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Abstract� In this paper, we derive an optimal resource
allocation algorithm for ergodic weighted-sum capacity
maximization in OFDMA systems assuming the availability
of only partial (imperfect) CSI. Using a dual optimization
framework, we show that the optimal power allocation is
multi-level water�lling based on the conditional expected
value of the channel-to-noise ratio, and the optimal user
is selected based on the maximum weighted conditional
expected capacity penalized by the required power. The
algorithm is shown to have O(MK) complexity for an
OFDMA system with K used subcarriers and M active
users, and achieves relative duality gaps of less than 10−5

(99.99999% optimal).

I. INTRODUCTION

The problem of assigning the subcarriers, rates, and
powers to the different users in an OFDMA system has
been an area of active research, (see e.g. [2][3][4][5]).
A common assumption in previous work is that the
channel state information (CSI) of the users are known
perfectly. This assumption is quite unrealistic due to
channel estimation errors, and more importantly, channel
feedback delay. Thus, in this paper, we focus on the case
where only imperfect (partial) CSI is available.

The effect of imperfect CSI for rate maximization in
wireless systems has been quite well studied for single-
user OFDM systems [6]. However, no work to the best of
the authors's knowledge considered the multiuser OFDM
case. In the multiuser OFDM (or OFDMA) case, the
dif�culty arises from the fact that the exclusive subcarrier
assignment restriction (i.e. only one user is allowed
to transmit on each subcarrier) renders the problem
to be combinatorial in nature. Fortunately, recent work
on optimal resource allocation for rate maximization in
OFDMA systems with perfect CSI [2] [4] [5] have shown
that using a dual optimization approach, the problem can
be solved with just O(MK) complexity per symbol for

an OFDMA system with M active users and K used
subcarriers. Furthermore, our solution results in relative
optimality gaps of less than 10−4 in typical scenarios,
thereby supporting us to claim practical optimality.
Using a similar dual optimization approach, we relax
the assumption of perfect CSI and formulate and solve
the problem assuming the availability of imperfect CSI.
We show that by using the dual optimization framework,
we can solve the imperfect CSI problem with relative
optimality gaps of less than 10−5 in cases of practical
interest. The discrete rate allocation scenario was studied
in a similar fashion in [3].

II. SYSTEM MODEL

We consider a single OFDMA base station with
K-subcarriers and M -users indexed by the set K =
{1, . . . , k, . . . , K} and M = {1, . . . , m, . . . , M} (typ-
ically K À M ) respectively. We assume an average
transmit power of P̄ > 0, bandwidth B, and noise
density N0. The received signal vector for the mth user
at the nth OFDM symbol is given as

ym[n] = Gm[n]Hm[n]xm[n] + wm[n] (1)

where ym[n] and xm[n] are the K-length received and
transmitted complex-valued signal vectors; Gm[n] is
the diagonal gain allocation matrix with diagonal ele-
ments [Gm[n]]kk =

√
pm,k[n]; wm[n] ∼ CN (0, σ2

wIK)
with noise variance σ2

w = N0B/K is the white zero-
mean, circular-symmetric, complex Gaussian (ZMC-
SCG) noise vector; and Hm[n] = diag {hm[n]} is
the diagonal channel response matrix, where hm =
[hm,1[n], . . . , hm,K [n]]T and where

hm,k[n] =
Nt∑

i=1

gm,i[n]e−j2πτik∆f . (2)



are the complex-valued frequency-domain wireless chan-
nel fading random processes, given as the discrete-
time Fourier transform of the Nt time-domain multipath
taps gm,i[n] with time-delay τi and subcarrier spacing
∆f . The gm,i[n] are the time-domain fading channel
taps modeled as stationary and ergodic discrete-time
random processes, with identical normalized temporal
autocorrelation function

rm[∆] =
1

σ2
m,i

E{gm,i[n]g∗m,i[n + ∆]} (3)

with tap powers σ2
m,i, which we assume to be indepen-

dent across the fading paths i and across users m. Since
gm,i[n] is stationary, hm,k[n] is also stationary, and the
distribution of hm[n] is independent of symbol index n.

