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ABSTRACT
Previous research efforts to optimize OFDMA resource allocation
with respect to communication performance have focused on formu-
lations considering only instantaneous per-symbol rate maximiza-
tion, and on solutions using suboptimal heuristic algorithms. This
paper intends to �ll gaps in the literature through two key contri-
butions. First, we formulate weighted sum ergodic capacity max-
imization in OFDMA assuming the availability of perfect channel
state information (CSI). Our formulations exploit time, frequency,
and multi-user diversity, while enforcing various notions of fair-
ness through weighting factors for each user. Second, we derive
algorithms based on a dual optimization framework that solve the
OFDMA ergodic capacity maximization problem withO(MK) com-
plexity per OFDMA symbol for M users and K subcarriers, while
achieving data rates shown to be at least 99.9999% of the optimal
rate in simulations based on realistic parameters. Hence, this paper
attempts to demonstrate that OFDMA resource allocation problems
are not computationally prohibitive to solve optimally, even when
considering ergodic rates.

Index Terms: Multiaccess communication,Information rates, Re-
source management, Duality, Optimization methods

1. INTRODUCTION

Next-generation broadband wireless system standards, e.g. 3GPP-
Long Term Evolution (LTE) [1], consider Orthogonal Frequency Di-
vision Multiple Access (OFDMA) as the preferred physical layer
multiple access scheme, esp. for the downlink. The problem of as-
signing the subcarriers, rates, and powers to the different users in
an OFDMA system has been an area of active research, (see e.g.
[2]). In most of the previous work, the formulation and algorithms
only consider instantaneous performance metrics. Thus, the tempo-
ral dimension is not being exploited when the resource allocation is
performed. Instead of considering only instantaneous data rate, we
formulate the problem considering user-weighted ergodic capacity.
This allows us to exploit the time dimension explicitly in the formu-
lation, and utilize all three degrees of freedom in our system, namely
frequency, time, and multiuser dimensions. At the same time, we can
enforce certain notions of fairness through the user weights. We fo-
cus on the ergodic (Shannon-type) capacity in this paper, and our
other paper [3] focuses on the more practical discrete bit and power
loading subject to BER constraints.

Furthermore, previous research have assumed that algorithms to
�nd the optimal or near-optimal solution to the problem is too com-
putationally complex for real-time implementation. Hence, the main
focus of previous research efforts have been on developing heuris-
tic approaches with typical complexities in the order of O(MK2)
[2]. Our approach, on the other hand, is based on a dual optimiza-

tion framework, which is less complex (O(MK) per iteration, with
less than 10 iterations) and achieves relative optimality gaps that are
less than 10−4 (i.e. achieving 99.9999% of the optimal solution) in
typical scenarios, and thus actually allowing us to claim practical
optimality. Note that the dual optimization approach is also studied
in [4], but their focus has been on instantaneous rate optimization.

2. SYSTEM MODEL

We consider a single OFDMA base station with K-subcarriers and
M -users indexed by the set K = {1, . . . , k, . . . , K} and M =
{1, . . . , m, . . . , M} (typically K À M ) respectively. We assume
an average transmit power of P̄ > 0, bandwidth B, and noise den-
sity N0. The received signal vector for the mth user at the nth
OFDM symbol is given as

ym[n] = Gm[n]Hm[n]xm[n] + wm[n] (1)
where ym[n] and xm[n] are the K-length received and transmit-
ted complex-valued signal vectors; Gm[n] is the diagonal gain al-
location matrix with diagonal elements [Gm[n]]kk =

p
pm,k[n];

wm[n] ∼ CN (0, σ2
wIK) with noise variance σ2

w = N0B/K is
the white zero-mean, circular-symmetric, complex Gaussian (ZMC-
SCG) noise vector; and Hm[n] = diag {hm,1[n], . . . , hm,K [n]} is
the diagonal channel response matrix, where

hm,k[n] =

NtX
i=1

gm,i[n]e−j2πτik∆f . (2)

are the complex-valued frequency-domain wireless channel fading
random processes, given as the discrete-time Fourier transform of
the Nt time-domain multipath taps gm,i[n] with time-delay τi and
subcarrier spacing ∆f . These taps are modeled as stationary and er-
godic discrete-time random processes with tap powers σ2

m,i, which
we assume to be independent across the fading paths i and across
users m. Since gm,i[n] is stationary and ergodic, so is hm,k[n].
Hence, the distribution of hm[n] is independent of n through sta-
tionarity, and we can replace time averages with ensemble averages
in the problem formulations through ergodicity. In the subsequent
discussion, we shall drop the index n when the context is clear for
notational brevity.

