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Abstract

Grayscale error diffusion introduces nonlinear distortion (directional artifacts and false textures), linear distortion

(sharpening), and additive noise. Tone dependent error diffusion reduces these artifacts by controlling the diffusion of

quantization errors based on the input graylevel. We present an extension of tone dependent error diffusion to color.

In color error diffusion, what color to render becomes a major concern in addition to finding optimal dot patterns. We

propose a visually meaningful scheme to train input level (or tone) dependent color error filters. Our design approach

employs a Neugebauer printer model and a color human visual system (HVS) model that takes into account spatial

considerations in color reproduction. The resulting halftones overcome several traditional error diffusion artifacts and

achieve significantly greater accuracy in color rendition.
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I. Introduction

Digital halftoning is the process of representing continuous-tone (a.k.a. grayscale and color) images with

a finite number of levels for the purpose of display or printing on devices with finite reproduction palettes.

Examples include conversion of a 24-bit color image to a three-bit color image and conversion of an 8-bit

grayscale image to a binary image.

Halftoning methods in current use may be categorized as classical screening, dithering with blue noise,

direct binary search (DBS), and error diffusion. Classical screening, which is the oldest halftoning method in

printing, applies a periodic array of thresholds to each color of the multi-bit image. Pixels can be converted to
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255 (black) if they are above the threshold or 0 (white) otherwise. The human visual system may be roughly

approximated as a linear spatially invariant (LSI) system that is lowpass to the luminance component of a

color image. Dithering with blue noise (i.e., high-frequency noise) [1] attempts to place the quantization noise

from the halftoning process into the higher frequencies. Noise shaping is a characteristic of error diffusion as

described later, but large periodic masks of thresholds (e.g., 128 x 128 pixels) can be designed to produce

halftones with blue noise [2], [3]. Although, a plethora of screen design techniques have been proposed [4],

they do not produce halftone image quality comparable to DBS.

Direct binary search [5] produces blue noise halftones by iteratively searching for the best binary pattern

to match a given grayscale image by minimizing a distortion criterion. The distortion criterion incorporates

a linear spatially-invariant model of the human visual system as a weighting function [6]. The direct binary

search method produces halftones with the highest visual quality to date. Due to its implementation com-

plexity, it is impractical for use as a halftoning method in desktop printers. However, direct binary search can

be employed to design screens [7] and error diffusion parameters.

Error diffusion produces halftones of much higher quality than classical screening, with the tradeoff of

requiring more computation and memory [8], [9]. Screening amounts to pixel-parallel thresholding, whereas

error diffusion requires a neighborhood operation and thresholding. The neighborhood operation distributes

the quantization error due to thresholding to the unhalftoned neighbors of the current pixel. The term “error

diffusion” refers to the process of diffusing the quantization error along the path of the image scan; e.g., in

the case of a raster scan, the quantization error diffuses across and down the image. This diffusion of errors

occurs in a feedback arrangement [8], which causes the quantization error to be highpass filtered.

Classical error diffusion as proposed in [8], however, introduces nonlinear distortion (worms and false tex-

tures), linear distortion (sharpening) and additive noise [10]. Many variations and enhancements have been

developed to improve halftone quality for grayscale error diffusion, which includes threshold modulation [11],

[12], [13], [14], [15], [16], variable error filter weights [9], [17] [18], [19] and different scan paths [9], [20].

Recently, tone dependent methods have been developed for grayscale error diffusion [21], [22], [23], [24].

These methods use error filters with different coefficients for different graylevels in the input image. The

quantizer threshold is also modulated based on the input graylevel [24]. The fundamental premise behind

the approaches in [21] - [24] was to identify that qualitatively, error diffusion reproduces an input tone (or

graylevel) in a local region by driving the average error to zero. An optimization for each input tone would

hence enhance the feedback mechanism to more accurately determine the correct (or optimum) amount of
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error to diffuse.

1In this paper, we formulate the design of input-level or tone dependent color error diffusion halftoning

systems. In particular, we focus on design issues that differentiate color error diffusion from its grayscale

counterpart. An independent design for each color plane would ignore the correlation among color planes

and can often result in inaccurate color reproduction [25]. We motivate this problem by asking the following

question: “Suppose we want to print a patch of solid color, what colors should we use?” Traditional work

on halftoning addresses the issue of what pattern should the dots be placed in. The issue of participating

halftone color was raised in [26], but it served primarily as an example of how bad things can become. A few

previous efforts in color error diffusion have addressed this problem to some extent. These include color plane

separable design and implementation of error diffusion [18], vector quantization based on perceptual criterion

[27], [28], [29] and non-separable processing of color planes via matrix valued filters [30], [31].