Assuming that the time domain channel taps are
independent ZMCSCG random variables gm,i ∼
CN (0, σ2

m,i), then from (2),
hm ∼ CN (0K ,Σhm

)

Σhm
= WΣgm

WH
(4)

where W is the K × Nt DFT matrix with [W]k,i =
e−j2πτik∆f and Σgm

= diag{σ2
m,1, . . . , σ

2
m,Nt

} is an
Nt × Nt diagonal matrix of the time-domain path co-
variances. We model partial CSI as

hm = ĥm + êm (5)

where ĥm ∼ CN
(
0K ,Σhm

− Σ̂m

)
is the estimated

channel vector and ê ∼ CN (0K , Σ̂m) is the estimation
error vector with
Σ̂m = Σhm

−
(rT

m ⊗Σhm
)(Rm ⊗Σhm

+ σ2
eI)

−1(rT
m ⊗Σhm

)H

as the error covariance matrix for a P th order MMSE
predictor for the channel with pilot spacing Dt, where
[Rm]i,j = rm[(i − j)Dt], rT

m = [rm[Dt], . . . , rm[PDt]],
and ⊗ is the Kronecker product.

We assume that the marginal fading distribution on
subcarrier k conditioned on the estimated channel is a
non-zero mean complex Gaussian random variable given
as hm,k|ĥm,k ∼ CN (ĥm,k, σ̂

2
m,k) where ĥm,k is the esti-

mated complex channel gain and σ̂2
m,k is the estimation

error variance for that subcarrier. Thus, the channel-to-
noise ratio (CNR) γm,k = |hm,k|2/σ2

w conditioned on
γ̂m,k = |ĥm,k|2/σ2

w is in turn a non-central Chi-squared
distributed random variable with two degrees of freedom
with pdf [7, Eq. 2-1-118]

fγm,k
(γm,k|γ̂m,k) =

1
ρm,k

e
− γ̂m,k+γm,k

ρm,k I0

(
2

ρm,k

√
γ̂m,kγm,k

) (6)

where I0 is the zeroth-order modi�ed Bessel function of
the �rst kind, and ρm,k = σ̂2

m,k/σ2
w is the ratio of the

estimation error variance to the ambient noise variance.

III. CAPACITY MAXIMIZATION WITH PARTIAL CSI

A. Problem Formulation

The capacity for user m and subcarrier k is given as

R(pm,kγm,k) = log2(1 + pm,kγm,k) bps/Hz (7)

Denote by p = [pT
1 , · · · ,pT

K ]T the vector of powers
to be determined, where pk = [p1,k, · · · , pM,k]T . The
exclusive subcarrier assignment restriction can be written
as pk ∈ Pk ⊂ RM

+ , where

Pk ≡ {pm,k ≥ 0|pm,kpm′,k = 0;∀m 6= m′} (8)

We let p ∈ P ≡ P1 × · · · × PK ⊂ RMK
+ denote the

space of allowable power vectors for all subcarriers.
We assume that we have knowledge of the im-

perfect CNR vector γ̂ = [γ̂T
1 , . . . , γ̂T

K ]T , γ̂k =
[γ̂1,k, . . . , γ̂M,k]T ; corresponding to an estimate of the
actual CNR realization γ = [γT

1 , . . . ,γT
K ]T , γk =

[γ1,k, . . . , γM,k]T . Thus, our power allocation vector p
can only be a function of γ̂. The ergodic weighted sum
rate maximization problem assuming partial CSI is then

f∗ = max
p∈P

∑

m∈M
wm

∑

k∈K
E {R (pm,kγm,k)| γ̂m,k}

s.t.
∑

m∈M

∑

k∈K
pm,k ≤ P̄

(9)

where wm are positive constants such that
∑

wm =
1. Theoretically, varying these weights allows us to
trace out the ergodic capacity region assuming partial
CSI; algorithmically, varying the weights allows us to
prioritize the different users in the system and enforce
certain notions of fairness, e.g. proportional fairness and
max-min fairness [2].

