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Abstract— Many digital signal processing and communication
algorithms are first simulated using floating-point arithmetic
and later transformed into fixed-point arithmetic to reduce
implementation complexity. For the floating-point to fixed-point
transformation, this paper describes two methods within anauto-
mated transformation environment. The first method, a gradient-
based search for single-objective optimization with sensitivity
information, provides a single solution, and can become trapped
in local optima. The second method, a genetic algorithm for multi-
objective optimization, provides a family of solutions that form a
tradeoff curve for signal quality vs. implementation complexity.
We provide case studies for an infinite impulse response filter. In
the case study, implementation complexity is lookup table area
for a field programmable gate array (FPGA) realization. We have
made the transformation methods available in a software release
on the Web.

I. I NTRODUCTION

Realization of digital signal processing algorithms with the
fixed-point data type provides many benefits, such as savings
in power and area. Typically, the algorithms are developed in
floating-point arithmetic and later transformed to the fixed-
point arithmetic with manually evaluated tradeoffs in signal
quality and implementation complexity. Since the transforma-
tion process is time consuming and error prone, many methods
have been proposed and developed to automate the fixed-point
transformation [1]–[6].

Fixed-point transformation consists of fixed-point conver-
sion and wordlength optimization. Fixed-point conversionis
a process of converting floating-point programs to fixed-point
programs. During the conversion, floating-point data type is
changed into the fixed-point data type, and floating-point
arithmetic operations are modified to fixed-point arithmetic
operations.

Digital signal processors, in which wordlengths have already
been given, require fixed-point conversion followed by scaling
to prevent the overflow and underflow of signals. Wordlength
optimization is required only when the given wordlength is
too short to satisfy the desired performance or to reduce power
consumption [7].

For targeting a customized integrated circuit (IC) or a
FPGA, wordlengths can be chosen to be any width with
tradeoffs in objectives. Shorter width usually achieves savings
in area and power, while signal distortion is higher. Wordlength
can be optimized by optimization algorithms [3]–[6], [8],

[9] and those algorithms can also automate the optimization
process.

Most of the algorithms minimize hardware area by satisfy-
ing error specifications. Sometimes, designers make tradeoffs
between error specifications and hardware area instead of fix-
ing one objective. This paper proposes multi-objective word-
length optimization, which optimizes more than one objective
at the same time. Furthermore, an environment for automated
fixed-point transformation is proposed and demonstrated with
a case study.

II. RELATED WORK

A. Fixed-Point Simulation Environment

Many methods have been developed to model fixed-point
systems. TI developed a fixed-point C++ class to facilitate
implementation of fixed-point DSP algorithms [10]. In [1],
[11], a fixed-point simulation environment is implemented for
C and C++ at Seoul National University. By modifying vari-
able declarations of the floating-point code and overloading
operators in thegFix class, the floating-point data type is
converted to the fixed-point data type. In [12], annotation and
interpolation techniques to convert the floating-point data type
to fixed-point data type with analytical range estimation are
employed.

B. Wordlength Optimization

Sung and Kum [8] developed a simulation-based wordlength
optimization algorithm. Optimum wordlengths are searched
from a minimum wordlength state by increasing wordlengths
with priority on a hardware block having the lowest hardware
cost. In [9], an area model and a noise model are pro-
posed. For an objective in optimization, area-based objective
functions and error models are used. A mixed integer linear
programming (MILP) model and heuristic search methods are
employed to solve the wordlength optimization problem. Shi
and Brodersen [5] use simulation-based methods to evaluate
various sensitivities. Simulation results are used to develop a
model of the system that is used for wordlength optimization.
The Mosek optimizer, which handles single objective opti-
mization, is used as a search engine.



C. Gradient Search

Gradient-based search algorithms utilize gradient informa-
tion of wordlength to find better solutions. The gradient
information can be obtained from sensitivity measurementsof
complexity (CM) or distortion (DM) according to the word-
length set. A complexity-and-distortion measurement method
(CDM) utilizes all sensitivity information simultaneously [13].
The CDM seems to be a multi-objective algorithm. However,
this is not a multi-objective algorithm, as its objective isa
single weighted sum of the complexity and the distortion
metrics.

