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Abstract— Many digital signal processing and communication [9] and those algorithms can also automate the optimization
algorithms are first simulated using floating-point arithmetic  process.

and later transformed into fixed-point arithmetic to reduce . L .
implementation complexity. For the floating-point to fixed-point Most of the algorithms minimize hardware area by satisfy-

transformation, this paper describes two methods within anauto-  INg €rror specifications. Sometimes, designers make tfideo
mated transformation environment. The first method, a gradent- between error specifications and hardware area instead-of fix
based search for single-objective optimization with sensvity ing one objective. This paper proposes multi-objectivedwor
:Efgg?gog}ngo'}/ir?eezei g:(‘jgr'se?ﬁ:)‘gi%”- ;rulgtiga;rl] %?i‘;ﬁm‘?otrﬂﬁﬁd length optimization, which optimizes more than one objexti
objectivepoptimization, provides a fémi?y of solutgions thd form a a}t the sgme time. Furthermore, an environment for automa‘Fed
tradeoff curve for signal quality vs. implementation compkexity.  [xed-point transformation is proposed and demonstrated wi

We provide case studies for an infinite impulse response filtkeln ~ a case study.
the case study, implementation complexity is lookup table rea
for a field programmable gate array (FPGA) realization. We have
made the transformation methods available in a software redase Il. RELATED WORK
on the Web.
A. Fixed-Point Simulation Environment

. INTRODUCTION ' .
Many methods have been developed to model fixed-point

Realization of digital signal processing algorithms witiet systems. Tl developed a fixed-point C++ class to facilitate
fixed-point data type provides many benefits, such as savinggmlementation of fixed-point DSP algorithms [10]. In [1],
in power and area. Typically, the algorithms are developed [i11], a fixed-point simulation environment is implemented f
floating-point arithmetic and later transformed to the fixedC and C++ at Seoul National University. By modifying vari-
point arithmetic with manually evaluated tradeoffs in sijn able declarations of the floating-point code and overlogdin
quality and implementation complexity. Since the transfar operators in thegFix class, the floating-point data type is
tion process is time consuming and error prone, many methag@mverted to the fixed-point data type. In [12], annotatiod a
have been proposed and developed to automate the fixed-ppitsrpolation techniques to convert the floating-pointdspe
transformation [1]—[6]. to fixed-point data type with analytical range estimatioe ar

Fixed-point transformation consists of fixed-point corveemployed.
sion and wordlength optimization. Fixed-point conversisn
a process of Canerting floating-point programs to fixedapoiB_ Wordlength Optimization
programs. During the conversion, floating-point data type |
changed into the fixed-point data type, and floating-point Sung and Kum [8] developed a simulation-based wordlength
arithmetic operations are modified to fixed-point arithmetioptimization algorithm. Optimum wordlengths are searched
operations. from a minimum wordlength state by increasing wordlengths

Digital signal processors, in which wordlengths have alyeawith priority on a hardware block having the lowest hardware
been given, require fixed-point conversion followed by isgal cost. In [9], an area model and a noise model are pro-
to prevent the overflow and underflow of signals. Wordlengthosed. For an objective in optimization, area-based dibgect
optimization is required only when the given wordlength ifunctions and error models are used. A mixed integer linear
too short to satisfy the desired performance or to reducespovprogramming (MILP) model and heuristic search methods are
consumption [7]. employed to solve the wordlength optimization problem. Shi

For targeting a customized integrated circuit (IC) or and Brodersen [5] use simulation-based methods to evaluate
FPGA, wordlengths can be chosen to be any width witharious sensitivities. Simulation results are used to kbgva
tradeoffs in objectives. Shorter width usually achievesregs model of the system that is used for wordlength optimization
in area and power, while signal distortion is higher. Wondjiiln The Mosek optimizer, which handles single objective opti-
can be optimized by optimization algorithms [3]-[6], [8]mization, is used as a search engine.



C. Gradient Search FEnCt' on c=adder (a, b)

Gradient-based search algorithms utilize gradient in&armg:g;b;
tion of wordlength to find better solutions. The gradient
information can be obtained from sensitivity measuremefits (&) Floating point program for adder
complexity (CM) or distortion (DM) according to the word-g,ncti on [ c] =adder _fx(a, b, nunt ype, mat ht ype)
length set. A complexity-and-distortion measurement mﬂathczo; -
(CDM) utilizes all sensitivity information simultaneoyqll3].  a=fj (a, nunt ype. a, mat ht ype. a) ;
The CDM seems to be a multi-objective algorithm. Howevep,—g i (b, nunt ype. b, mat ht ype. b) ;
this is not a multi-objective algorithm, as its objectiveds g j (¢, nunt ype. ¢, mat ht ype. c) ;
singl_e weighted sum of the complexity and the distortiog( -} =a+b;
metrics.