We assume1 that the time domain channel taps are independent
ZMCSCG random variables gm,i ∼ CN (0, σ2

m,i) with total power
σ2

m =
PNt

i=1 σ2
m,i. Then from (2), we have

hm ∼ CN (0K ,Rhm)

Rhm = WΣmWH
(3)

1Although the results of this paper are applicable to any fading distribu-
tion, we shall prescribe a particular distribution for the fading channels for
illustration purposes.



where W is the K×Nt DFT matrix with [W]k,i = e−j2πτik∆f and
Σm = diag{σ2

m,1, . . . , σ
2
m,Nt

} is an Nt × Nt diagonal matrix of
the time-domain path powers. Since we also assume that the fading
for each user is independent, then the joint distribution of the stacked
fading vector for all users h = [hT

1 , . . . , hT
M ]T is likewise a ZM-

CSCG random vector with distribution h ∼ CN (0KM ,Rh) where
Rh is the KM ×KM block diagonal covariance matrix with Rhm

as the diagonal block elements. This is the distribution over which
we shall take the weighted sum rate function in the problem formula-
tions. We let γm = [γm,1, . . . , γm,k]T where γm,k = |hm,k|2/σ2

w

denote the instantaneous channel-to-noise ratio (CNR) with mean
γ̄m,k = σ2

m/σ2
w. Note that γm,k for a particular subcarrier k and

different users m are independent but not necessarily identically dis-
tributed (INID) exponential random variables; and for a particular
user m and different subcarriers k are not independent but identi-
cally distributed (NIID) exponential random variables. Throughout
the paper, we assume that the transmitter has perfect knowledge of
γm for all users, and that the resource allocation decisions are made
known to the users through an error-free control channel.

3. ERGODIC WEIGHTED SUM CAPACITY
MAXIMIZATION IN OFDMA

3.1. Problem Formulation

The capacity for user m and subcarrier k is given as

R(pm,kγm,k) = log2(1 + pm,kγm,k) bps/Hz (4)

Denote by p = [pT
1 , · · · , pT

K ]T the vector of powers to be deter-
mined, where pk = [p1,k, · · · , pM,k]T . The exclusive subcarrier as-
signment restriction in OFDMA can be written as pk ∈ Pk ⊂ RM

+ ,

Pk ≡ {pk ∈ RM
+ |pm,kpm′,k = 0; ∀m 6= m′; m, m′ ∈M} (5)

For notational convenience, we let p ∈ P ≡ P1 × · · · × PK ⊂
RMK

+ denote the space of allowable power vectors for all subcarri-
ers. Since we assumed perfect CSI, we can consider the power al-
location vector p as a function of the realization of the fading CNR
γ = [γT

1 , . . . , γT
M ]T . The ergodic weighted sum capacity maxi-

mization problem can then be written as

f∗ = max
p∈P

Eγ

( X
m∈M

wm

X
k∈K

R (pm,kγm,k)

)
s.t. Eγ

( X
m∈M

X
k∈K

pm,k

)
≤ P̄

(6)

where wm are positive constants such that
P

wm = 1. Theoreti-
cally, varying these weights allows us to trace out the ergodic capac-
ity region; algorithmically, varying the weights allows us to priori-
tize the different users in the system and enforce certain notions of
fairness, e.g. proportional fairness and max-min fairness [2]. Note
that the objective function in (6) is concave, but the constraint space
P is highly non-convex (it is in fact a discrete space), and is in gen-
eral very dif�cult to solve. The next subsection discusses a dual op-
timization approach that allows us to solve this problem ef�ciently.

