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Abstract— The sum capacity of a Gaussian broadcast MIMO
channel can be achieved with Dirty Paper Coding (DPC). De-
ploying DPC in real-time systems is, however, impractical. Block
Diagonalization (BD) is an alternative precoding technique for
downlink multiuser MIMO systems, which can eliminate inter-
user interference at each receiver, at the expense of suboptimal
sum capacity vs. DPC. In this paper, we study the sum capacity
loss of BD for a fixed channel. We show that 1) if the user
channels are orthogonal to each other, then BD achieves the
complete sum capacity; and 2) if the user channels lie in a
common row vector space, then the gain of DPC over BD can
be bounded by the minimum of the number of transmit and
receive antennas and the number of users. We also compare the
ergodic sum capacity of DPC with that of BD in a Rayleigh fading
channel. Simulations show that BD can achieve a significant part
of the total throughput of DPC. An upper bound on the ergodic
sum capacity gain of DPC over BD is derived, which can be
evaluated with a few numerical integrations. With this bound,
we can easily estimate how far away BD is from being optimal
in terms of ergodic sum capacity, which is useful in directing
practical system designs.

I. INTRODUCTION

Multiple-input-multiple-output (MIMO) systems can signif-
icantly increase the spectral efficiency by exploiting the spatial
degree of freedom created by multiple antennas. It has been
shown that the point-to-point MIMO channel capacity scales
linearly with the minimum number of transmit and receive
antennas in Rayleigh fading channels [1]. For Gaussian MIMO
broadcast channels (BC), it was conjectured in [2][3] and
recently proven in [4] that Dirty Paper Coding (DPC) [5]
can achieve the capacity region. A duality relationship for the
MIMO broadcast DPC capacity region to the MIMO multiple
access channel (MAC) capacity region is shown in [3][6].

The sum capacity in a multiuser MIMO broadcast channel
is defined as the maximum aggregation of all the users’ data
rates. Although the sum capacity of a Gaussian MIMO BC
channel can be achieved with DPC [3], deploying DPC in real
systems is very complicated and impractical. An alternative
low-complexity precoding technique is Block Diagonalization
(BD) [10]–[13], which is an extension of the zero-forcing
precoding technique for downlink multiuser MIMO systems.
With BD, each user’s precoding matrix lies in the null space
of all other users’ channels. Hence if the channel matrices of
all users are perfectly known at the transmitter, then there is
no interference at every receiver, rendering a simple receiver
structure. Furthermore, the transmitter’s complexity is much
lower for BD than DPC. On the other hand, BD is inferior

in terms of sum capacity to DPC, since the users’ signal
covariance matrices are generally not optimal for sum capacity.

The sum capacity gain of DPC vs. TDMA has been studied
in [15]. For a fixed channel, it has been proven that the gain of
DPC over TDMA is bounded by the minimum of the number
of users and the number of transmit antennas, for different
user number, antenna setting and SNR. Furthermore, it has
been shown in [16] that the ergodic sum capacity of BD scales
the same as DPC in the number of users for Rayleigh fading
channels. In this paper, we focus on the sum capacity gain
of DPC over BD. We define BD’s sum capacity to be the
maximum total throughput over all possible user sets. Hence
the TDMA sum capacity is automatically incorporated in BD’s
sum capacity definition. Therefore, the general bound on the
gain of DPC vs. TDMA applies to the gain of DPC vs. BD. We
show that for a fixed channel 1) if user channels are orthogonal
to each other, then BD achieves the same sum capacity as
DPC; 2) if user channels lie in the same subspace, then the
gain of DPC over BD can be reduced to the minimum of
the number of transmit and receive antennas and the number
of users. Furthermore, the ergodic sum capacity of DPC is
compared to that of BD in a Rayleigh fading channel. We
show that BD achieves a significant part of the DPC sum
capacity for low and high SNR regimes, or when the number
of transmit antennas is much larger than the sum of all users’
receive antennas. An upper bound on the ergodic sum capacity
gain of DPC over BD is derived. The proposed upper bound
on the gain can be evaluated with a few numerical integrations,
hence providing an easy way to compare the performance of
BD vs. DPC without performing the time-consuming Monte
Carlo simulations.