D. Genetic Algorithm

In 1975, Holland introduced an optimization procedure that
mimics the process observed in natural evolution [14] and is
known as the genetic algorithm, or GA [15], [16]. Because
of its simple implementation procedure, the GA can be used
as an optimization tool for designing AI-hybrid systems for
real-world applications.

Most problems in nature have several objectives (normally
conflicting with each other) that need to be achieved at the
same time. These problems, called “multi-objective” opti-
mization problems, were originally studied in the context of
economics [17]. Because of the conflicting nature of their
objectives, multi-objective optimization problems do notnor-
mally have a single solution, and, in fact, they even requirethe
definition of a new notion of “optimum.” The most commonly
adopted notion of optimality in multi-objective optimization is
that originally proposed by Edgeworth [18] and later general-
ized by Pareto [19]. Such a notion is calledEdgeworth-Pareto
optimality or, more commonly,Pareto optimality.

E. Wordlength Optimization with Multi-Objective Evolution-
ary Algorithms

When implementing a digital filter in hardware, filter
coefficients have to be represented with finite wordlength.
Several methods have been proposed to effectively design
finite impulse response (FIR) filters with linear programming
[20]. Xu and Daley [21] show that GA is superior to integer
programming techniques in fixed-point filter design.

Genetic algorithms have been applied to wordlength design
in digital signal processing. Wordlengths in digital signal
processing are analogous to genes, and each set of wordlengths
is analogous to a chromosome. The GA is used to determine
wordlength in filter coefficients [22] and to optimize the
wordlength of input data and coefficients in an FFT processor
[23] with a single objective.

Some papers have employed multiple objectives for word-
length optimization. Leban and Tasic [24] used mean square
error, delay, and area as objectives. Signal-to-noise ratio and
power are used as objectives by Sulaiman and Arslan [25].
These approaches employed a weighted sum as a fitness
function. As in the case of the weighted sums methods, the
relative importance of objectives should be specified using
weights (quantitatively). Furthermore, a simple weighted-sum
technique only finds a single solution of the many possible

Function c=adder(a,b)
c=0;
c=a+b;

(a) Floating point program for adder

Function [c]=adder_fx(a,b,numtype,mathtype)
c=0;
a=fi (a,numtype.a,mathtype.a);
b=fi (b,numtype.b,mathtype.b);
c=fi (c,numtype.c,mathtype.c);
c(:)=a+b;

(b) Converted fixed-point program for adder (only the core
code is shown)

Fig. 1. Conversion to fixed point by a code generator

optimal solutions in the objective space. Thus, the single
solution does not provide the ability to understand the various
tradeoffs that are possible in objective space [26].

In this paper, Pareto ranking approaches are used for multi-
ple objective evolutionary algorithms to optimize wordlength,
and the results are shown in Section IV.

III. A UTOMATED TRANSFORMATION FROMFLOATING

POINT TO FIXED POINT

The proposed transformation from floating point to fixed
point has three phases: code generation, range estimation,and
wordlength optimization. A code generator converts floating-
point programs to fixed-point programs that handle fixed-point
data types and arithmetic. The code generator also creates
other auxiliary programs for an automatic transformation
environment. A range estimator finds range information in
the fixed-point system to prevent overflow and underflow.
Wordlength optimization finds the optimum wordlength ac-
cording to objectives such as signal distortion and hardware
complexity.

A. Code Generation

The first process in the automated transformation to fixed
point is code generation. A given floating-point program
shown in Fig 1 (a) is converted to a fixed-point program that
can handle variable wordlengths by a parameterized input, as
shown in Fig. 1 (b).

Thefi is one of the functions in the Fixed-Point Toolbox in
MATLAB to define a fixed-point data type [27]. Each fixed-
point variable is defined via an input parameter and number
type instead of constants. This input parameter is controlled
by wordlength optimization programs.

The code generator also creates several programs for a
fixed-point transformation environment, as shown in Fig. 2.
The top program generated by a code generator plays a
role as headquarters in the transformation to fixed-point. It
establishes an environment for a range estimation and optimum
wordlength search according to configurations that can be
modified by designers. The top program mainly executes range
estimations and wordlength optimizations.
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Fig. 2. Automated transformation environment

The optimum wordlength depends on the input signal prop-
erties. The input signal is passed by the top code, search
engine, and objective code. The top code calls a search engine,
which explores the wordlength space to find the optimum
wordlength. The genetic algorithm can be used as a search
engine for multi-objective optimization.