This paper proposes a more complete answer to the issue. In particular, we observe that the accuracy of

color rendition in halftoning by error diffusion can be significantly enhanced by optimizing error filters based

on the input colorant (CMY) or tone values. However, the notion of “tone” in the case of color is far more

involved. To optimize over the entire color gamut, one needs to design error filters for all possible input CMY

combinations. This number easily grows to be prohibitively large; e.g., for 24-bit color images with 8-bits per

color plane there are (256)3 different combinations. It is therefore needed to constrain the design to regions

in the CMY color cube that are critical to color reproduction. Further, these regions must ideally be specified

in device-independent and visually meaningful coordinates (e.g., in the CIELab space [32]) so that the color

quantization error may be diffused to frequencies and colors to which the eye is least sensitive.

We design error filters for CMY combinations that correspond to the true neutrals in the device-independent

gamut, i.e. the locus (L∗, 0, 0) in the CIELab space. Our design procedure then trains error filter weights

in order to minimize the perceived error between a constant-valued continuous-tone color image and its

corresponding halftone pattern. A color human visual system (HVS) model takes into account the correlation

among color planes. We employ an HVS model based on a transformation to the Linearized CIELab color

space [33] that exploits the spatial frequency sensitivity variation of the luminance and chrominance channels.

The efficacy of Linearized CIELab in computing color reproduction errors in halftoning is shown in [31]. The

resulting halftones overcome many artifacts associated with traditional error diffusion viz. worms and false

textures. The most significant gain however lies in a much smaller perceived error between the colors in a
1Work presented in part at the IEEE Int. Conf. on Acoustics, Speech and Signal Processing, May, 2004.
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Fig. 1. System block diagram for grayscale error diffusion halftoning where m represents a two-dimensional spatial

index (m1, m2) and h(m) is the impulse response of a fixed 2-D nonseparable FIR error filter

continuous tone image and its corresponding halftone pattern vs. separable design schemes. The color HVS

model also helps minimize the visibility of the halftone pattern.

The rest of the paper is organized as follows. Section II-A outlines the basic structure of error diffusion.

In Section II-B we briefly describe the tone dependent error diffusion (TDED) algorithm by Li and Allebach

[24] for halftoning grayscale images. Section III reviews previous work in color error diffusion and further

motivates our approach. Our proposed approach for designing input-level or tone dependent color error filters

is then described in Section IV. Section V compares halftone images generated by our algorithm with other

schemes in the literature and analyzes the findings. Some possible enhancements are considered in Section

VI. Section VII summarizes the paper.

II. Grayscale Error Diffusion Halftoning

A. Classical Error Diffusion

In grayscale halftoning by error diffusion, each grayscale pixel is thresholded to white or black, and the

quantization error is fed back, filtered and added to the neighboring grayscale pixels [8]. The system block

diagram shown in Fig. 1 is also known as a noise-shaping feedback coder. In Fig. 1, x(m) denotes the graylevel

of the input image at pixel location m, such that x(m) ∈ [0, 255]. The output halftone pixel is b(m), where

b(m) ∈ {0, 255}. Here, 0 is interpreted as the absence of a printer dot and 255 is interpreted as the presence

of a printer dot. Q(·) denotes the standard thresholding quantizer function.

The error filter h(m) filters the previous quantization errors e(m):

h(m) ∗ e(m) =
∑

k∈S
h(k) e(m− k) (1)

Here, ∗ means linear convolution, and the set S defines the extent of the error filter coefficient mask. The

error filter output is fed back and added to the input. Note that (0, 0) /∈ S. The mask is causal with respect



SUBMITTED TO THE IEEE TRANSACTIONS ON IMAGE PROCESSING 5

to the image scan. To ensure that all of the quantization error is diffused, h(m) must satisfy the constraint

∑

k∈S
h(m) = 1 (2)

This constraint ensures that the error filter eliminates quantization noise at DC where the human visual

system is most sensitive [34]. The quantizer input u(m) and output b(m) are given by

u(m) = x(m)− h(m) ∗ e(m) (3)

b(m) = Q(u(m)) (4)

Error diffusion produces high quality halftones because the quantization noise is shaped into the high fre-

quencies where the human eye is less sensitive. Since the halftone dots are of single pixel size, the illusion of

continuous-tone is created by varying the dot frequency with graylevel.

B. Grayscale Tone Dependent Error Diffusion

Tone dependent error diffusion (TDED) methods use error filters h(m) of different sizes and coefficients for

different graylevels [21], [24]. Optimal error weighting for selected graylevels based on “blue-noise” spectra

was introduced in [35].