II. SYSTEM MODEL AND BACKGROUND

In a K-user downlink multiuser MIMO system, we denote
the number of transmit antennas at the base station as Nt and
the number of receive antennas for the jth user as Nr,j . The
transmitted symbol of user j is denoted as a Nj(≤ Nr,j)-
dimensional vector xj , which is multiplied by a Nt × Nj

precoding matrix Tj and sent to the basestation antenna array.
The received signal yj for user j can be represented as

yj = HjTjxj +
K∑

k=1,k 6=j

HjTkxk + vj (1)

where vj denotes the Additive Gaussian White Noise (AWGN)



vector for user j with variance E[vjv∗j ] = σ2I, where ()∗ de-
notes the matrix conjugate transpose. Matrix Hj ∈ CNr,j×Nt

denotes the channel transfer matrix from the basestation to
the jth user, with each entry following an i.i.d. complex
Gaussian distribution CN (0, 1). For analytical simplicity, we
assume that rank(Hj) = min(Nr,j , Nt) for all users. It is
also assumed that the channels Hj experienced by different
users are independent. The key idea of block diagonalization
is to precode each user’s data xj with the precoding matrix
Tj ∈ U(Nt, Nj), such that

HiTj = 0 for all i 6= j and 1 ≤ i, j ≤ K, (2)

where U(n, k) represents the class of n× k unitary matrices,
i.e. the collection of vectors (u1, . . . , uk) where ui ∈ Cn for
all i, and the k-tuple (u1, . . . , uk) is orthonormal.

Hence with precoding matrices Tj , the received signal for
user j can be simplified to

yj = HjTjxj + vj . (3)

Let H̃j = [HT
1 · · · HT

j−1 HT
j+1 · · · HT

K ]T , where ()T

denotes the matrix transpose. To satisfy the constraint in (2),
Tj shall be in the null space of H̃j . Let Ñj denote the
rank of H̃j . Let the singular value decomposition of H̃j be
H̃j = ŨjΛ̃j [Ṽ

1

j Ṽ
0

j ]
∗, where Ṽ

1

j contains the first Ñj right

singular vectors and Ṽ
0

j contains the last (Nt − Ñj) right

singular vectors of H̃j . The columns in Ṽ
0

j form a basis set in
the null space of H̃j , and hence Tj can be any rotated verison
of Ṽ

0

j . Note that Tj satisfying (2) does not always exist.
The sufficient condition for the existence of such matrices is
Nt ≥

∑K
j=1 Nr,j , as shown in [10].

In the rest of the paper, we assume that every user has the
same number of receive antennas, i.e. {Nr,k}K

k=1 = Nr.

III. BD VS. DPC: SUM CAPACITY FOR FIXED CHANNELS

Consider a set of fixed channels for a multiuser MIMO
system, where K = {1, 2, · · · , K} denote the set of all users,
and Ai be a subset of K. Let Hj = HjTj denote the effective
channel after precoding for user j ∈ Ai. The total throughput
achieved with BD applied to the user set Ai with total power
P can be expressed as

CBD(HAi , P, σ2) =

max
{Qj : Qj≥0,

P
j∈Ai

Tr(Qj)≤P}

∑

j∈Ai

log
∣∣∣∣I +

1
σ2

HjQjH∗
j

∣∣∣∣ (4)

where Qj = E[xjx∗j ] is user j’s input covariance matrix of
size Nj ×Nj and Tr(A) denotes the trace of matrix A. Let A
be the set containing all Ai, i.e. A = {A1,A2, · · · }. The sum
capacity of BD is defined as the maximum total throughput
of BD over all possible user sets, i.e.

CBD(H1,··· ,K , P, σ2) = max
Ai∈A

CBD(HAi , P, σ2). (5)

It has been proven that the sum capacity of a multiuser
Gaussian broadcast channel is achieved with dirty paper cod-
ing [3]. With the duality results in [3], the DPC sum capacity
can be expressed as

CDPC(H1,··· ,K , P, σ2) =

max
{Sj : Sj≥0,

KP
j=1

Tr(Sj)≤P}
log

∣∣∣∣∣∣
I +

1
σ2

K∑

j=1

H∗
j SjHj

∣∣∣∣∣∣
(6)

where Sj of size Nr ×Nr is the signal covariance matrix for
user j in the dual multiple access channel.

