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Abstract� In this paper, we propose a resource alloca-
tion algorithm for ergodic weighted-sum rate maximization
in downlink OFDMA systems. In contrast to most previous
research that focused on maximizing instantaneous rates
using deterministic optimization techniques, we focus on
maximizing ergodic rates using stochastic optimization
techniques, which allow us to exploit the temporal di-
mension, in addition to the frequency and multiuser
dimensions. Furthermore, in contrast to most previous
algorithms that used greedy suboptimal heuristics with
quadratic complexity, we use a dual optimization approach
that resulted in a simple subcarrier, rate, and power
allocation algorithm that has complexity O(MK) for an
M -user, K-subcarrier OFDMA system. Surprisingly, our
method is shown to result in duality gaps less than 10−4

in scenarios of practical interest, thereby allowing us to
claim practical optimality. We present simulation results
for a 3GPP-LTE system employing adaptive modulation.

I. INTRODUCTION

Next-generation broadband wireless system standards,
e.g. 3GPP-Long Term Evolution (LTE) [1], consider Or-
thogonal Frequency Division Multiple Access (OFDMA)
as the preferred physical layer multiple access scheme,
esp. for the downlink. The problem of assigning the
subcarriers, rates, and powers to the different users in
an OFDMA system has been an area of active research,
(see e.g. [2] [3] [4]). In most of the previous work, the
formulation and algorithms only consider instantaneous
performance metrics. Thus, the temporal dimension is
not being exploited when the resource allocation is
performed. Instead of considering only instantaneous
data rate, we formulate the problem considering user-
weighted ergodic sum rate. This allows us to exploit all
three degrees of freedom in our system, namely time,
frequency, and multiuser dimensions. At the same time,
we can enforce various notions of fairness through the
user weights.

Furthermore, previous research have assumed that
algorithms to �nd the optimal or near-optimal solution
to the problem is too computationally complex for real-
time implementation. Hence, the main focus of previ-
ous research efforts have been on developing heuristic
approaches with typical complexities in the order of
O(MK2). Our approach, on the other hand, is based on
a dual optimization framework, which is less complex
(O(MK) per iteration, with less than 10 iterations) and
achieves relative optimality gaps that are less than 10−4

(i.e. achieving 99.9999% of the optimal solution) in
typical scenarios, and thus actually allowing us to claim
practical optimality. We focus on the discrete rate case
in this paper. We also investigated the continuous rate
case in [2]. Note that the dual optimization approach
was also studied in [3] [4] [5], but their focus has been
on instantaneous and continuous rate optimization.

II. SYSTEM MODEL

We consider a single OFDMA base station with
K-subcarriers and M -users indexed by the set K =
{1, . . . , k, . . . , K} and M = {1, . . . , m, . . . , M} (typ-
ically K À M ) respectively. We assume an average
transmit power of P̄ > 0, bandwidth B, and noise
density N0. The received signal vector for the mth user
at the nth OFDM symbol is given as

ym[n] = Gm[n]Hm[n]xm[n] + wm[n] (1)

where ym[n] and xm[n] are the K-length received and
transmitted complex-valued signal vectors; Gm[n] is the
diagonal gain allocation matrix with diagonal elements
[Gm[n]]kk =

√
pm,k[n]; wm[n] ∼ CN (0, σ2

wIK) with
noise variance σ2

w = N0B/K is the white zero-mean,
circular-symmetric, complex Gaussian (ZMCSCG) noise
vector; and Hm[n] = diag {hm,1[n], . . . , hm,K [n]} is the



diagonal channel response matrix, where

hm,k[n] =
Nt∑

i=1

gm,i[n]e−j2πτik∆f . (2)

are the complex-valued frequency-domain wireless chan-
nel fading random processes, given as the discrete-
time Fourier transform of the Nt time-domain multipath
taps gm,i[n] with time-delay τi and subcarrier spacing
∆f . These taps are modeled as stationary and ergodic
discrete-time random processes with tap powers σ2

m,i,
which we assume to be independent across the fading
paths i and across users m. Since gm,i[n] is stationary
and ergodic, so is hm,k[n]. Hence, the distribution of
hm[n] is independent of n through stationarity, and
we can replace time averages with ensemble averages
in the problem formulations through ergodicity. In the
subsequent discussion, we shall drop the index n when
the context is clear for notational brevity.

