achieve a significant part of the ergodic sum capacity of the exhaustive search method because
both algorithms greedily try to maximize the total throughput. The sum capacity achieved by dirty paper
coding (DPC) is also plotted in Figs. 1-3. In general, DPC achieves higher sum capacity than BD because
DPC is optimal for the sum capacity of MIMO broadcast channels [2][3]. BD, however, still achieves a
significant part of the DPC sum capacity. Further, the low complexity property of the BD algorithm (e.g.
without the requirement for successively encoding and decoding user signals) makes it more suitable for

practical implementations.

VI. CONCLUSION

Two suboptimal user selection algorithms for multiuser MIMO systems with block diagonalization are
proposed in this paper. The goal is to select a subset of users to maximize the total throughput while
keeping the complexity low. The brute-force complete search method yields the optimal user set with the
sum capacity achievement. However, the complexity of the complete search algorithm is r@t{@hﬁ/},

where K is the total number of users ard is the maximum number of simultaneous users. Simulations
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show that the proposed capacity-based and norm-based user selection algorithms achie8&7alodut

the sum capacity whereas their complexit;(’]ﬂ(f(}. Although the proposed user selection algorithms

are greedy in nature, they can be easily extended to incorporate fairness, e.g. the rate proportional fairness
in [16].
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Fig. 3. Ergodic sum capacity vs. the number of users, where the number of transmit antemnas8sthe number of receive

antennas is:, = 1, and the maximum number of simultaneous users served by the block diagonalization algotithm &
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TABLE |

CAPACITY-BASED SUBOPTIMAL USER SELECTION ALGORITHM

1) Initially, let @ = {1,2,--- K} andT = (). Let s; = argr}?gglog“ + 2 HxQuH%| whereTr(Q,) < P andQ, is
semi-positive definite. Le® = Q — {s1} andY = T + {s1}. Let Cremp = maxlog |l + L HLQHE|.
2) fori=2:K
a) For everyk € Q,
i) LetY, =7+ {k}.
ii) Find the precoding matriX ; for eachj € Y}, and obtain the effective channidl, = H;T; for eachj € Y.
iii) Perform a singular value decomposition (SVD) ldr, and obtain theM singular values(\; . }2,.
iv) Water-fill overA? ,,, for j € T) and1 < m < M. Find the total throughput to the user &, denoted a€’s.
b) Lets; = arg Il?eaf))( Ch.
c) If max Cr < Ctemp
Algorithm terminated. The selected user sef(is
else
LetQ=Q — {s;} andY =T + {s:}. And let Ciemp = rglggck.

TABLE 1l

FROBENIUSNORM-BASED SUBOPTIMAL USERSELECTION ALGORITHM

1) Initially, let Q@ = {1,2,--- ,K} and Y = 0. Let s; = argll?gé<|\Hk\|fw. LetV = V,,. Let Q = Q — {s1} and
T=7+{s1}.
2) fori=2:K
a) For eachk € , let Hy = Hy — HxV*V. ThenHy is in the null space o¥/.
forj=1:1—1
i) Let
He,n = [H, - HS,_ HS o HS HETE
ii) LetW;, » be the row basis foﬂSjJc after Gram-Schmidt orthogonalization.
b) For eachs € T, letH, = Hy — H,W? W, ;. ThenH, is in the null space ofi, x. Let
si = argmax (;ﬁ [IH 7 + |Iﬁk|%> :
c) LetQ=0Q—{s;} andY = T + {s;}. Apply the Gram-Schmidt orthogonalization proceduretg and getV...
LetV = [vT V..
3) Apply the capacity-based suboptimal user selection algorithm to th& sahd get the final selected user set and the

total throughput.

DRAFT September 10, 2005