In this section, we are interested in the gain of DPC over
BD in terms of sum capacity. Analogous to [15], we define
the ratio of DPC to BD as

G(H1,··· ,K , P, σ2) , CDPC(H1,··· ,K , P, σ2)
CBD(H1,··· ,K , P, σ2)

. (7)

The gain is obviously dependent on the channel realizations
{Hk}K

k=1, the total power, and noise variance. In the next
theorem, we give a bound on G(H1,··· ,K , P, σ2) that is valid
for any {Hk}K

k=1, P , and σ2.
Theorem 1: The sum capacity gain of DPC over BD is

lower bounded by 1 and upper bounded by the minimum of
Nt and K, i.e.

1 ≤ G(H1,··· ,K , P, σ2) ≤ min{Nt,K} (8)

Proof: Theorem 3 in [15] states that

CDPC(H1,··· ,K , P, σ2)
CTDMA(H1,··· ,K , P, σ2)

≤ min{Nt, K} (9)

where

CTDMA

(
H1,··· ,K , P, σ2

)
=

max
k

max
{Qk:Qk≥0,Tr(Qk)≤P}

log
∣∣∣∣I +

1
σ2

HkQkH∗
k

∣∣∣∣ (10)

is the maximum single user capacity among all users. The
definition of the sum capacity for BD indicates that

CBD(H1,··· ,K , P, σ2) ≥ CTDMA(H1,··· ,K , P, σ2). (11)

Further, since DPC is optimal for sum capacity, we have

CDPC(H1,··· ,K , P, σ2) ≥ CBD(H1,··· ,K , P, σ2). (12)

Combining (9), (11), and (12) completes the proof. 2

The above bound can be tightened in two special cases.
Lemma 1: Assume Nr ≤ Nt and K ≤ bNt

Nr
c. If {Hk}K

k=1

are mutually orthogonal H1 ⊥ H2 ⊥ · · · ⊥ HK , i.e. HiH∗
j = 0

for i 6= j, then

CDPC(H1,··· ,K , P, σ2) = CBD(H1,··· ,K , P, σ2).

Proof: Please see appendix I. 2

Lemma 1 shows when the user channels are mutually
orthogonal, user cooperation is not necessary to achieve the
sum capacity because all users do not interfere with each
other. Interestingly, BD can also achieve the same capacity
in this case. This is different from the TDMA scheme in [15]



where, even if the users are mutually orthogonal, it is not
possible to achieve the same sum capacity as DPC. Actually,
the gain of DPC over TDMA can still be at the maximum, i.e.
min{Nt, K}, when the users are mutually orthogonal.

The next Lemma shows a bound on the gain of DPC over
BD when all user channels are in the same vector subspace.

Lemma 2: Assume Nr ≤ Nt. If the row vector spaces of
all user channels are the same, i.e. span(H1) = span(H2) =
· · · = span(HK), which is denoted as W , then

G(H1,··· ,K , P, σ2) ≤ min{Nr,K}.
Proof: Please see appendix II. 2

IV. BD VS. DPC: ERGODIC SUM CAPACITY IN RAYLEIGH
FADING CHANNELS

In this section, we analyze the ergodic capacity of a mul-
tiuser MIMO system with block diagonalization vs. DPC. Let
Hj = HjTj (of size Nr × Nj) be the effective channel for
user j after precoding. Assuming that Hj are independent
for different j and the elements in Hj are i.i.d. complex
Gaussian random variables, we have the following theorem
on the probability density function of Hj .

Theorem 2: In a downlink MIMO system with Block
Diagonalization applied to a fixed set of users, if the MIMO
channel for each user is modeled as i.i.d. complex Gaussian,
then the effective channel after precoding is also an i.i.d.
complex Gaussian matrix.

Proof : Since Hj = HjTj and Hj is i.i.d. complex Gaussian,
then Hj conditioned on Tj is also complex Gaussian and
independent of Tj . Hence Hj is independent of Tj . 2

Theorem 2 indicates that if BD is applied to a fixed set of
users, the ergodic capacity of user j can be easily evaluated
with the eigenvalue distribution of HjH∗

j [1] [18].