The evaluation code collects objective values according to
wordlength states and input signal. One of objectives can bea
signal error, which is the difference between the floating-point
output and fixed-point output. Complexity, power consump-
tion, or timing information can be used as an objective.

B. Range Estimation

Range information is used to determine integer wordlength
in order to prevent overflow and underflow. A signal range
can be estimated by two methods. One is a simulation-based
method and the other is an analytical method. A simulation-
based method monitors the signal range of variables and finds
a maximum value and a minimum value. An analytical method
calculates signal ranges by using a range-propagation property
through operations. Simulation is not necessary in the analyt-
ical method. However, the calculated result from an analytical
method is conservative, and wordlength could grow infinitely
in feedback systems. A simulation-based method is useful for
complicated systems, including loops; however, it needs time
for the simulation. Both methods can be used selectively. The
simulation-based method can be used in feedback parts, and
the analytical method can be used in other parts.

C. Optimum Wordlength Search

Optimum wordlength can be found with wordlength op-
timization algorithms that have search algorithms, such as
a complete search, gradient-based search, and genetic and
evolutionary algorithms. One of the more powerful search
engines is the genetic and evolutionary search engine. The
genetic search engine handles multiple objectives and findsa
Pareto front, although the computational complexity of this
algorithm is very high.

The search engine generates wordlength candidates, which
the evaluation function then evaluates. The information ofthe
objective values could be used to generate the next candidates.
For the evaluation, the error value or difference value between

TABLE I

SIMULATION RESULTS IN IIR FILTER OF SEVERAL SEARCH METHODS

Search Gradient Number of Complexity Distortion
Method Measure Simulations Estimate (LUT) (RMS)
Gradient DM 316 51.05 0.0981

Gradient CDM 145 49.85 0.0992

Gradient CM 417 51.95 0.0986

Complete - 167 - -

the floating-point programs and fixed-point programs can be
modeled by an analytical or statistical approach. Analytical
approaches estimate the error at each system output. In the
statistical approach, simulation is used to estimate the error.

Cost value can be obtained by modeling the fixed-point
systems. Modeling the exact implementation scheme used
would be specific to the vendor. Area models in [9] are used
for complexity estimation.

IV. CASE STUDY

A. Infinite impulse response filter

To illustrate the methods presented in this paper, the infi-
nite impulse response (IIR) filter that has 7 wordlengths is
simulated. There are various methods for deriving the error
function and cost function. For simplifying the simulation,
the root mean squared (RMS) error is measured for the error
function, and a linear cost function of wordlength is assumed.
The required performance of the IIR filter is assumed to be a
maximum error of 0.1 RMS.

Simulation results of gradient-based search algorithms in
IIR filter are shown in Table I. Each algorithm obtains a single
solution for a simulation. CDM methods show smaller number
of simulations and complexity satisfying minimum distortion
requirement of 0.1. However, the complete search requires
huge number of simulations to search entire search space.

Simulation results utilizing multiple objective genetic and
evolutionary algorithms on wordlength design in an IIR filter
are shown in Fig. 3. The total hardware area, one of the
objectives, is evaluated by the area model of the arithmetic
unit in [9]. The error between the floating-point output and
fixed-point output is measured by simulations.

Since the genetic algorithm mimics the evolutionary process
of plants and animals, each generation shows different results.
Fig. 3 shows nondominated and dominated (inferior) solutions
at each generation. The plot of the objective functions whose
non-dominated vectors are in the Pareto optimal set is called
the Pareto front. After many generations, the Pareto front
tends to move toward the left and downward. The number
of dominated solutions decreases as the number of genera-
tions increases. The 500th generation has only non-dominated
solutions.

Designers have a choice of wordlength solutions according
to the Pareto front. The Pareto front gives the tradeoff curve in
hardware area and finite precision output error. A smaller area
requires a larger error, and a larger area needs a smaller error.
Thus, the obtained Pareto front gives designers flexibilityin a
system design.
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Fig. 3. Results of multiple objective genetic and evolutionary algorithms in
the IIR filter case study with seven wordlength variables (Population for one
generation is 90)

Note that the Pareto front in a descendant is not always
better than that in ancestor. The solution for an error of10

−2 at
the 250th generation required 90 lookup tables (LUTs). How-
ever, the solution for the same error at the 500th generation
needs at least 100 LUTs. Thus, the 250th generation has a
better solution for the error of10

−2 than the 500th generation.
The offspring could be worse than their ancestors because the
genetic and evolutionary algorithm utilizes a random process
throughout selection, mating, and mutation.