3.2. Dual Optimization Framework

We begin our development by observing that the objective function
in (6) is separable across the subcarriers, and is tied together only by

the power constraint. In these problems, it is useful to approach the
problem using duality principles [5]. The dual problem is de�ned as

g∗ = min
λ≥0

Θ(λ) (7)

where the dual objective is given by

Θ(λ) = max
p∈P

Eγ

( X
m∈M

wm

X
k∈K

R (pm,kγm,k)

)
+

λ

 
P̄ − Eγ

(X
k∈K

X
m∈M

pm,k

)!
(8)

= λP̄ + Eγ

(X
k∈K

max
pk∈Pk

X
m∈M

wmR (pm,kγm,k)− λpm,k

)
= λP̄ + Eγ

(X
k∈K

max
m∈M

max
pm,k≥0

wmR (pm,kγm,k)− λpm,k

)
where the second equality follows from the separability of variables
across subcarriers, and the third from the exclusive subcarrier assign-
ment constraint. We have reduced the problem to a per-subcarrier
optimization, and since K À M , we have signi�cantly decreased
the computational burden.

The innermost maximization in (8) has a simple closed-form ex-
pression for the optimal powers given as

p̃m,k(λ) =

�
1

γ0,m
− 1

γm,k

�+
(9)

where [x]+ = max(0, x) and γ0,m = λ ln 2
wm

which is a simple
�multi-level water-�lling� power allocation with cut-off CNR γ0,m.
Using (9) in (8), the dual problem (7) can be written as

g∗ = min
λ≥0

λP̄ +
X
k∈K

Eγk {gk(γk, λ)} (10)

gk(γk, λ) = max
m∈M

{gm,k(γm,k, λ)} (11)

gm,k(γm,k, λ) = wmR (p̃m,k(λ)γm,k)− λp̃m,k(λ) (12)

=

(
wm
ln 2

ln
�

γm,k

γ0,m

�
− wm

ln 2
+ λ

γm,k
, γm,k ≥ γ0,m

0, γm,k < γ0,m

3.3. Numerical Evaluation of the Expected Dual
Computing the expectation in (10) in a straightforward manner in-
volves an M−dimensional integral over the joint pdf of the M−length
fading vector γk, which is typically too complex to solve using di-
rect numerical integration techniques (e.g. Gaussian quadrature) ex-
cept for small M , e.g. 2 or 3, since this requires O(NM ) compu-
tations where N is the number of function evaluations required for
a one-dimensional integral with the same accuracy [6]. However, if
we can somehow compute a closed-form expression for the pdf of
the per-subcarrier dual function gk(γk, λ) (11), then we can reduce
the expectation to just a one-dimensional integral that is solvable in
O(MN). Since γm,k for different ms are INID, then (12) is like-
wise INID for different ms. Thus, (11) is the largest order statistic of
INID random variables gm,k , which has the following closed-form
pdf [7, Sec. 5.2]

fgk (gk) =
Y

m∈M
Fgm,k (gk)

 X
m∈M

fgm,k (gk)

Fgm,k (gk)

!
(13)



where Fgm,k (gm,k) and fgm,k (gm,k) are the cdf and pdf of gm,k,
respectively. In order to derive these distribution functions given the
distribution Fγm,k (γm,k) of γm,k, we need an expression for the
inverse function of gm,k(γm,k, λ). Since gm,k for γm,k ≥ γ0,m

is monotonically increasing and non-negative, there exists a unique
inverse function. After some algebraic manipulation, we have

−γ0,m

γm,k
exp

�
−γ0,m

γm,k

�
= − exp

�
−gm,k

ln 2

wm
− 1

�
(14)

Observe that this is in the form of the Lambert-W function W (x)
[8], which is the solution to W (x) exp (W (x)) = x. This function
is ubiquitous in the physical sciences, and ef�cient algorithms have
been developed for its computation [8]. Thus, we can write