Li et al. design error filter weights and thresholds so that the resulting halftones approximate dot patterns

generated by DBS. DBS [5] produces high quality halftones by searching for the best binary pattern to match

a given grayscale image by minimizing a visual distortion criterion. For the TDED algorithm in [24], the

error filter and threshold matrix, denoted by h(m) and t(m; d) respectively, are functions of input pixel value

d ∈ [0, 255]. The binary output b(m), is determined by

b(m) =





255, if u(m) ≥ t(m; x(m))

0, otherwise.
(5)

The quantization error e(m) and the quantizer input u(m) are then computed as in conventional grayscale

error diffusion. The threshold matrix used by Li and Allebach [24] is based on a binary DBS pattern for a

constant input of mid-gray.

t(m; d) =





tu(d) if p[m, 128] = 0

tl(d) otherwise.
(6)

where tu(d) and tl(d) are tone dependent parameters satisfying tu(d) ≥ tl(d). The function p[m, 128] is a

halftone pattern generated by DBS that represents a constant patch of mid-gray. By substituting (6) into (5),
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the thresholding process can be represented by

b(m) =





255 if u(m) ≥ tu(x(m))

0 if u(m) < tl(x(m))

p[m, 128] otherwise.

(7)

For the error filter design, the authors chose the magnitude of the DFT of the DBS pattern as an objective

spectrum for the halftone pattern for input graylevel values in the midtones (21-234). For the highlight and

shadow regions (graylevel values in 0-20 and 235-255) the objective spectrum is the DFT of the graylevel patch.

Let BDBS(k, l) and BTDED(k, l) denote the DFT of the DBS and the tone dependent error diffusion patterns,

respectively. The goal is then to search for the tone dependent parameter vector v = (tu(d), tl(d), h(m; d))

that minimizes

J =
∑

k

∑

l

(|BTDED(k, l)| − |BDBS(k, l)|)2 (8)

subject to the constraints

tu(d) + tl(d) = 255 (9)

tu(d) ≥ tl(d) (10)

∑

k∈S
h(k; d) = 1 (11)

h(k; d) ≥ 0 ∀ k ∈ S (12)

Note that BDBS(k, l) would be replaced by X(k, l) (the DFT of the input graylevel patch) for the highlight

and shadow regions. The difference |BTDED(k, l)| − |X(k, l)| is then weighted (convolved) by a human visual

system frequency response [5] to compute the perceived error. The algorithm to search for the optimum tone

dependent parameter vector vopt is described in [24].

III. Previous Work in Color Error Diffusion

Kolpatzik and Bouman [18] use separable error filters in a luminance-chrominance space to account for

correlation among the color planes. Separate optimum scalar error filters are designed for the luminance

and chrominance channels independently based on a separable model of the human visual system. However,

no constraints are imposed on the error filter to ensure that all of the red-green-blue (RGB) (or CMY)

quantization error is diffused.

Haneishi et al. [27] suggested the use of the CIEXYZ and CIELab spaces to perform quantization and error

diffusion. In this case the rendering gamut is no longer a cube. The mean squared error (MSE) criterion
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in the XYZ or Lab space is used to make a decision on the best color to output. The quantization error

is a vector in the XYZ space and is diffused using an error filter. (Lab space is not suitable for diffusing

errors due to its nonlinear variation with intensity.) This method performs better than separable quantization

but suffers from boundary artifacts [27] [28] such as the “smear artifact” and the “slow response artifact” at

color boundaries due to accumulated errors from neighboring pixels pushing quantizer input colors outside

the gamut. This effect may be reduced by clipping large color errors [27],[29] or by using a hybrid scalar-

vector quantization method called semi-vector quantization [28]. Error diffusion and preceptual quantization

in device independent spaces also significantly increases the computational complexity since nonlinear color

transformations and gamut mapping would now become a part of the error diffusion loop.

Another significant improvement to separable color halftoning involves limiting the number of ink colors

used to render a specific pixel. Shaked, Arad, Fitzhugh, and Sobel [36], [37] suggest a method for using

error diffusion for generating color halftone patterns that carefully examines each pixel’s original color values

simultaneously, distinct from past error, in order to determine potential output colors. By limiting the colors

used, the authors argue that a smaller range of brightnesses in the colors are used to create each color area,

which minimizes the visibility of the halftone pattern. This criteria, which is known as the minimum brightness

variation criterion (MBVC), is based on the observation that the human eye is more sensitive to changes in

“brightness” or luminance than to changes in chrominance.

Finally, Damera-Venkata and Evans [30] proposed using matrix valued filters to take into account the

correlation among color planes. They extended the (linear) scalar gain model used in analyzing grayscale

error diffusion proposed by Kite et al. [38] to a (linear) matrix gain model for color images. The matrix

valued error filters were designed to minimize the visually weighted energy in response to the quantization

error which was modelled as additive uncorrelated noise [30]. For an RGB image, each error filter coefficient

would be a 3 × 3 matrix.