We assume1 that the time domain channel taps
are independent ZMCSCG random variables gm,i ∼
CN (0, σ2

m,i) with total power σ2
m =

∑Nt

i=1 σ2
m,i. Then

from (2), we have
hm ∼ CN (0K ,Rhm

)

Rhm
= WΣmWH

(3)

where W is the K × Nt DFT matrix with [W]k,i =
e−j2πτik∆f and Σm = diag{σ2

m,1, . . . , σ
2
m,Nt

} is an
Nt×Nt diagonal matrix of the time-domain path powers.
Since we also assume that the fading for each user is
independent, then the joint distribution of the stacked
fading vector for all users h = [hT

1 , . . . , hT
M ]T is

likewise a ZMCSCG random vector with distribution
h ∼ CN (0KM ,Rh) where Rh is the KM×KM block
diagonal covariance matrix with Rhm

as the diagonal
block elements. This is the distribution over which we
shall take the weighted sum rate function in the problem
formulations. We let γm = [γm,1, . . . , γm,k]T where
γm,k = |hm,k|2/σ2

w denote the instantaneous channel-
to-noise ratio (CNR) with mean γ̄m,k = σ2

m/σ2
w. Note

that γm,k for a particular subcarrier k and different
users m are independent but not necessarily identically
distributed (INID) exponential random variables; and for
a particular user m and different subcarriers k are not
independent but identically distributed (NIID) exponen-
tial random variables. Throughout the paper, we assume
that the transmitter has perfect knowledge of γm for all

1Although the results of this paper are applicable to any fading
distribution, we shall prescribe a particular distribution for the fading
channels for illustration purposes.

users, and that the resource allocation decisions are made
known to the users through an error-free control channel.

III. ERGODIC RATE MAXIMIZATION IN OFDMA
A. Problem Formulation

The data rate of the kth subcarrier for the mth user
can be given by the staircase function

R(pm,kγm,k) =





r0, η0 ≤ pm,kγm,k < η1
...,

...
rL−1, ηL−1 ≤ pm,kγm,k < ηL

(4)
where {ηl}l∈L, L = {0, . . . , L − 1}, are the SNR
boundaries which de�ne a particular code-rate and mod-
ulation order pair combination that result in rl data bits
per transmission with a prede�ned target bit error rate
(BER), and where rl ≥ 0, rl+1 > rl, r0 = 0, η0 = 0, and
ηL = ∞. Denote by p = [pT

1 , · · · ,pT
K ]T the vector of

powers to be determined, where pk = [p1,k, · · · , pM,k]T .
Note that determining the power vector consequently
determines the subcarrier allocation (zero power means
the subcarrier is not allocated) and rate allocation (by
(4)). The exclusive subcarrier assignment restriction in
OFDMA can then be written as pk ∈ Pk ⊂ RM

+ ,

Pk ≡ {pk ∈ RM
+ |pm,kpm′,k = 0;∀m 6= m′} (5)

For notational convenience, we let p ∈ P ≡ P1 ×
· · · ×PK ⊂ RMK

+ denote the space of allowable power
vectors for all subcarriers. Since we assumed perfect
CSI, we can consider the power allocation vector p as
a function of the realization of the fading CNR γ =
[γT

1 , . . . , γT
M ]T .