W

�
− exp

�
−gm,k

ln 2

wm
− 1

��
= −γ0,m

γm,k
(15)

which when solved for γm,k gives us

γ̌m,k(gm,k) =
−γ0,m

W
�
− exp

�
−gm,k

ln 2
wm

− 1
�� , gm,k ≥ 0 (16)

Using this expression for the root, we can then derive the distri-
bution functions as [9]

Fgm,k (gm,k) = Fγm,k (γ̌m,k(gm,k))

fgm,k (gm,k) = fγm,k (γ̌m,k(gm,k))
γ̌2

m,k(gm,k)

γ̌m,k(gm,k)wm
ln 2

− λ

(17)

Finally, using (17) in (13) and then in (10), our dual problem can
now be written as

g∗ = min
λ≥0

λP̄ +
X
k∈K

Z ∞

0

gkfgk (gk)dgk (18)

3.4. Optimal Subcarrier and Power Allocation
Using standard duality arguments (see e.g. [5, Prop. 5.1.2]), the dual
objective function in (18) can be shown to be convex and continu-
ously differentiable in the single variable λ. Thus, we could simply
take its derivative with respect to λ and set it to zero to �nd the op-
timum geometric multiplier λ∗. However, the derivative function
requires O(M2) computations due to the product terms in the pdf.
Thus, it is more ef�cient to resort to derivative-free line search pro-
cedures that only need function evaluations, e.g. Golden-section or
Fibonacci search [6].

Once we determine λ∗, we plug it back into the optimal power
allocation function and arrive at the following simple user assign-
ment and power allocation for each subcarrier k given as

m∗
k = arg max

m∈M
{wmR (p̃m,k(λ∗)γm,k)− λ∗p̃m,k(λ∗)} (19)

p∗m,k =

�
p̃m,k(λ∗), m = m∗

k

0, otherwise (20)

Note that it is possible that the dual optimal powers do not satisfy the
total power constraint, since this constraint has been relaxed using
the Lagrangian, i.e. it is no longer mathematically enforced. Hence,
our �nal power allocation values should be multiplied by a constant
η = P̄ /Eγ

�P
m

P
k p∗m,k

	
which we plug back into the objective

in (6) to arrive at our computed primal optimal value

f̂∗ = Eγ

( X
m∈M

wm

X
k∈K

log2(1 + ηγm,kp∗m,k)

)
(21)

3.5. Bound on the Relative Duality Gap

The following theorem provides a bound on the relative optimality
gap which we can compute in order to assess how far we are from
the optimal value.

Theorem 1 Let f∗ > 0 and g∗ > 0 given in (6) and (18) be the op-
timal values of the primal and dual problems, and let f̂∗ > 0 given
in (21) be the computed feasible primal value. Then the relative du-
ality (optimality) gap can be bounded as

0 ≤ g∗ − f∗

f∗
≤ g∗ − f̂∗

f̂∗
(22)

Proof: The left inequality follows directly from the positivity of f∗

and the weak duality theorem [5, Prop. 5.1.3. p. 495]. The right
inequality is because f̂∗ ≤ f∗, since f̂∗ is a feasible primal value
and f∗ is the optimal feasible primal value. ¥

In our numerical results, the power constraints are met almost
exactly, resulting in relative optimality gaps that are practically zero
(< 10−4). Thus, our approach can, for all practical purposes, be
considered an optimal solution to the problem. This fortuitous phe-
nomenon is brought about primarily by the separability of the prob-
lem, and furthermore by the fact that we have K separable terms
(which is typically large) and only a single constraint (average power
constraint). This problem structure has been shown to be particularly
suitable to dual optimization approaches, and has been noted in [4],
and more generally treated with a theoretical justi�cation in [5].