(b) Converted fixed-point program for adder (only the core

D. Genetic Algorlthm code is Shown)

In 1975, Holland introduced an optimization procedure that
mimics the process observed in natural evolution [14] and is
known as the genetic algorithm, or GA [15], [16]. Because

of its simple implementation procedure, the GA can be usg@iimal solutions in the objective space. Thus, the single
as an optimization tool for designing Al-hybrid systems fogg|ution does not provide the ability to understand theotesi
real-world applications. tradeoffs that are possible in objective space [26].

Most problems in nature have several objectives (normally | this paper, Pareto ranking approaches are used for muilti-

same time. These problems, called “multi-objective” optiyng the results are shown in Section IV.

mization problems, were originally studied in the contekt o

economics [17]. Because of the conflicting nature of their Ill. AUTOMATED TRANSFORMATION FROMFLOATING
objectives, multi-objective optimization problems do matr- POINT TO FIXED POINT

mally have a single solution, and, in fact, they even reqtliee ~ The proposed transformation from floating point to fixed
definition of a new notion of “optimum.” The most commonlypoint has three phases: code generation, range estimatidn,
adopted notion of optimality in multi-objective optimizan is  wordlength optimization. A code generator converts flagtin
that originally proposed by Edgeworth [18] and later gehergoint programs to fixed-point programs that handle fixedypoi
ized by Pareto [19]. Such a notion is callEdgeworth-Pareto data types and arithmetic. The code generator also creates
optimality or, more commonlyPareto optimality other auxiliary programs for an automatic transformation
environment. A range estimator finds range information in
the fixed-point system to prevent overflow and underflow.
Wordlength optimization finds the optimum wordlength ac-

When implementing a digital filter in hardware, filtercording to objectives such as signal distortion and hardwar
coefficients have to be represented with finite wordlengtBemplexity.

Several methods have been proposed to effectively design )
finite impulse response (FIR) filters with linear programgnin®- Code Generation
[20]. Xu and Daley [21] show that GA is superior to integer The first process in the automated transformation to fixed
programming techniques in fixed-point filter design. point is code generation. A given floating-point program
Genetic algorithms have been applied to wordlength desighown in Fig 1 (a) is converted to a fixed-point program that
in digital signal processing. Wordlengths in digital signacan handle variable wordlengths by a parameterized ingut, a
processing are analogous to genes, and each set of wottdenghown in Fig. 1 (b).
is analogous to a chromosome. The GA is used to determinéhefi is one of the functions in the Fixed-Point Toolbox in
wordlength in filter coefficients [22] and to optimize theMATLAB to define a fixed-point data type [27]. Each fixed-
wordlength of input data and coefficients in an FFT processpoint variable is defined via an input parameter and number
[23] with a single objective. type instead of constants. This input parameter is coetloll
Some papers have employed multiple objectives for worbtly wordlength optimization programs.
length optimization. Leban and Tasic [24] used mean squareThe code generator also creates several programs for a
error, delay, and area as objectives. Signal-to-noise eaid fixed-point transformation environment, as shown in Fig. 2.
power are used as objectives by Sulaiman and Arslan [25he top program generated by a code generator plays a
These approaches employed a weighted sum as a fitnede as headquarters in the transformation to fixed-point. |
function. As in the case of the weighted sums methods, thstablishes an environment for a range estimation and aptim
relative importance of objectives should be specified usingprdlength search according to configurations that can be
weights (quantitatively). Furthermore, a simple weighsedn modified by designers. The top program mainly executes range
technique only finds a single solution of the many possib&stimations and wordlength optimizations.