The ergodic discrete weighted sum rate maximization
can then be formulated as

f∗ = max
p∈P

Eγ

{ ∑

m∈M
wm

∑

k∈K
R(pm,kγm,k)

}

s.t. Eγ

{ ∑

m∈M

∑

k∈K
pm,k

}
≤ P̄

(6)

B. Dual Optimization Framework
We begin our development by observing that the ob-

jective function in (6) is separable across the subcarriers,
and is tied together only by the power constraint. In these
problems, it is useful to approach the problem using
duality principles [6]. The dual problem is de�ned as

g∗ = min
λ≥0

Θ(λ) (7)



where the dual objective is given by

Θ(λ) = max
p∈P

Eγ

{ ∑

m∈M
wm

∑

k∈K
R (pm,kγm,k)

}

+λ

(
P̄ − Eγ

{∑

k∈K

∑

m∈M
pm,k

})

= λP̄ + Eγ

{∑

k∈K
max

pk∈Pk

∑

m∈M
(8)

[wmR (pm,kγm,k)− λpm,k]

}

= λP̄ + Eγ

{∑

k∈K
max
m∈M

max
pm,k≥0

[wmR (pm,kγm,k)− λpm,k]
}

where the second equality follows from the separabil-
ity of variables across subcarriers, and the third from
the exclusive subcarrier assignment constraint. We have
reduced the problem to a per-subcarrier optimization,
and since K À M , we have signi�cantly decreased the
computational burden.

Note that R(pm,kγm,k) is a discontinuous function;
hence, simple differentiation to arrive at the optimal
solution is not feasible. However, we can divide the
feasible region for pm,k into L segments

Rl
+ =

[
ηl

γm,k
,
ηl+1

γm,k

)
, l ∈ L (9)

for which we have ∀pm,k ∈ Rl
+,

wmR(pm,kγm,k)− λpm,k = wmrl − λpm,k (10)
≤wmrl − λ

ηl

γm,k

since λ and pm,k are both non-negative. Thus, there
are only L candidate power allocation functions p̃m,k ∈{

η0

γm,k
, . . . , ηL−1

γm,k

}
from which we need to choose the

maximizer of wmrl − λ ηl

γm,k
, i.e.

p̃m,k =
ηl∗m,k

γm,k
(11)

l∗m,k ∈ arg max
l∈L

wmrl − λ
ηl

γm,k
(12)

This also gives us the rate allocation R̃m,k = rl∗m,k
.

A straightforward computation of (12) would require
O(L) complexity. However, if we assume that the dis-
crete rate function (4) is concave2, we can reduce the
complexity of �nding the power allocation function by
noticing that (12) is equivalent to

wmrl∗m,k
− ληl∗m,k

γm,k
≥ wmrl − ληl

γm,k
(13)

∀l ∈ L\ l∗m,k,. Thus, for all l > l∗m,k and for all l < l∗m,k,
(13) is equivalent to

rl − rl∗m,k

ηl − ηl∗m,k

≤ λ

wmγm,k
<

rl∗m,k
− rl

ηl∗m,k
− ηl

⇔ max
l>l∗m,k

rl − rl∗m,k

ηl − ηl∗m,k

≤ λ

wmγm,k
< min

l<l∗m,k

rl∗m,k
− rl

ηl∗m,k
− ηl

Since the slope ∆r/∆η is non-increasing for a concave
function, (12) is equivalent to

l∗m,k =
{

l ∈ L
∣∣∣∣

λ

wmγm,k
∈

[
rl+1 − rl

ηl+1 − ηl
,
rl − rl−1

ηl − ηl−1

)}

(14)
where with slight abuse of notation, we de�ne (r0 −
r−1)/(η0 − η−1) ≡ ∞. Geometrically, we can consider
λ/wmγm,k as a slope value for which we are looking
for an interval of consecutive slope values for which
it belongs. Since the set of rates and SNR region
boundaries rl and ηl are prede�ned in a communications
system, we can store the set of slopes into a lookup
table, thereby reducing the computational complexity of
�nding the optimal power allocation to a single table
lookup operation.