The genetic and evolutionary algorithm is computationally
intensive. It requires many simulations for errors in each
population as well as the genetic operations of selection, mat-
ing, and mutation for each generation. Considering only the
number of simulations for errors, the 500th generation requires
45,000 (= 500 generations∗ 90 populations) simulations.

A reduced number of variables can reduce the number of
simulations. Fig. 4 shows results in the IIR filter study with
three wordlength variables. The wordlength at the output ofthe
multipliers are selected for three variables. The results show
the same trends as with seven wordlength variables. However,
all solutions at the 250th generation are non-dominated. Thus,
22500 (= 250 generations∗ 90 populations) are sufficient for
three variables in this case study.

B. Comparison

The gradient-based search algorithms and genetic algo-
rithms are compared. Results from gradient-based search al-
gorithms with the FPGA area models are superposed on the
results from a genetic algorithm in Fig. 5. Three desired RMS
values of 0.08, 0.1, and 0.12 are given, since the gradient-based
search algorithms generate one solution each. DM, CDM, and
CM are used as gradient-based search algorithms.
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Fig. 4. Result of multiple objective genetic and evolutionary algorithms in
the IIR filter case study with three wordlength variables (Population for one
generation is 90)
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Fig. 5. Overlap genetic evolutionary algorithm results in 50th and 500th
generation with gradient-based search results for the IIR filter case study
with seven wordlength variables (Required RMS for gradient-based search≤
{0.12, 0.1, 0.08})

The solutions from the gradient-based search algorithms are
similar to the Pareto front in the genetic algorithm at the
50th generation. The RMS error of 0.1 needs approximately
50 LUTs in both methods. However, at the 500th generation
the genetic algorithm finds better solutions than the gradient-
based search algorithms, as shown in Fig. 5 (b). This differ-
ence demonstrates that the gradient-based search methods are
trapped by local optima. However, the genetic algorithm can
avoid local optima.

With the respect to computational complexity, gradient-
based search algorithms need less simulation time compared
to genetic algorithms. The gradient-based search algorithms
require 145 simulations for CDM and 417 for CM, whereas
the genetic algorithm needs 4,500 simulations to obtain a
similar result and 45,000 simulations for the 500th generation.
Furthermore, the genetic algorithm requires computationsto
execute genetic operations at every generation.
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Fig. 6. Result of random search algorithm in the IIR filter study with seven
wordlength variables (45,000 samples)

For comparison with a genetic algorithm approach using
500 generations and a population of 90 per generation, we
generate 45,000 randomly selected wordlengths and compute
the Pareto front. Fig. 6 shows the result. The Pareto front of
the genetic algorithm as shown in Fig. 3 (d) is better than that
of the random search algorithm as shown in Fig. 6. This simu-
lation result shows that the genetic algorithm outperformsthe
random search algorithm with the same number of samples.

Parallel processing can decrease the running time. The
genetic algorithm can be parallelized up to population size
since individuals can be evaluated independently. However,
gradient-based search algorithms are limited in their use of
parallelism because gradient-based search algorithms evaluate
the next neighbors and move a current point to one of the
neighbors. Thus, the gradient-based search algorithm can be
parallelized only up to the number of neighbors or wordlength
variables.

V. CONCLUSION

Techniques for automating the transformation from floating
point to fixed point in software are presented. This software
provides an environment to transform floating-point programs
to fixed-point programs for digital signal processing algo-
rithms. Fixed-point conversion and wordlength optimization
are executed in this environment. Wordlength optimization
algorithms utilizing genetic and evolutionary algorithmscan
optimize the tradeoff between signal quality and implementa-
tion complexity. Alternatively, wordlength search algorithms
utilizing gradient information can provide faster ways to find
data wordlengths, but they get caught in local optima. The
automated transformation software is available at

http://www.ece.utexas.edu/˜bevans/projects/wordlength/
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