In the proposed work, we present a non-separable design that obtains visually optimum color error filters

for each of the C, M and Y channels that are dependent on the input CMY triplet (or tone). We constrain the

error filters so that the entire cyan, magenta and yellow quantization error is diffused. The design approach

is model based. A Neugebauer printer model [39] is employed for predicting the colorimetric response of the

printer and a color HVS model is used to compute the perceived error in color reproduction. We show that by

designing color error filters dependent on a small number of cleverly chosen “cannonical” CMY combinations

we can achieve significantly improved color accuracy all over the device gamut.
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IV. Tone Dependent Color Error Diffusion

We aim to minimize color reproduction errors (spatial considerations included) in a visually meaningful

color space i.e., Linearized CIELab [33]. This requires the availability of a reasonably accurate transformation

from the device dependent coordinates, i.e., printer CMY to our desired color space. We employ the widely

used Neugebauer printer model [39] for this purpose which is briefly reviewed. Then, we detail our design

approach to train and optimize error filters along each of the colorant planes.

A. Printer characterization via the Neugebauer model

The Neugebauer printer model has been successfully used by several researchers to model a halftone color

printing process. For such a printer, the rendering of a multitude of colors is achieved through combinations

of varying dot area coverages of the primary colorants. The Neugebauer equations [39] predict the average

spectral reflectance from an arbitrary printed patch as a weighted average of the spectral reflectances of

2N known basis colors. In this work, we will focus on the case of CMY printers, i.e., N = 3. Our design

methodology is easily generalized to N > 3 colorants.

For CMY printers, there are eight basis colors, which are the white paper (W), and the 1, 2, and 3 solid

color overlays (i.e., 0 % and 100 % combinations) of C, M, Y. These basis colors are commonly referred to

as the Neugebauer primaries. In the original Neugebauer equations, the color being predicted is specified by

three broadband reflectances representing the short, medium and long wavelength portions of the electromag-

netic spectrum. In this work, spectrally narrowband reflectances R(λ) are used instead of their broadband

counterparts, since the former generally yields greater accuracy [40]. For a given digital input [C, M, Y] with

corresponding area coverages c,m, y (0 < c, m, y < 1), the spectral Neugebauer equations predict the average

spectral reflectance of the printed sample to be

R̂(λ)cmy =
8∑

i=1

wi(c,m, y)Pi(λ) (13)

where Pi(λ) represent the measured spectral reflectances of the Neugebauer primaries and wi(c,m, y) is the

weight of the ith primary. These weights are determined by the dot placement or dot overlap model. We

select weights based on Demichel dot model [41] which assumes a random dot placement typical of rotated

halftone screens and error diffusion.

Yule and Nielsen [42] proposed a simple correction to the above model in (13) that accounts for light

scattering in paper
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R̂(λ)cmy =

[
8∑

i=1

wi(c,m, y)Pi(λ)
1
n

]n

(14)

where n is referred to as the Yule-Nielsen factor. Although, the Yule-Nielsen correction was originally proposed

to account for light scattering it has been found [43] to even account for other physical factors such as halftone

screen frequency and measurement noise. The approach taken in our work was to optimize the Y-N factor

as a free parameter so that predicted printer response agrees as much as possible with the true (measured)

printer response.

B. Perceptual Error Metric

We train error filters to minimize a visually weighted squared error between the magnitude spectra of a

“constant” input color image and its halftone pattern. Let x(C,M,Y )(m) and b(C,M,Y )(m) denote the constant

valued continuous tone and halftone images, respectively. x(Yy ,Cx,Cz)(m) and b(Yy,Cx,Cz)(m) are obtained

by transforming x(C,M,Y )(m) and b(C,M,Y )(m) to the YyCxCz (or Linearized CIELab) color space. This

transformation is made in the following manner

CMY −→ spectral reflectances −→ CIEXYZ −→ Linearized CIELab (YyCxCz)

The first transformation, from printer CMY to spectral reflectances, is based on the printer model look up

table (LUT) implementation of (14). The transformation from spectral reflectances to CIEXYZ can be found

in standard color literature [32]. The linearized CIELab color space may be obtained from the CIEXYZ space

in the following manner [33]:

Yy = 116
Y

Yn
− 16 (15)

Cx = 500
[

X

Xn
− Y

Yn

]
(16)

Cz = 200
[

Y

Yn
− Z

Zn

]
(17)

The Yy component is proportional to the luminance and the Cx and Cz components are similar to the Red-

Green and Blue-Yellow opponent color chrominance components on which Mullen’s data [44] is based. The

original transformation to the CIELab from CIEXYZ is a nonlinear one

L∗ = 116f
(

Y

Yn

)
− 16 (18)

a∗ = 500
[
f
(

X

Xn

)
− f

(
Y

Yn

)]
(19)
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b∗ = 200
[
f
(

Y

Yn

)
− f

(
Z

Zn

)]
(20)

where

f(x) =





7.787x + 16
116 if 0 ≤ x ≤ 0.008856

x1/3 if 0.008856 < x ≤ 1

The values for Xn, Yn and Zn are as per the D65 white point [45].