A. A Lower Bound on Ergodic Sum Capacity with BD

Let Ai = {1, · · · , i} be a subset of users, i.e. Ai ∈ K,
for i = 1, · · · , I where I = min

{
K,

⌊
Nt

Nr

⌋}
. With i ≤

min
{

K,
⌊

Nt

Nr

⌋}
and the elements in {H}K

k=1 are generated
according to an i.i.d. complex Gaussian distribution, we have

E
[
CBD(HAi , P, σ2)

] (a)

≥ E




i∑

j=1

log
∣∣∣∣I +

1
σ2

HjQjH∗
j

∣∣∣∣




=
i∑

j=1

E

[
Nr∑

n=1

log
∣∣∣∣1 +

Pj,n

σ2
λ

2

j,n

∣∣∣∣
]

(b)

≥
i∑

j=1

E

[
Nr∑

n=1

log
∣∣∣∣1 +

P

iNrσ2
λ

2

j,n

∣∣∣∣
]

=
i∑

j=1

NrE

[
log

∣∣∣∣1 +
P

iNrσ2
λ

2

j,1

∣∣∣∣
]

(c)
= i NrE

[
log

∣∣∣∣1 +
P

iNrσ2
λ

2

i,1

∣∣∣∣
]

(13)

, CBD(HAi , P, σ2)

where λ
2

j,n are nth unordered eigenvalues of HjH∗
j and Hj is

of size Nr × (Nt − (i− 1)Nr). Inequality (a) holds because
the RHS assumes all i users are simultaneously transmitting
for all channel realizations. Inequality (b) holds because the
RHS assumes equal power is allocated to every non-zero
eigenmodes. Equality (c) holds because λj,1 has the same
distribution for j = 1, 2, · · · , i.

For notational simplicity, we denote αi = λ
2

i,1 and N i =
Nt − (i− 1)Nr. With Theorem 2 and [1], the distribution of
αi can be expressed as

pNi,Nr
(αi) =

1
Nr

Nr∑
m=1

ϕm(αi)2αNi−Nr
i e−αi (14)

where

ϕk+1(αi) =
[

k!
(k + N i −Nr)!

]1/2

LNi−Nr

k (αi) (15)

for k = 0, 1, · · · ,m− 1, and

Ln−m
k (x) =

1
k!

exxm−n dk

dxk

(
e−xxn−m+k

)
. (16)

Hence (13) can be evaluated with a numerical integration.
Now we can lower bound the ergodic sum capacity with

BD by

E
[
CBD(H1,··· ,K , P, σ2)

] ≥ max
1≤i≤I

CBD(HAi , P, σ2).

(17)

It is important to note that in order to evaluate the lower bound,
up to I = min

{
K,

⌊
Nt

Nr

⌋}
numerical integrations need to be

carried out because of the maximization in the RHS of (17).

B. An Upper Bound on the Ergodic Sum Capacity of DPC

It is well known that the sum capacity of a K-user broadcast
channel with DPC is upper bounded if the receivers are
allowed to cooperate [2][3]. Let H = [HT

1 HT
2 · · · HT

K ]T ,
and N = max{Nt,KNr} and M = min{Nt,KNR}, then

E
[
CDPC(H1,··· ,K , P, σ2)

] ≤ E

[
log

∣∣∣∣I +
1
σ2

HQH∗
∣∣∣∣
]

=
M∑

m=1

E

[
log

(
1 +

Pm

σ2
λ2

m

)]
= ME

[
log

(
1 +

P1

σ2
α1

)]

≤ M

∞∫

σ2/Γ0

log
(

Γ0α1

σ2

)
pN,M (α1)dα1 (18)

, Ccoop(H1,··· ,K , P, σ2) (19)

where λ2
m is mth unordered eigenvalue of H∗H and α1 ,

λ2
1; pN,M (α1) is the distribution for α1, which is given by

(14) with Nr and N i replaced by M and N respectively.
The parameter Γ0 is optimized so that the ergodic sum
capacity is maximized with the average power constraint,
i.e. M

∫∞
σ2/Γ0

(
Γ0 − σ2

α

)
pN,M (α)dα = P . Details on the

inequality (18) can be found in [17].
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Fig. 1. Ergodic sum capacity of DPC vs. BD in Rayleigh fading channels.
Nt = 10, Nr = 2, K = 5.
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Fig. 2. Ergodic sum capacity of DPC vs. BD in Rayleigh fading channels.
Nr = 2, K = 3, SNR = 20 dB.