B. Dual Optimization Framework

We begin our development by observing that the
objective function in (9) is separable across the subcar-
riers, and is tied together only by the power constraint.
We will approach this problem using dual optimization
techniques [8]. The dual problem for (9) is de�ned as

g∗ = min
λ≥0

Θ(λ) (10)



where the dual objective is given as

Θ(λ) = max
p∈P

∑

m∈M
wm

∑

k∈K

[
E {R (pm,kγm,k)| γ̂m,k}

+λ

(
P̄ −

∑

k∈K

∑

m∈M
pm,k

)]
(11a)

= λP̄ +
∑

k∈K
max

pk∈Pk

(11b)
∑

m∈M
(wmE {R (pm,kγm,k)| γ̂m,k} − λpm,k)

= λP̄ +
∑

k∈K
max
m∈M

(11c)

max
pm,k≥0

(wmE {R (pm,kγm,k)| γ̂m,k} − λpm,k)

where (11b) follows from the separability of the variables
across subcarriers, and (11c) from the exclusive subcar-
rier assignment constraint. We have reduced the problem
to a per-subcarrier optimization and, since K À M ,
signi�cantly decreased the computational burden.

We denote the optimal power allocation function for
the innermost per-user and per-subcarrier problem in
(11c) as p̂m,k(λ), which can be found using simple
differentiation as

p̂m,k(λ) =





pm,k : E
{

γm,k

1+pm,kγm,k

∣∣∣ γ̂m,k

}
= γ0,m,

E{γm,k|γ̂m,k} ≥ γ0,m

0 ,E{γm,k|γ̂m,k} < γ0,m
(12)

where γ0,m = λ ln 2
wm

. This can be interpreted as a multi-
level water-�lling with cut-off CNR γ0,m similar to [2,
Eq. 9], except that the cut-off is now based on the condi-
tional mean of the CNR given its estimate, instead of the
actual CNR. Using the pdf in (6), the conditional mean
is simply E {γm,k| γ̂m,k} = γ̂m,k +ρm,k. Note that when
we have perfect CSI, ρm,k = 0 and (12) actually reduces
to the multi-level water�lling equation for perfect CSI
in [2, Eq. 9]. There is no closed form solution to (12),
but it can be solved using numerical integration of the
expectation, and a zero-�nding procedure like bisection
method [9] to �nd the power allocation.

Plugging (12) into (11c) and then in (10), we arrive
at the following dual problem in the single variable λ

g∗ = min
λ≥0

λP̄ +
∑

k∈K
max
m∈M

(13)

(wmE {R (p̂m,k(λ)γm,k)| γ̂m,k} − λp̂m,k(λ))

Using standard duality arguments (see e.g. [8, Prop.
5.1.2]), the objective in (13) can be shown to be convex

in the single variable λ, but is actually not continu-
ously differentiable due to the presence of the max
function. Hence, powerful derivative-based minimization
methods such as Newton's method cannot be used. For-
tunately, we can use derivative-free single-dimensional
line search methods that only need function evaluations,
e.g. Golden-section or Fibonacci search [9] to �nd the
optimum multiplier λ∗.

