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Abstract

The sum capacity of a Gaussian broadcast MIMO channel can be achieved with dirty paper coding
(DPC). However, algorithms that approach the DPC sum capacity do not appear viable in the forseeable
future, which motivates lower complexity interference suppression techniques. Block diagonalization
(BD) is a linear precoding technique for downlink multiuser MIMO systems. With perfect channel
knowledge at the transmitter, BD can eliminate other users’ interference at each receiver. In this paper,
we study the sum capacity of BD with and without receive antenna selection. We analytically compare
BD without receive antenna selection to DPC for a set of given channels. It is shown that 1) if the
user channels are orthogonal to each other, then BD achieves the same sum capacity as DPC; 2) if the
user channels lie in the same subspace, then the gain of DPC over BD can be upper bounded by the
minimum of the number of transmit and receive antennas. These observations also hold for BD with
receive antenna selection. Further, we study the ergodic sum capacity of BD with and without receive
antenna selection in a Rayleigh fading channel. Simulations show that BD can achieve a significant part
of the total throughput of DPC. An upper bound on the ergodic sum capacity gain of DPC over BD
is proposed for easy estimation of the gap between the sum capacity of DPC and BD without receive
antenna selection.
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I. INTRODUCTION

Although the capacity results for point-to-point Multiple-input-multiple-output (MIMO) sys-

tems are well understood [1], [2], [3], only recently has the capacity region of the multiuser

MIMO Gaussian broadcast channels (BC) been discovered. It was conjectured that the MIMO

BC capacity region is achieved with dirty paper coding (DPC) [4] and subsequently proven in

[5]. The sum capacity, which is defined as the maximum aggregation of all users’ data rates,

can be obtained by iterative water-filling algorithms [6], [7].

Although the sum capacity of a Gaussian MIMO BC channel is achievable with DPC, a

practical coding scheme that approaches the DPC sum capacity is still unavailable. Several

nonlinear and linear algorithms have been proposed in [8], [9], [10]. These algorithms, however,

are typically too complicated for cost-effective implementations. An alternative linear precoding

technique for downlink multiuser MIMO systems, generally named Block Diagonalization (BD),

was proposed in [11], [12], [13], [14]. With BD, each user’s data is multiplied by a linear

precoding matrix before transmission. The precoding matrix for every user lies in the null space

of all other users’ channels. Thus, provided that prefect channel state information is available

at the base station, zero inter-user interference is achievable at every receiver, thereby enabling

a simple receiver structure to be used. Hence, BD is a potentially realizable precoding method

for a MIMO broadcast channel, although it is suboptimal for the sum capacity.

The sum capacity gain of DPC vs. TDMA for has been studied in [15], [16]. In this paper,

we focus on the sum capacity gain of DPC over BD. We define BD’s sum capacity to be the

maximum total throughput over all possible user sets. Hence the TDMA sum capacity, where

the transmitter only sends data to the user with the largest channel capacity, is a lower bound

on BD’s sum capacity. We also propose to jointly optimize the precoding and post-processing

matrices for sum capacity. While the optimal solution is difficult to obtain, we analyze the sum

capacity of BD with receive antenna selection as a special case of the joint optimization.

II. SYSTEM MODEL AND BACKGROUND ON BLOCK DIAGONALIZATION

Consider a downlink multiuser MIMO system with K users, where Nt denotes the number

of transmit antennas at base station and Nr,j (≤ Nt) denotes the number of receive antennas for
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the jth user. The transmitted symbol of user j is denoted as a Nj-dimensional vector xj , which

is multiplied by a Nt×Nj precoding matrix Tj . At receiver j, a Mj ×Nr,j (Mj ≤ Nr,j) matrix

Rj is applied to the received signals. Hence, the post-processed received signal yj for user j is

yj = Rj

(
HjTjxj +

K∑

k=1,k 6=j

HjTkxk + vj

)
= RjHjTjxj + Rj

K∑

k=1,k 6=j

HjTkxk + Rjvj (1)

where vj denotes the additive white Gaussian noise (AWGN) vector for user j with variance

E[vjv∗j ] = σ2I, and ()∗ denotes the matrix conjugate transpose. Matrix Hj ∈ CNr,j×Nt denotes

the channel transfer matrix from the base station to the jth user, with each entry following an

i.i.d. complex Gaussian distribution CN (0, 1), which ensures rank (Hj) = min (Nr,j, Nt) for all

j with probability one. We further assume that the channels Hj experienced by different users

are statistically independent due to users’ different locations.