The nonlinearity in the transformation from CIELab distorts the spatially averaged tone of the images,

which yields halftones that have incorrect average values [33]. The linearized color space overcomes this, and

has the added benefit that it decouples the effect of incremental changes in (Yy, Cx, Cz) at the white point on

(L∗, a∗, b∗) values:

∇(Yy,Cx,Cz)(L
∗, a∗, b∗)|D65 =

1
3
I (21)

The difference in the Fourier spectra of the “constant” input image and its halftone pattern is denoted by

ξ(k, l) and computed as ξ(k, l) = X(Yy,Cx,Cz)(k, l)−B(Yy,Cx,Cz)(k, l) where

X(Yy,Cx,Cz)(k, l) = FFT (x(Yy,Cx,Cz)(m)) (22)

B(Yy ,Cx,Cz)(k, l) = FFT (b(Yy ,Cx,Cz)(m)) (23)

where FFT is the two-dimensional (2-D) fast Fourier transform.

We then apply a visual weighting to the luminance and chrominance components of the (Yy, Cx, Cz) color

error image. Nasanen and Sullivan [46] chose an exponential function to model the luminance frequency

response

W(Yy)(ρ̃) = K(L)e−α(L)ρ̃ (24)

where L is the average luminance of display, ρ̃ is the radial spatial frequency, K(L) = aLb and

α(L) =
1

c ln(L) + d
(25)

The frequency variable ρ̃ is defined [33] as a weighted magnitude of the frequency vector u = (u, v)T, where

the weighting depends on the angular spatial frequency φ [46]. Thus,

ρ̃ =
ρ

s (φ)
(26)

where ρ =
√

u2 + v2 and

s (φ) =
1− ω

2
cos(4φ) +

1 + ω

2
(27)



SUBMITTED TO THE IEEE TRANSACTIONS ON IMAGE PROCESSING 11

The symmetry parameter ω is 0.7, and φ = arctan
( v
u

)
[46]. The weighting function s (φ) effectively reduces

the contrast sensitivity to spatial frequency components at odd multiples of 45o. The contrast sensitivity

of the human viewer to spatial variations in chrominance falls off faster as a function of increasing spatial

frequency than does the response to spatial variations in luminance [47]. We use a chrominance model that

reflects this [18]:

W(Cx,Cz)(ρ) = Ae−αρ (28)

Here, α is determined to be 0.419 and A = 100 [18]. Both the luminance and chrominance response are

lowpass in nature but only the luminance response is reduced at odd multiples of 45o (Fig. 2). This will place

more luminance error across the diagonals in the frequency domain where the eye is less sensitive. Using this

chrominance response instead of identical responses for both luminance and chrominance associates a greater

penalty with mid and low frequency luminance errors as opposed to corresponding chrominance errors. This

allows more error to be diffused to the chrominance channels, which will not be perceived by the human

viewer.
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Fig. 2. Spatial frequency responses (a) luminance W(Yy)(u) and (b) chrominance W(Cx,Cz)(u)
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Fig. 3. Block diagram for calculating perceptual error metric

The aforementioned color HVS filtering is carried out in the spatial frequency domain. This corresponds to

a multiplication of the filter and error image spectra P(k, l) = HHV S(k, l)ξ(k, l). Here, HHV S(k, l) denotes

the FFT of the HVS response spatial filter. Note, P(k, l), HHV S(k, l) and ξ(k, l) are vector-valued

ξ(k, l) = (ξYy(k, l), ξCx(k, l), ξCz(k, l)) (29)

HHV S(k, l) = (HYy(k, l),HCx(k, l),HCx(k, l)) (30)

P(k, l) = (PYy(k, l), PCx(k, l), PCz(k, l)) (31)

We define the perceived error metric as the total squared error (TSE) given by

TSE =
∑

k

∑

l

|PYy(k, l)|2 + |PCx(k, l)|2 + |PCz(k, l)|2 (32)

The calculation of the perceptual error metric is illustrated in Fig. 3.



SUBMITTED TO THE IEEE TRANSACTIONS ON IMAGE PROCESSING 13

C. Formulation of the Design Problem

The design problem is then to obtain error filters for each color plane that minimize the TSE defined in

(32), subject to the constraints that all quantization error to be diffused

∑

k∈S
hl(k; d) = 1, hl(k; d) ≥ 0 ∀ k ∈ S (33)

where the subscript l takes on values C, M and Y and hence the constraints are imposed on error filters in

each of the 3 color planes. The error filter coefficients are a function of the input level d ∈ [0, 255].