C. Optimal Subcarrier and Power Allocation
The optimal multiplier λ∗ determines the optimal

cutoff SNR γ∗0,m = λ∗ ln 2
wm

. This can then be plugged
back into the power allocation function (12) to arrive at

m∗
k = arg max

m∈M
[E {wmR (p̂m,k(λ∗)γm,k)| γ̂m,k}

−λ∗p̂m,k(λ∗)]

p∗m,k =
{

p̂m,k(λ∗), m = m∗
k

0, m 6= m∗
k

(14)

Note, however, that it is possible that the candidate
power allocation does not satisfy the total power con-
straint, since the constraint is not enforced explicitly.
Hence, our �nal power allocation values should be
multiplied by a constant η = P̄ /

∑
m∈M

∑
k∈K

p∗m,k which
we plug back into the objective in (9) to arrive at our
computed primal optimal value

f̂∗ =
∑

m∈M
wm

∑

k∈K
E

{
log2(1 + ηp∗m,kγm,k)

∣∣ γ̂m,k

}

(15)
Unfortunately, the above procedure is still highly

computationally intensive, since for each candidate λ
in the line search iterations, we need to compute MK
power allocation values (12), each of which requires a
zero-�nding routine where a function value evaluation
involves numerical integration to compute the expecta-
tion. Although both the line search and the zero-�nding
routines typically converge within very few iterations
(< 10 in our experiments), the numerical integration pro-
cedure requires a lot more iterations (> 50), and hence is
the main computational bottleneck. We shall overcome
this problem using a closed-form approximation to the
expectation in the power allocation function.

D. Power Allocation Function Approximation
Our approach to approximating the expectation in (12)

is to use a Gamma distribution to approximate the non-
central Chi-squared distribution of γm,k|γ̂m,k (6), which
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Fig. 1. Power allocation as a function of estimated CNR (γ̂) with γ0 = 1
for various ρm,k = σ̂2

m,k/σ2
w . A solid line indicates the optimal power

allocation, 'x's denote the approximation, and the dashed line correspond to
the simple water�lling allocation.

is known to approximate the body of this pdf quite well
[10, p. 55]. This approximation is given by

fγm,k
(γm,k|γ̂m,k) ≈ βα

Γ(α)
γα−1

m,k e−βγm,k (16)

where α = (Km,k + 1)2/(2Km,k + 1) is the Gamma
pdf shape parameter with Km,k = γ̂m,k

ρm,k
as the specular

to diffuse power ratio, equivalent to the K−factor in a
Ricean pdf; and β = α/(γ̂m,k + ρm,k) is the Gamma
pdf rate parameter. Using this pdf, we can use [11,
Section 3.383.10] to arrive at the following closed form
approximation to the integral

E
{

γm,k

1 + pm,kγm,k

∣∣∣∣ γ̂m,k

}

≈ βα

Γ(α)

∫ ∞

0

γα
m,k

1 + pm,kγm,k
e−βγm,kdγm,k

=
α

pm,k

(
β

pm,k

)α

e
β

pm,k Γ
(
−α,

β

pm,k

)
(17)

where Γ(a, x) is the incomplete Gamma function [11,
Section 8.350]. Using (17) in (12) to solve for pm,k,
we are able to closely approximate the power allocation
function p̂m,k. We plot the power allocation function
using the Gamma pdf approximation and the actual Chi-
squared pdf in Fig. 1 with γ0 = 1 for various ρm,k =
σ̂2

m,k/σ2
w. Note that the approximation error is negligible,

with a normalized mean-squared error of 5 × 10−5 and
maximum error of 2.7×10−4, while the computation of
the approximation is almost 300× faster than the actual
using very crude computational time measurements in
Matlab 7.2 (tic-toc).

E. Bound on the Relative Duality Gap
If we let f∗ > 0 and g∗ > 0 be the optimal values

of the primal and dual problems given in (9) and (13),
and let f̂∗ > 0 given in (15) be the computed feasible
primal value, the relative duality (optimality) gap can be
bounded as

0 ≤ g∗ − f∗

f∗
≤ g∗ − f̂∗

f̂∗
(18)

The left inequality follows directly from the non-
negativity of f∗ and the weak duality theorem [8, Prop.
5.1.3. p. 495], and the right inequality follows from
f̂∗ ≤ f∗ since f̂∗ is a feasible primal value and f∗

is the optimal feasible primal value. In our numerical
results, we show that the resulting optimality gaps using
our algorithm are practically zero (< 10−5). Thus, our
approach can, for all practical purposes, be considered
an optimal solution to the problem. This fortuitous phe-
nomenon is brought about primarily by the separability
of the problem, and furthermore by the fact that we
have K separable terms (which is typically large) and
only a single constraint (average power constraint). This
problem structure has been shown to be particularly
suitable to dual optimization approaches, and has been
noted in [12] (for the instantaneous optimization case),
and more generally treated in [8].