We can now write (7) as

g∗ = min
λ≥0

λP̄ +
∑

k∈K
Eγk

{gk(γk, λ)}(15a)

gk(γk, λ) = max
m∈M

{gm,k(γm,k, λ)} (15b)

gm,k(γm,k, λ) = wmrl∗m,k
− λ

ηl∗m,k

γm,k
(15c)

It is important to note that (15c), despite the negative
term, is always non-negative, since both r0 and η0 are
equal to zero, and thus gm,k(γm,k, λ) ≥ 0.

C. Numerical Evaluation of the Expected Dual
Computing the expectation in (15a) in a straightfor-

ward manner involves an M−dimensional integral over
the joint pdf of the M−length fading vector γk, which
is typically too complex to solve using direct numerical

2Concavity for this discontinuous staircase function simply means
that the slopes when �connecting the dots� of the edges of the
staircase are non-increasing.



integration techniques (e.g. Gaussian quadrature) except
for small M , e.g. 2 or 3, since this requiresO(NM ) com-
putations where N is the number of function evaluations
required for a one-dimensional integral with the same
accuracy [7]. However, if we can somehow compute a
closed-form expression for the pdf of the per-subcarrier
dual function gk(γk, λ) (15b), then we can reduce the
expectation to just a one-dimensional integral that is
solvable in O(MN). Since γm,k for different ms are
INID, then (15c) is likewise INID for different ms.
Thus, (15b) is the largest order statistic of INID random
variables gm,k , which has the following closed-form pdf
[8, Sec. 5.2]

fgk
(gk) =

∏

m∈M
Fgm,k

(gk)

( ∑

m∈M

fgm,k
(gk)

Fgm,k
(gk)

)
(16)

where Fgm,k
(gm,k) and fgm,k

(gm,k) are the cdf and pdf
of gm,k, given as (see [9] for a derivation)

Fgm,k
(gm,k) = u(gm,k)Fγm,k

(s1) + (17)∑

l∈L\0

[
Fγm,k

(min (hl(gm,k), sl+1))− Fγm,k
(sl)

]+

fgm,k
(gm,k) = δ(gm,k)Fγm,k

(s1) + (18)
∑

l∈L\0
1 (hl(gm,k) ∈ S) fγm,k

(hl(gm,k))
h2

l (gm,k)
ληl

where [x]+ ≡ max(x, 0), hl(gm,k) =
ληl/[wmrl − gm,k]+, S ≡ [sl, sl+1) with
sl = λ(ηl − ηl−1)/ (wm(rl − rl−1)), and 1(x), u(x)
and δ(x) are the indicator, unit step, and Kronecker
delta functions, respectively. Fig. 1 shows an example
of the distribution functions for wm = 1, λ = 1, γ̄ = 20
dB, and discrete rate function given in Section IV. We
also superimposed empirical curves generated using
a Monte-Carlo generation for veri�cation, which are
indistinguishable from the analytical results. Finally,
using (17)-(18) in the maximal order statistic formula
(16), and then in (15a), the dual problem is then

g∗ = min
λ≥0

λP̄ +
∑

k∈K

∫ ∞

0
gkfgk

(gk)dgk (19)

D. Optimal Rate, Subcarrier, and Power Allocation
Using duality arguments (see e.g. [6, Prop. 5.1.2]),

the dual objective function in (19) can be shown to be
convex in the single variable λ.Unfortunately, it is not
continuously differentiable due to the presence of the
[x]+ function in (17). Hence, we resort to derivative-
free single-dimensional search methods that only need
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Fig. 1. Analytical (thick dashed lines) and empirical (thin solid
lines) CDF (17) and PDF (18) of (15c).

function evaluations, e.g. Golden-section search [7]. The
optimal subcarrier, rate, and power allocation is then
determined using λ∗ as

m∗
k = arg max

m∈M
wmrl∗m,k

− λ∗
ηl∗m,k

γm,k
(20)

R∗
m,k =

{
rl∗m,k

, m = m∗
k

0, m 6= m∗
k

(21)

p∗m,k =

{ ηl∗
m,k

γm,k
, m = m∗

k

0, m 6= m∗
k

(22)

where l∗m,k is given by (14) with λ = λ∗.