3.6. Complexity Analysis

Once we determine λ∗ by solving (18), we do not need to update
it as long as the statistics of the fading channel vector γ remain the
same. Thus, the complexity of resource allocation requires an initial
O(INMK) computations to determine λ∗, where I is the number
of iterations for the line search procedure to converge, and N is the
number of function evaluations to compute the dual objective inte-
gral. In most cases, we can also assume that γm,k for a user m and
across subcarriers k are NIID (see Section 2), and thus gk given in
(11) are likewise NIID. This allows us to replace the summation over
k in in (18) to a simple multiplication by K, further reducing the ini-
tialization complexity to just O(INM) computations. The optimal
resource allocation given in (19)-(20) requires only O(MK) com-
putations per symbol instance.

4. NUMERICAL RESULTS

We consider an OFDMA system roughly based on a 3GPP-LTE
downlink [1], with 128 subcarriers, 76 used subcarriers, 1.25 MHz
bandwidth, 1.92 MHz sampling frequency, and a cyclic pre�x length
of 6 samples. We simulate the frequency-selective Rayleigh fading
channel using the ITU-Vehicular A channel model [10]. We gen-
erate 10000 IID channel realizations per data point, where for each
user's channel realization hm (2), we generate a complex Gaussian
random vector with Nt independent entries, each with variance cor-
responding to the power delay pro�le for the corresponding path.

In Fig. 1, we compare the capacity region for 2 users in various
SNRs of our ergodic capacity maximization algorithm with instanta-
neous capacity maximization [4] and constant power allocation [2].
We see that the gain of ergodic maximization is more pronounced
for low SNRs and more disparate user weights. This observation
is analogous to previous studies in adaptive modulation, e.g. [11],
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Fig. 1. 2-User capacity Region for ergodic capacity maximization,
instantaneous capacity maximization, and constant power allocation.

which concluded that the exploitation of the additional temporal di-
mension through the ergodic formulation is most useful when other
degrees of freedom have been signi�cantly curtailed. In Table 1, we
present other relevent metrics for the ergodic and instantaneous rate
maximization algorithms. For the ergodic rate maximization, the
�rst main row indicates the average number of function evaluations
required to numerically compute the integration of (18) with a toler-
ance of 10−6, and the second main row indicates the average number
of Golden-section search iterations to solve for λ∗ in the dual prob-
lem (10) with a tolerance of 10−4. The second row for instantaneous
rate maximization is the average number of iterations for each chan-
nel realization. The third row for both cases is the relative duality
gap upper bound computed by (22). Note that the duality gaps are
negligible for all practical purposes, and thus both algorithms can
be considered optimal. Since the constant power allocation does not
involve iterations, it is not included in Table 1.

4.1. Complexity Comparison

Table 2 shows the complexity order of the different resource alloca-
tion algorithms. Only the ergodic rate algorithms require initializa-
tion. If we use the average numbers given in Table 1, the ergodic
rate algorithm is less complex than the instantaneous rate algorithm
per symbol on average, as long as the rate of change of the chan-
nel fading statistics (roughly at the rate of change of slow fading,
e.g. Log-normal shadowing) is much lower than the rate of change
of the actual channel realizations (roughly at the rate of fast fading,
e.g. Rayleigh fading), such that the initialization is performed less
often. One caveat, however, is that the ergodic rate algorithms re-
quire information on the channel fading distribution function, which
need an additional level of complexity and feedback overhead. Fur-
thermore, the peak-to-average power ratio of the power allocation in
the ergodic rates case is typically higher than for instantaneous rates,
and even more so for constant power allocation.

Table 1. Relevant Metrics for the Resource Allocation Algorithms
Metric SNR Ergodic Inst.
No. of Fun. Eval. (N ) 5 dB 47.91 −

10 dB 50.09 −
15 dB 53.73 −

No. of Iterations (I) 5 dB 8.091 8.344
10 dB 7.727 8.333
15 dB 7.936 8.539

Relative Gap (×10−6) 5 dB 7.936 .0251
10 dB 5.462 .0226
15 dB 5.444 .0159

Table 2. Complexity for the Resource Allocation Algorithms. M -
no. of users, K-no. of subcarriers, N -no. of function evaluations for
integration, I-no. of line search iterations.

Algorithm Initialization Runtime
Ergodic Rates O(INM) O(MK)
Instantaneous Rates − O(IMK)
Constant Power − O(MK)
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