F. Complexity Analysis
In each search iteration for λ in (13), we need to com-

pute MK candidate power allocation functions given by
(12) and (17). Each power allocation value calculation
requires a zero-�nding routine, e.g. bisection or Newton
search [9], which we assume requires Ip function evalua-
tions to converge. After determining the power allocation
value, we then use it in the ergodic capacity integral in
(13), which we assume requires Ic function evaluations
to compute. Finally, assuming that we require Iλ line
search iterations to solve for the optimum λ, the overall
complexity is O(IλMK(Ip+Ic)). Ignoring the constants
Iλ, Ip, and Ic, the complexity is just O(MK).

IV. RESULTS AND DISCUSSION

We present several numerical examples to substantiate
our theoretical claims. Our simulations are roughly based
on a 3GPP-LTE downlink [1] system with parameters
given in Table I. We simulate the frequency-selective
Rayleigh fading channel using the ITU-Vehicular A
channel model [1]. We assume Clarke's U-shaped
power spectrum [10] for each multipath tap, result-
ing in the temporal autocorrelation function rm[∆] =



TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
Subcarriers 64 Vehicular speed 120 kph

Used Subcarriers 33 Doppler frequency 289 Hz
Bandwidth 1.25 MHz Prediction �lter length 4

Sampling Freq. 1.92 MHz Pilot spacing 7
Carrier Freq. 2.6 GHz CP Length 6 samples

TABLE II
OTHER RELEVANT METRICS

SNR No. of Iterations (Iλ) Relative Gap (×10−6)
5 8.599 8.40
10 8.501 5.68
15 8.686 4.12

J0(2π∆FdDt(Kfft + Lcp)/Fs) where J0(x) is the
zeroth-order Bessel function of the �rst kind [13, Ch. 9].
To simulate imperfect CSI, we generate IID realizations
of ĥm and its prediction error vector êm as discussed in
Section II. This allows us to also generate the �actual�
channel hm for the perfect CSI cases using (5).

In Fig. 2, we show the 2-user capacity region for
continuous rate allocation with imperfect CSI (Imperfect
CSI-Optimal) with 5000 channel realizations per data
point. We also show the capacity region using optimal
instantaneous rate resource allocation assuming perfect
CSI (Perfect CSI-Optimal), which is essentially multi-
level water�lling (MWF) [2]; and the capacity region
when we simply use MWF on the imperfect CSI (Imper-
fect CSI-MWF). Note that in all cases, rate maximization
with imperfect CSI through channel prediction performs
quite close to the case with perfect CSI. More important,
Imperfect CSI-MWF performs similar to Imperfect CSI-
Optimal. This can be explained by noticing that the
optimal power allocation assuming imperfect CSI is
almost equal to the water�lling curve (see Fig. 1) except
for very low estimated CNR. However, due to the effect
of frequency and multiuser diversity, the subcarrier is
typically assigned to the user with the highest CNR; thus,
the power allocation is quite often almost identical to
performing water�lling on the imperfect CSI. A similar
observation was made in [6] for the single user scenario.

Table II shows the other relevant metrics of the
optimal resource algorithms. The �rst column shows
the average number of line-search iterations it took to
converge to a tolerance of 10−4. The second column
shows the resulting relative duality gaps given by (18).
We can see that the duality gaps are virtually zero, and
thus both algorithms can be considered optimal for all
practical purposes.
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