The key idea of BD is to design Tj ∈ U(Nt, Nj) and RT
j ∈ U(Nr,j,Mj), such that

RiHiTj = 0 for all i 6= j and 1 ≤ i, j ≤ K, (2)

where ()T denotes the matrix transpose and U(n, k) represents the set of n×k (n ≥ k) matrices

with orthonormal columns. Thus, the post-processed received signal for user j is reduced to

yj = RjHjTjxj + Rj

K∑

k=1,k 6=j

HjTkxk + Rjvj = RjHjTjxj + Rjvj. (3)

For a fixed set of {Rj}K
j=1, let H̃j = [(R1H1)

T · · · (Rj−1Hj−1)
T (Rj+1Hj+1)

T · · · (RKHK)T ]T .

To satisfy the constraint in (2), Tj shall be in the null space of H̃j .

In the rest of the paper, we assume Nr,k = Nr for k = 1, 2, · · · , K. The results in this paper

can be easily extended to the general case.

III. SUM CAPACITY OF BLOCK DIAGONALIZATION WITH RECEIVER ANTENNA SELECTION

Notice that the precoding matrices {Tj}K
j=1 can be determined based on {Hj}K

j=1 and {Rj}K
j=1,

i.e. Tj can be any set of basis in the null space of H̃j . Ideally, the sum capacity can be obtained

by jointly optimizing {Rj}K
j=1 and the users’ transmit signal covariance matrices {Qj}K

j=1 in the

following problem

max
Mj ,Rj ,Qj

K∑
j=1

log

∣∣∣∣I +
1

σ2
RjHjTjQjT∗jH∗

jR∗
j

∣∣∣∣ (4)
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subject to RT
j ∈ U(Nr,Mj) for all j

RiHiTj = 0 for all i 6= j

0 ≤ Mj ≤ Nr for all j
K∑

j=1

Tr(Qj) ≤ P

Qj ≥ 0 for all j

where RjHjTj denotes the effective channel for user j, Qj = E[xjx∗j ] is user j’s input covariance

matrix of size Nj×Nj , and P denotes the total transmit power available at the base station. The

optimization over Qj ensures the best signal covariance for user j. The maximization over Rj ,

as well as its dimension Mj , ensures that the total throughput is maximized. If Mj < Nr,j , the

post-processing matrix Rj reduces the dimensionality of the received signal for user j, therefore

decreasing its own throughput. However, this in turn makes it easier for other users to satisfy

the zero inter-user interference constraint and achieve higher capacity. If Mj = Nr,j , then the

zero-forcing constraint in (2) is equivalent to HjTj = 0. Thus, the post-processing does not

affect transmission if it is square. Further, notice that Mj = 0 for unscheduled users.

Given fixed Rj,∀j = 1, . . . , K, the optimization problem in (4) reduces to a standard waterfill-

ing problem over the eigenvalues of the equivalent channels. The general optimization problem

in (4), however, is difficult to solve, especially the maximization over {Rj}K
j=1. The difficulty

primarily comes from the zero inter-user interference requirement. In [14], an iterative algorithm

was proposed to optimize {Rj}K
j=1 and {Tj}K

j=1 so that the aggregate effective channel energy

is maximized. The sum capacity, however, is not directly optimized in [14]. In this paper, we

consider a set of special Mj ×Nr matrices Rj (for j = 1, 2, · · · , K) that are formed by taking

Mj rows from INr [17]. For example, if Mj = 2 and Nr = 3, Rj must be in the following set:

R(2,3) =






 1 0 0

0 1 0


 ,


 1 0 0

0 0 1


 ,


 0 1 0

0 0 1






 (5)

where R(m,n) denotes the set of matrices formed by taking m rows from In. These special Rj

matrices correspond to receiver antenna selection for user j, where a subset of receive antennas

are used. The motivation of studying this special Rj are:

1) Since the matrices {Rj}K
j=1 and {Tj}K

j=1 are designed at the base station, the post-processing

matrices {Rj}K
j=1 need to be conveyed to the users, which is a system overhead that should
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be kept low. To successfully convey the post-processing matrices to the users, much less

overhead (in the number of bits) is required for this specially formed Rj than a general

Mj ×Nr matrix. For example, log2

(
Nr∑

Mj=0

|R(Mj ,Nr)|
)

= Nr bits are sufficient to convey

Rj to user j, where |R(Mj ,Nr)| denotes the cardinality of set R(Mj ,Nr).

2) With this special Rj , user j can select Mj receive antennas to use. Hence, user selection

and receive antenna selection can be combined to optimize the total throughput of all

users. If Rj = INr for those users scheduled for transmission and Rj = ∅ (i.e. Mj = 0)

for those unscheduled users, then the generalized block diagonalization [14] reduces to the

BD algorithm without post-processing presented in [11], [12].

3) With the additional constraint that Rj ∈ R(Mj ,Nr) for j = 1, 2, · · · , K, the optimization

problem in (4) is solvable by exhaustively searching over all possible sets of {Rj}K
j=1.

For each set of {Rj}K
j=1, the corresponding {Tj}K

j=1 can be found according to the SVD

outlined in Section II. Further, with zero inter-user interference brought by BD, the optimal

{Qj}K
j=1 can be easily obtained by the water-filling algorithm with an overall transmit

power constraint [11].

IV. BD VS. DPC: SUM CAPACITY FOR A GIVEN SET OF CHANNELS

In this section, we compare the sum capacity achieved by BD without receive antenna selection

with the sum capacity achieved by DPC. Since BD without receive antenna selection is a special

case of BD with receive antenna selection, i.e. Rj = INr for j = 1, 2, · · · , K, the results in this

section also hold for BD with receive antenna selection.

For a multiuser MIMO system, let K = {1, 2, · · · , K} denote the set of user indices. Assume

all user sets are ordered and let Ai ∈ K be the ith set. Let Hj = HjTj denote the effective

channel after precoding for user j ∈ Ai, then the total throughput achieved with BD applied to

the user set Ai with total power P can be expressed as

CBD|Ai
(HAi

, P, σ2) = max
{Qj : Qj≥0,

P
j∈Ai

Tr(Qj)≤P}

∑
j∈Ai

log

∣∣∣∣I +
1

σ2
HjQjH

∗
j

∣∣∣∣ (6)

where Qj = E[xjx∗j ] is user j’s input covariance matrix of size Nj × Nj . Let A be the set

August 7, 2006 DRAFT



6 ACCEPTED TO IEEE TRANS. ON WIRELESS COMMUNICATIONS

containing all possible user sets, i.e. A = {A1,A2, · · · }. The sum capacity of BD is defined as

CBD(H1,··· ,K , P, σ2) = max
Ai∈A

CBD|Ai
(HAi

, P, σ2). (7)

The sum capacity of a multiuser Gaussian broadcast channel is achieved with DPC [18],

CDPC(H1,··· ,K , P, σ2) = max
{Sj : Sj≥0,

KP
j=1

Tr(Sj)≤P}
log

∣∣∣∣∣I +
1

σ2

K∑
j=1

H∗
jSjHj

∣∣∣∣∣ (8)

where Sj of size Nr ×Nr is the signal covariance matrix for user j in the dual multiple access

channel [18]. In this section, we are interested in the gain of DPC over BD in terms of sum

capacity. Analogous to [15], we define the ratio of DPC to BD as

G(H1,··· ,K , P, σ2) , CDPC(H1,··· ,K , P, σ2)

CBD(H1,··· ,K , P, σ2)
. (9)

The gain is dependent on channel realizations {Hk}K
k=1, total power, and noise variance. In the

next theorem, we give a bound on G(H1,··· ,K , P, σ2) that is valid for any {Hk}K
k=1, P , and σ2,

based on Theorem 3 in [15].