IV. NUMERICAL RESULTS

We consider an OFDMA system roughly based on a
3GPP-LTE downlink [1], with 128 subcarriers, 76 used
subcarriers, 1.25 MHz bandwidth, 1.92 MHz sampling
frequency, and a cyclic pre�x length of 6 samples.
We assume a Grey-coded square 2rl-QAM modulation
scheme, with rate set rl ∈ {0, 2, 4, 6} bits and SNR
thresholds ηl ∈ {−∞, 9.97, 16.96, 23.19} dB computed
using BER ≈ 0.2 exp

[−1.6pm,kγm,k

2rl−1

]
[10] with a BER

constraint of 10−3. Note that we assume that channel
coding is not present in this case for simplicity, but since
the framework merely needs the SNR thresholds and
rate values, our results also apply to the coded case.
We simulate the frequency-selective Rayleigh fading
channel using the ITU-Vehicular A channel model [1].
We generate 10000 IID channel realizations per data
point, where for each user's channel realization hm (2),
we generate a complex Gaussian random vector with Nt

independent entries, each with variance corresponding to
the power delay pro�le for the corresponding path.
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Fig. 2. 2-User Capacity Region for ergodic and instantaneous
discrete rate maximization.

In Figure 2, we compare the capacity region for
2 users in various SNRs of our ergodic discrete-rate
maximization algorithm with instantaneous maximiza-
tion [3][4] and constant power allocation. We see that
the gain of ergodic maximization is more pronounced
for low SNRs and more disparate user weights. This
observation is analogous to previous studies in adaptive
modulation, e.g. [10], which concluded that the exploita-
tion of the additional temporal dimension through the
ergodic formulation is most useful when other degrees
of freedom have been signi�cantly curtailed. Observe
also that a large loss is incurred by the constant power
allocation case. This is due to the big loss of freedom in
the rate allocation (limited to just 4 rates in contrast to an
in�nite number of rates in the continuous case), which
when coupled with constant power allocation results in
a huge loss in performance.

Table I shows the average number of function evalua-
tions N to numerically compute the integral in (15a) with
an error of 10−6, the number of iterations I to search
for the optimum λ in (19), and the relative optimality
gaps3 [6] [9] for the ergodic and instantaneous discrete
rate allocation algorithms. We see that the relative opti-
mality gaps are virtually zero, which allows us to claim
optimality of the algorithms for all practical purposes.

Table II shows the complexity order of the different
resource allocation algorithms. Only the ergodic rate
algorithms require initialization. If we use the average
numbers given in Table I, the ergodic rate algorithm is
less complex than the instantaneous rate algorithm per
symbol on average, as long as the rate of change of the

3This is a measure of how far we are from the optimal solution,
where a gap of 0 means we have attained the optimal solution.

TABLE I
RELEVANT METRICS FOR THE RESOURCE ALLOCATION

ALGORITHMS

Metric SNR Ergodic Inst.
No. of Fun. Eval. (N ) 5 dB 62.09 −

10 dB 91.55 −
15 dB 133.0 −

No. of Iterations (I) 5 dB 9.818 17.24
10 dB 10.55 17.20
15 dB 9.909 17.30

Relative Gap (×10−4) 5 dB .8711 3.602
10 dB .9507 1.038
15 dB .5322 .3996

TABLE II
COMPLEXITY FOR THE RESOURCE ALLOCATION ALGORITHMS.

Algorithm Initialization Runtime
Ergodic Rates O(INML) O(MK log(L))
Instantaneous Rates − O(IMK log(L))
Constant Power − O(MK log(L))

channel fading statistics (roughly at the rate of change of
slow fading, e.g. Log-normal shadowing) is much lower
than the rate of change of the actual channel realizations
(roughly at the rate of fast fading, e.g. Rayleigh fading),
such that the initialization is performed less often.
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