Fig. 1. Conversion to fixed point by a code generator

E. Wordlength Optimization with Multi-Objective Evolutio
ary Algorithms



™ TABLE |
SIMULATION RESULTS IN IIR FILTER OF SEVERAL SEARCH METHODS

Floating—Point
Program

-
Input Data__| Top
Optimum =77 program

Wordlength l

Search Gradient| Number of Complexity Distortior]
. Method Measure| Simulations  Estimate (LUT) (RMS)
Search Evaluation Fixed—Point Gradient DM 316 51.05 0.0981
. Gradient CDM 145 49.85 0.0992
Engine (Objectives) Program Gradient cMm 417 51.95 0.0986
Complete - 167 - -

Range Complexity Error
[Estimaﬁon} [Estimation} GistimatiOJ the floating-point programs and fixed-point programs can be
N ) modeled by an analytical or statistical approach. Anadytic
approaches estimate the error at each system output. In the
statistical approach, simulation is used to estimate thar.er
Cost value can be obtained by modeling the fixed-point

The optimum wordlength depends on the input signal proé/YStems' Modeling the exact implementation scheme used

erties. The input signal is passed by the top code searcﬂUId be specific to the vendor. Area models in [9] are used

engine, and objective code. The top code calls a searcheﬁngicﬁr complexity estimation.

which explores the wordlength space to find the optimum IV. CASE STUDY
wordlength. The genetic algorithm can be used as a sea'r&:h

engine for multi-objective optimization. ) ] ] o
The evaluation code collects objective values according to 10 illustrate the methods presented in this paper, the infi-

wordlength states and input signal. One of objectives caa b8it€ impulse response (IIR) filter that has 7 wordlengths is
signal error, which is the difference between the floatiogip simulated. There are various methods for deriving the error

output and fixed-point output. Complexity, power consumﬁUnCtion and cost function. For simplifying the simulatjon
tion, or timing information can be used as an objective. the root mean squared (RMS) error is measured for the error

o function, and a linear cost function of wordlength is assdme
B. Range Estimation The required performance of the IIR filter is assumed to be a

Range information is used to determine integer wordlengf@ximum error of 0.1 RMS.
in order to prevent overflow and underflow. A signal range Simulation results of gradient-based search algorithms in
can be estimated by two methods. One is a simulation-badtfilter are shown in Table I. Each algorithm obtains a singl
method and the other is an analytical method. A simulatiofolution for a simulation. CDM methods show smaller number
based method monitors the signal range of variables and fifssimulations and complexity satisfying minimum distorti
a maximum value and a minimum value. An analytical methd@quirement of 0.1. However, the complete search requires
calculates signal ranges by using a range-propagatiorepgop huge number of simulations to search entire search space.
through operations. Simulation is not necessary in theyanal Simulation results utilizing multiple objective genetinca
ical method. However, the calculated result from an anzdyti evolutionary algorithms on wordlength design in an IIR filte
method is conservative, and wordlength could grow infigite@re shown in Fig. 3. The total hardware area, one of the
in feedback systems. A simulation-based method is useful febjectives, is evaluated by the area model of the arithmetic
complicated systems, including loops; however, it needie ti Unit in [9]. The error between the floating-point output and
for the simulation. Both methods can be used selectivelg. Tfixed-point output is measured by simulations.
simulation-based method can be used in feedback parts, angince the genetic algorithm mimics the evolutionary preces

Fig. 2. Automated transformation environment

Infinite impulse response filter

the analytical method can be used in other parts. of plants and animals, each generation shows differenttsesu
] Fig. 3 shows nondominated and dominated (inferior) sohgtio
C. Optimum Wordlength Search at each generation. The plot of the objective functions whos

Optimum wordlength can be found with wordlength ophron-dominated vectors are in the Pareto optimal set isctalle
timization algorithms that have search algorithms, such #s Pareto front. After many generations, the Pareto front
a complete search, gradient-based search, and genetic &ndls to move toward the left and downward. The number
evolutionary algorithms. One of the more powerful searabf dominated solutions decreases as the number of genera-
engines is the genetic and evolutionary search engine. Tthns increases. The 500th generation has only non-doadnat
genetic search engine handles multiple objectives and findsolutions.

Pareto front, although the computational complexity osthi Designers have a choice of wordlength solutions according
algorithm is very high. to the Pareto front. The Pareto front gives the tradeoffeimv

The search engine generates wordlength candidates, wHieindware area and finite precision output error. A smallea ar
the evaluation function then evaluates. The informatiothef requires a larger error, and a larger area needs a smaker err
objective values could be used to generate the next caedidathus, the obtained Pareto front gives designers flexibifitg
For the evaluation, the error value or difference value betw system design.
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Fig. 3. Results of multiple objective genetic and evolutignalgorithms in  Fig. 4. Result of multiple objective genetic and evolutignalgorithms in
the IR filter case study with seven wordlength variablesp{Pation for one the IIR filter case study with three wordlength variablesp#ation for one
generation is 90) generation is 90)

. ) 10 10’
Note that the Pareto front in a descendant is not alway I ——preemeed

better than that in ancestor. The solution for an errarof? at ;| oo ——ow
the 250th generation required 90 lookup tables (LUTs). How- _ ‘
ever, the solution for the same error at the 500th generatio £«
needs at least 100 LUTs. Thus, the 250th generation has *©
better solution for the error afo—2 than the 500th generation.