The design objective is to obtain error filter weights for each (C,M,Y) vector in the input. For 24-bit color

images (with 8 bits per color plane), this would amount to a total of 2563 input combinations. Designing

this many error filters is impractical. Therefore, it is required to choose a limited number of CMY combi-

nations that correspond to regions critical to color reproduction. We design error filters for CMY patches

corresponding to the “true neutrals”, i.e. the locus (L∗, 0, 0) in CIELab space. There are two motivations

for such an approach. First, the eye is particularly sensitive to colors near neutrals. Second, to a first-order

approximation, the interaction among the colorants is taken into account.

D. Color Error Filter Design Procedure

Note that, while the Neugebauer printer model provides the characterization from device values to colori-

metric values (e.g., CIELab), it is the inverse mapping from colorimetric (CIELab) values to device coordinates

(CMY) that is sought for our purposes. Several researchers [48], [49], [50], [51] have addressed the problem of

inverting the Neugebauer equations. The inversion is a nonlinear problem that can be solved, in the case of

three input colorants C, M, and Y by iterative approaches. When the number of colorants exceeds three, the

problem becomes ill-posed, as several colorant combinations can result in the same measured color. However,

from a practical viewpoint that is not a concern since the amount of K or black in CMYK printers is deter-

mined by the gray-component replacement (GCR/UCR) strategy employed in the printer on top of known C,

M, Y values. In this work, we used Chappuis’ approach [50] because it was designed specially for inversion of

neutral colors.

The design procedure may then be summarized as:

1. Sample the 1-D locus (L∗, 0, 0) uniformly from (L∗min, 0, 0) to (L∗max, 0, 0). where L∗min and L∗max respectively

correspond to the minimum and maximum luminance values in the CIELab gamut of the printer. Let P denote

the number of sampled triplets.
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2. For each sampled triplet in Step 1, invert the printer model to obtain the C, M and Y values needed to

produce it. This will result in P combinations of CMY values.

3. Train the error filter weights to minimize the cost in (32) for each of these different CMY patches

4. Interpolate between the filter coefficients corresponding to the P CMY patches to obtain error filters for

C = 0, 1, 2...255, M = 0, 1, 2...255 and Y = 0, 1, 2...255.

The aforementioned procedure results in 256 error filters for each color plane. We used P = 32 and a spline

interpolation between the filter coefficients. Empirically, we observed that using P > 25 proved sufficient to

generate an accurate estimate of the true/optimum filter coefficients for the intermediate C, M and Y digital

levels. The individual C, M and Y values resulting from the inversion are plotted in Fig. 4 against uniformly

sampled L∗ values. It is quite clear from Fig. 4 that none of the three curves is close to linear. This is because

equal CMY or C = M = Y rarely correspond to the (true) neutral axis in CIELab space. When this color

TDED algorithm was first presented, we had proposed [52], [53] a design across the one dimensional locus R

= G = B for display applications.

Fig. 4. C, M and Y values along the neutrals obtained by printermodel inversion

Note that the TSE in (32) in general, is not a convex function. Hence, a global minimum cannot be

guaranteed. The space of solutions (error filter weights) however comprises a convex set. The algorithm to

search for the error filter weights is summarized in Fig. 5. It is an extension of Li and Allebach’s search

strategy [24] to multiple (i.e. three) dimensions. The design is based on a Floyd-Steinberg [8] support for the

error filter (Fig. 6). This can however, be easily generalized to error filters with other shapes and sizes.
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————————————————————————————————————————————————

1: Definitions: Let p be the vector of “filter weights”. In particular

p = (hc(k; d), hm(k; d), hy(k; d)) d ∈ [0, 255], k = (k1, k2), k ∈ S
Let p(i) denote the value of p at the ith iteration

Define the neighborhood of p(i) = (h(i)
c (k, d), h(i)

m (k; d), h(i)
y (k; d)) as

Nδ(p(i)) = {(hc(k; d), hm(k; d), hy(k; d)) : |hl(k; d)− h
(i)
l (k; d)| ≤ δ, l = c, m, y}

2: Set p(0) (i.e., initial guess) to be the optimized value from the last designed CMY triplet

(Note: For the first CMY triplet to design, set p(0) to Floyd-Steinberg weights)

3: δ = 1
16 , i = 0 and ε is a user defined parameter

while (|p(i) − p(i−1)| > ε) {
find p(i+1) ∈ Nδ(p(i)) that minimizes the total squared error (TSE) in (32)

i ← i + 1 }
while (δ > 1

512) {
δ ← δ

2

find p(i+1) ∈ Nδ(p(i)) that minimizes the TSE in (32)

i ← i + 1 }
4: The optimum p is popt = p(i)

————————————————————————————————————————————————
Fig. 5. Algorithm to search for optimum input dependent color error filters

V. Results and Analysis

A. Evaluating Halftone Image Quality

Figs. 7 and 8 show color halftone images generated by (1) Floyd-Steinberg error diffusion, (2) grayscale

TDED [24] applied separately to the C, M and Y color planes, and (3) the proposed color TDED method.