C. An Upper Bound on the Ergodic Capacity of DPC vs. BD

From the above two sections, we can upper bound the
ergodic sum capacity gain of DPC over BD as

E
[
CDPC(H1,··· ,K , P, σ2)

]

E [CBD(H1,··· ,K , P, σ2)]
≤ Ccoop(H1,··· ,K , P, σ2)

max
1≤i≤I

CBD(HAi , P, σ2)
. (20)

Notice that the upper bound in (20) is a function of Nt, Nr,
K, P , and σ2. Furthermore, min

{
K,

⌊
Nt

Nr

⌋}
+ 1 numerical

integrations are necessary to evaluate the bound in (20).

V. NUMERICAL RESULTS

In this section, we provide some numerical demonstrations
of the gain of DPC over BD.

Fig.1 (a) shows the ergodic sum capacity of DPC vs. BD
under different SNRs, with Nt = 10, Nr = 2, and K = 5.
In the low SNR regime, BD achieves almost the same sum
capacity as DPC because beamforming to the user with the
best channel eigenvalue is asymptotically optimal for sum
capacity in low SNRs. As SNR goes to infinity, the sum
capacity of both DPC and BD increase with the same slope
because both BD and DPC exploit the maximum number of
eigenmodes among the users. Fig. 1 (b) shows the gain of
DPC over BD from the curves in Fig. 1 (a), as well as the
bound on the gain evaluated from (20). As SNR increases,
the bound from (20) gets tighter to the results from Monte
Carlo simulations. For low SNR, the bound in (20) is loose
mainly because 1) the lower bound on BD assume equal power
allocation to all non-zero eigenvalues; 2) the cooperative upper
bound on DPC is also loose in low SNR.

Fig. 2 (a) shows the ergodic sum capacity of DPC vs. BD
for different Nt, with Nr = 2, K = 3, and SNR = 20 dB. As
the number of transmit antenna increases, the sum capacity of
BD gets closer to the sum capacity of DPC. Fig. 2 (b) shows
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Fig. 3. Ergodic sum capacity of DPC vs. BD in Rayleigh fading channels.
Nt = 10, Nr = 2, SNR = 20 dB.

the gain of DPC over BD from the curves in Fig. 2 (a). It is
observed that the bound from (20) is very tight for Nt ≥ 8,
with the specified Nr, K, and SNR.

Fig. 3 (a) shows the ergodic sum capacity of DPC vs. BD
for different numbers of users, with Nt = 10, Nr = 2, and
SNR = 20 dB. For small numbers of users, BD achieves
almost the same sum capacity as DPC. As the number of users
increases, DPC exhibits higher performance than BD. Fig. 3
(b) show the gain of DPC over BD from the curves on Fig.
3 (a). For small numbers of users, the bound from (20) is
very tight compared to the Monte Carlo simulations. For larger
numbers of users, the bound from (20) loosens. The main
reason is that the lower bound on the sum capacity of BD
in (17) only considers users 1 − 5 and hence the effect of
multiuser diversity is not reflected in (17).

In summary, BD achieves a significant part of the sum
capacity for low and high regimes, or when Nt À KNr.
The bound in (20) is tight for median to high SNRs or when
K ≤ bNt

Nr
c.

APPENDIX I
PROOF OF LEMMA 1

Proof: Let the SVD of Hi be

Hi = UiΛiV∗i (21)

where Ui is of size Nr × Nr and UiU∗i = I; Λi =
diag{λi,1, λi,2, · · · , λi,Nr} is a diagonal matrix of size Nr ×
Nr; and Vi is of size Nt × Nr and V∗i Vi = I. Fur-
thermore, H∗

i HiVi = ViΛ2
i . For i 6= j, V∗j Vi =

(Λ2
j )
−1V∗j H∗

j HjH∗
i HiVi(Λ2

i )
−1 = 0 because HjH∗

i = 0.
Let H = [H∗

1 H∗
2 · · · H∗

K ]∗, then the SVD of H can be ex-
pressed as H = UΛV∗, where U = bdiag{U1, U2, · · · , UK}
is an unitary block diagonal matrix of size KNr × KNr;
Λ = bdiag{Λ1,Λ2, · · · ,ΛK} is a diagonal matrix of size
KNr×KNr; and V = [V1 V2 · · · VK ] is of size Nt×KNr

and V∗V = I.
The capacity of the point-to-point MIMO channel H can

be regarded as an upper bound on the sum capacity of the
broadcast channel because user cooperation is allowed with
H. Hence