The offspring could be worse than their ancestors becawse tt
genetic and evolutionary algorithm utilizes a random pssce & % % @ % & 7% & @ B I R

Area (LUTs) Area (LUTS)

throughout selection, mating, and mutation. (a) 50th generation (b) 500th generation

The genetic and eVOIUtlonary algorlthm IS Compmatlona”yig. 5. Overlap genetic evolutionary algorithm results Btt6and 500th

intenSiV_e- It requires many SimUIati0n§ for errors i.n €aG{Eneration with gradient-based search results for the IBr fcase study
population as well as the genetic operations of selectiat; mwith seven wordlength variables (Required RMS for gradissted searck:

ing, and mutation for each generation. Considering only tH&12 0.1, 0.08)
number of simulations for errors, the 500th generationiregu
45,000 & 500 generationsx 90 populations) simulations. ) _ _

A reduced number of variables can reduce the number of! ne solutions from the gradient-based search algorithes ar
simulations. Fig. 4 shows results in the IIR filter study witgimilar to the Pareto front in the genetic algorithm at the
three wordlength variables. The wordlength at the outpthef 20th generation. The RMS error of 0.1 needs approximately
multipliers are selected for three variables. The resuitsns 20 LUTS in both methods. However, at the 500th generation
the same trends as with seven wordlength variables. HoweJBf 9enetic algorithm finds better solutions than the gradie
all solutions at the 250th generation are non-dominatedsThPased search algorithms, as shown in Fig. 5 (b). This differ-
22500 & 250 generationst 90 populations) are sufficient for €Nce demonstrates that the gradient-based search metieods a

Error (RMS)
o
5

three variables in this case study. trapped by local optima. However, the genetic algorithm can
. avoid local optima.
B. Comparison With the respect to computational complexity, gradient-

The gradient-based search algorithms and genetic alg@sed search algorithms need less simulation time compared
rithms are compared. Results from gradient-based searchtal genetic algorithms. The gradient-based search algosith
gorithms with the FPGA area models are superposed on tleguire 145 simulations for CDM and 417 for CM, whereas
results from a genetic algorithm in Fig. 5. Three desired RMiBie genetic algorithm needs 4,500 simulations to obtain a
values of 0.08, 0.1, and 0.12 are given, since the gradiesd similar result and 45,000 simulations for the 500th genenat
search algorithms generate one solution each. DM, CDM, aRdrthermore, the genetic algorithm requires computations
CM are used as gradient-based search algorithms. execute genetic operations at every generation.
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Fig. 6. Result of random search algorithm in the IIR filterdstwvith seven

wordlength variables (45,000 samples) 8]

For comparison with a genetic algorithm approach usingf!
500 generations and a population of 90 per generation, we
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generate 45,000 randomly selected wordlengths and computg w. Cammack and M. Paley, “Fixpt: a C++ method for devetemt of

the Pareto front. Fig. 6 shows the result. The Pareto front of
the genetic algorithm as shown in Fig. 3 (d) is better thah thﬁll
of the random search algorithm as shown in Fig. 6. This simu-
lation result shows that the genetic algorithm outperfotings
random search algorithm with the same number of samplegl.zl
Parallel processing can decrease the running time. The
genetic algorithm can be parallelized up to population siz&l
since individuals can be evaluated independently. However
gradient-based search algorithms are limited in their use [04]
parallelism because gradient-based search algorithnhsagea
the next neighbors and move a current point to one of t}[ules]
neighbors. Thus, the gradient-based search algorithm ean[is)
parallelized only up to the number of neighbors or wordléngt
variables. [17]

V. CONCLUSION
[18]

Techniques for automating the transformation from roatir{F%ﬂ
point to fixed point in software are presented. This softwa
provides an environment to transform floating-point progsa
to fixed-point programs for digital signal processing algd21l
rithms. Fixed-point conversion and wordlength optimiaati
are executed in this environment. Wordlength optimizatiqpz)
algorithms utilizing genetic and evolutionary algorithiwen
optimize the tradeoff between signal quality and impleraent[23]
tion complexity. Alternatively, wordlength search alghms
utilizing gradient information can provide faster ways todfi

. . 4]
data wordlengths, but they get caught in local optima. THE
automated transformation software is available at

http://www.ece.utexas.edu/"bevans/projects/wordleng =
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