The color TDED halftone in Fig. 7(d) does not suffer from directional artifacts such as diagonal worms. Worms

can be seen in the Floyd-Steinberg halftone in the yellow and blue extremes of the ramp. False textures in the

Floyd-Steinberg halftone are prominent in the middle of the yellow region (a third of the ramp length from the

left) and in the center of the ramp (where yellow turns into blue). These are nearly absent in Fig. 7(d). The

choice of color to render is also better for the color TDED halftone. In Fig. 7(b), white dots are rendered in

the blue region. These are replaced by a mixture of magenta, cyan and black dots in the color TDED halftone
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Fig. 6. Floyd-Steinberg support for the error filter, where * denotes the current pixel.

which are less visible. By virtue of the Li and Allebach’s design [24], traditional error diffusion artifacts viz.

worms and false textures are almost completely removed in Fig. 7(c).

The halftone textures in Fig. 7(c) are also homogeneous. †However, the color rendition is similar to that

of Floyd-Steinberg error diffusion in Fig. 7(b). This is expected because separable design for each color plane

does not necessarily shape the color noise to frequencies of least visual sensitivity. Detail of the halftones in

Fig. 7(b), (c) and (d) are shown in Fig. 8(a), (b) and (c). Note the significant improvement in the reduction

of color halftone noise in Fig. 8(c) over Figs. 8(a) and (b).

Fig. 9 compares the halftones generated via color TDED using different scan paths and against the color

direct binary search (DBS) halftoning algorithm by Lee and Allebach [54]. The basic idea behind their

halftoning method is to control the quality of each colorant texture separately along with the total dot

distribution. In order to achieve this, the authors first set the total dot arrangement and then color the dots

optimally without altering the total dot arrangement. Due to the computational complexity in the search for

optimal dot arrangements and subsequent color selection (much like grayscale DBS), the algorithm in [54]

cannot be directly used in real-time color printing paths but serves as a valuable upper bound on achievable

color halftone quality. Hence, we treat the color halftone generated via this method (Fig. 9 (d)) as a benchmark

for our color TDED halftones. In fact, it can be seen that the color TDED and color DBS halftones in Figs.

9 (a) and (d) respectively are virtually indistinguishable. In particular, the choice of color to render over the

length of the ramp, is near identical for the two halftoning methods.

For color TDED, the conventional raster scan (Fig. 9(a)) still shows the tendency for dots to line up in

horizontal or diagonal worms, particularly at extreme levels. Although the serpentine scan (Fig. 9(c)) almost

completely removes directional artifacts, it can only be executed as a serial process. A 2-row serpentine scan
†All the images presented in this paper were converted to sRGB using a characterization from the CMY(K) of a HP laserjet

printer for which the design was carried out. We request the readers to print these images to a color laserjet/inkjet printer with

a resolution of 100 dots per inch or higher for a realistic visual estimate of the artifacts in print.
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(a) Original Color Ramp Image

(b) Floyd-Steinberg error diffusion

(c) Separable application of grayscale TDED[24]

(d) Color TDED with serpentine scan
Fig. 7. A color ramp and its halftone images. The halftone in (c) is courtesy of Prof. Jan P. Allebach and Mr. Ti-chiun

Chang at Purdue University.

[24] employed in Fig. 9(b) generates comparable results to Fig. 9(c) but has more parallelism.

B. Improved Noise Shaping via input dependent weights

Figs. 10, 11 and 12 show for the C, M and Y channels respectively, the input-level or “tone” dependent op-

timized error filter coefficients based on a Floyd-Steinberg support for the error filter (Fig. 6). Two important

observations may be made:

1. The error filter coefficients for each color plane are very different from the original Floyd-Steinberg (FS)

coefficients in [8]. The deviation from FS coefficients is esp. pronounced at extreme digital levels.

2. For each digital level, there is significant variation of the error filter coefficients across the three color planes.

Quantitatively, the second observation illustrates why applying even “optimized” grayscale error diffusion

halftoning methods independently to each colorant plane will not result in accurate color rendition.

Fig. 13 (b) and (c) respectively show halftone images of the toucan image in Fig. 13 (a) generated by

Floyd-Steinberg (FS) error diffusion and the proposed color TDED algorithm. As before, it may be seen that
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(a) Floyd-Steinberg (b) Grayscale TDED (c) Color TDED

Fig. 8. Halftones of a portion of the blue section of the color ramp in Fig. 7(a). Grayscale TDED is applied separably

to each color plane.

directional artifacts, e.g. diagonal worms that appear heavily in the FS halftone (Fig. 13 (b)) are almost

eliminated in Fig. 13 (c). Further, the accuracy of color rendition is much higher in Fig. 13 (c) as well, esp.

in the yellow color area on the body of the toucan on the left and close to the beak of the second toucan (on

the right).‡.