CDPC(H1,··· ,K , P, σ2) ≤ Ccoop(H1,··· ,K , P, σ2) (22)

=
K∑

i=1

Nr∑
n=1

log
(

1 +
Pi,n

σ2
λ2

i,n

)

(23)



where Pi,n is the power allocated to user i’s nth eigenmode
and Pi,n is obtained by the water-filling algorithm with total

power constraint
K∑

i=1

Nr∑
n=1

Pi,n = P .

On the other hand, since V∗j Vi = 0 for i 6= j, we have
H∗

j Vi = 0 for i 6= j. Thus we can set Tj = Vj to satisfy the
null constraint in (2). Notice the effective channel Hj = HjVj

has the same singular values as Hj . Hence

CBD(H1,··· ,K , P, σ2) ≥ max
{Qj : Qj≥0,

P
j∈K

Tr(Qj)≤P}

∑

j∈K
log

∣∣∣∣I +
1
σ2

HjQjH∗
j

∣∣∣∣ (24)

=
K∑

i=1

Nr∑
n=1

log
(

1 +
Pi,n

σ2
λ2

i,n

)
.(25)

With (23), (25), and the fact that CDPC ≥ CBD, we have
CDPC = CBD as the conditions in Lemma 3 are satisfied. 2

APPENDIX II
PROOF OF LEMMA 2

Proof: Let E = [e∗1 e∗2 · · · e∗Nr
]∗ be a basis in W , which is

the row vector space spanned by {Hi}K
k=1, where ei is of size

1×Nt. Hence EE∗ = I. Let the SVD of Hi be Hi = UiΛiV∗i .
There exists a unitary matrix Ri of size Nr × Nr such that
V∗i = RiE. Then Hi = UiΛiRiE. Denote H(W)

i = UiΛiRi, it
is easy to see that H(W)

i has the same singular values of Hi.
Hence

CDPC(H1,··· ,K , P, σ2)

= max
{Sj : Sj≥0,

KP
j=1

Tr(Sj)≤P}
log

∣∣∣∣∣∣
I +

1
σ2

K∑

j=1

H∗
j SjHj

∣∣∣∣∣∣

= max
{Sj : Sj≥0,

KP
j=1

Tr(Sj)≤P}
log

∣∣∣∣∣∣∣∣∣
I +

K∑
j=1

E∗(H(W)
i )∗SjH(W)

i E

σ2

∣∣∣∣∣∣∣∣∣

= max
{Sj : Sj≥0,

KP
j=1

Tr(Sj)≤P}
log

∣∣∣∣∣∣
I +

1
σ2

K∑

j=1

(H(W)
i )∗SjH(W)

i

∣∣∣∣∣∣

= CDPC(H(W)
1,··· ,K , P, σ2). (26)

Since the size of H(W)
i (for i = 1, 2, · · · , K) is Nr × Nr,

analogous to Theorem 1 in [15], we can obtain

CDPC(H1,··· ,K , P, σ2) = CDPC(H(W)
1,··· ,K , P, σ2)

≤ Nr log
(

1 +
P

σ2
λ2

max

)
(27)

where λmax = max
1≤i≤K,1≤n≤Nr

λi,n where λi,n is the ith user’s

nth singular value.

On the other hand, if span(H1) = span(H2) = · · · =
span(HK) and only one user is supported with BD, we have

CBD(H1,··· ,K , P, σ2) = CTDMA(H1,··· ,K , P, σ2) (28)

≥ log
(

1 +
P

σ2
λ2

max

)
(29)

Then we can immediately obtain

G(H1,··· ,K , P, σ2) ≤ min{Nr,K} (30)

by Theorem 3 in [15]. 2
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