Fig. 14 shows power spectral density (PSD) vs. radial frequency plots for the Floyd-Steinberg (FS) and color

TDED “error” images. These error images were computed by taking the difference of the original continuous

tone image in Fig. 13 (a) and the FS and color TDED halftone images in Fig. 13 (b) and (c) respectively.

In particular, Fig. 14 (a) shows plots of PSD against radial frequency for the Yy component of the FS and

color TDED error images. Similar plots for the Cx and Cz components are shown in Fig. 14 (b) and (c). The

superior noise shaping behavior of color TDED is now readily apparent. Comparing the luminance PSD of

FS and color TDED error images (Fig. 14 (a)) it can be seen that the FS halftone has much more luminance

error, which is readily perceived in the FS halftone image. Likewise, a comparison of the PSDs in Fig. 14 (b)

and (c) reveals that color TDED affords much higher chrominance error (especially at high radial frequencies).

This illustrates that by using input dependent color error filters we are able to shape the color quantization

noise primarily into high frequency regions of the chrominance planes where the eye is least sensitive.

For any color image, we also provide an objective measure. The effective noise shaping gain (in decibels)

of the color TDED halftones over the FS halftones may be computed as

NG = 10 log10

(
TSEFS

TSEcolorTDED

)
(34)

where TSEFS denotes the total squared error in (32) computed for a Floyd-Steinberg halftone image against

the original. TSEcolorTDED is similar. Table I tabulates the noise gain of color TDED over FS halftones for
‡When printed to a color printer the colors may render slightly differently from what is described unless an accurate character-

ization from sRGB to the CMYK of the particular color printer is used. For comparison on an sRGB monitor, tiff versions can

be obtained from: http://www.ece.utexas.edu/˜bevans/papers/2006/colorTDED/images.zip
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(a) Color TDED with traditional raster scan

(b) Color TDED with 2-row serpentine scan

(c) Color TDED with serpentine scan

(d) Colorant based direct binary search
Fig. 9. A color ramp and its halftone images. The halftone in (d) is courtesy of Dr. Je-Ho Lee at Hewlett-Packard and

Prof. Jan P. Allebach at Purdue University.

four standard test images.

VI. Enhancements

In addition to using error filter weights that depend on the input level, error filter shape and size may also

be varied for diffusion of errors. Li and Allebach [24] use wider matrices to improve rendering of shadow and

highlight regions. With a wider matrix, the current pixel to be binarized will be affected by a larger area of

the halftone region.

Fig. 15 shows color error filter shapes (for each color plane) that are dependent on the input level d ∈ [0, 255].

In our design, the maximum number of filter coefficients was limited to four (as in Floyd-Steinberg [8] error

diffusion) but the locations of the filter weights were chosen (empirically) based on the input digital level.

The results presented in Fig. 13 use the error filter shapes in Fig. 15.

Many other approaches reduce directional artifacts in error diffusion. Fan proposed an error weighting

matrix that allows the quantizer error to propagate farther back on the next line to reduce worm artifacts
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Fig. 10. Input-level dependent error filter weights - Cyan channel. The values of these weights for the conventional

Floyd-Steinberg filter are fixed at (a) h[0, 1] = 7
16 , (b) h[1,−1] = 3

16 , (c) h[1, 0] = 5
16 , and (d) h[1, 1] = 1

16 .

[55]. As discussed in Section I, other approaches used larger error-weighting matrices/filters for highlight and

shadow regions [21], [56]. These ideas may all be combined into optimizing color error filters dependent on

the input CMY triplets using the proposed design framework.

VII. Conclusion

We propose a model based color error diffusion halftoning algorithm with error filter weights optimized

dependent on the input CMY triplet. Our design procedure trains color error filters for CMY combinations

corresponding to the “true” neutrals in CIELab space. The resulting halftones exhibit significantly enhanced

color noise shaping and achieve halftone quality approaching that of CMY(K) color DBS [54]. An interesting

direction for future work is to explore the best possible canonical CMY patches along which to design the

color error filters.
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Fig. 11. Input-level dependent error filter weights - Magenta channel. The values of these weights for the conventional

Floyd-Steinberg filter are fixed at (a) h[0, 1] = 7
16 , (b) h[1,−1] = 3

16 , (c) h[1, 0] = 5
16 , and (d) h[1, 1] = 1

16 .
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(a) Error image: Yy component
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(b) Error image: Cx component
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