Theorem 1: The sum capacity gain of DPC over BD is lower bounded by 1 and upper bounded

by the minimum of Nt and K, i.e.

1 ≤ G(H1,··· ,K , P, σ2) ≤ min{Nt, K} (10)

Proof: Theorem 3 in [15] states that CDPC(H1,··· ,K ,P,σ2)

CTDMA(H1,··· ,K ,P,σ2)
≤ min{Nt, K} where

CTDMA(H1,··· ,K , P, σ2) = max
k∈K

max
{Qk: Qk≥0,Tr(Qk)≤P}

log

∣∣∣∣I +
1

σ2
HkQkH∗

k

∣∣∣∣ . (11)

According to the definition, BD is superior to TDMA in terms of sum capacity. Also, it is

obvious that BD is inferior to the optimum DPC. Thus, Theorem 1 is immediately obtained. 2

Although the bound in Theorem 1 holds for any Nt, Nr, K, {Hi}K
i=1, P , and σ2, it is generally

a loose bound. If Nr ≤ Nt, K ≤ bNt

Nr
c, and {Hk}K

k=1 are mutually orthogonal, i.e. HiH∗
j = 0

for i 6= j, then CDPC(H1,··· ,K , P, σ2) = CBD(H1,··· ,K , P, σ2). Further, if Nr ≤ Nt and the row

vector spaces of all user channels are the same, i.e. span(H1) = span(H2) = · · · = span(HK),

then G(H1,··· ,K , P, σ2) ≤ min{Nr, K}, which is the same as TDMA. For the general case where

the user channels partially overlap, BD may be superior to TDMA since multiple users may be

supported simultaneously.
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V. BD VS. DPC: ERGODIC SUM CAPACITY IN RAYLEIGH FADING CHANNELS

In this section, we derive a bound on the gain of DPC’s ergodic capacity over BD in Rayleigh

fading channels. Let Hj = HjTj be the Nr ×Nj equivalent channel for user j after precoding.

With the assumption that Hj for j = 1, 2, · · · , K are mutually independent and the elements in

Hj are i.i.d. complex Gaussian, the effective channel Hj still follows an i.i.d. complex Gaussian

distribution [12]. Hence the ergodic capacity of user j can be evaluated with the eigenvalue

distribution of HjH
∗
j [1], [19], [20].

We first derive a lower bound on the ergodic sum capacity with BD. Let Ai = {1, 2, · · · , i}
be the set of the first i users, for i = 1, 2, · · · , I where I = min

{
K,

⌊
Nt

Nr

⌋}
. For i ≤

min
{

K,
⌊

Nt

Nr

⌋}
, when the elements in {H}K

k=1 follow i.i.d. complex Gaussian distribution, we

have the following lower bound on the ergodic sum capacity of BD

E
[
CBD(HAi

, P, σ2)
] (a)

≥ E


 max
{Qj : Qj≥0,

P
j∈Ai

Tr(Qj)≤P}

i∑
j=1

log

∣∣∣∣∣I +
HjQjH

∗
j

σ2

∣∣∣∣∣


 (12)

=
i∑

j=1

E

[
Nr∑
n=1

log

∣∣∣∣1 +
Pj,n

σ2
λ

2

j,n

∣∣∣∣
]

(13)

(b)

≥
i∑

j=1

E

[
Nr∑
n=1

log

∣∣∣∣1 +
P

iNrσ2
λ

2

j,n

∣∣∣∣
]

(c)
= i NrE

[
log

∣∣∣∣1 +
P

iNrσ2
λ

2

i,1

∣∣∣∣
]

, CBD(HAi
, P, σ2) (14)

where λ
2

j,n are nth unordered eigenvalues of HjH
∗
j and Hj is of size Nr × (Nt − (i− 1)Nr).

Inequality (a) holds because the RHS of (12) assumes all i users are simultaneously transmitting

for all channel realizations. Inequality (b) holds because the RHS of (14) assumes equal power is

allocated to every non-zero eigenmode. Equality (c) holds because λj,n has the same probability

density function for j = 1, 2, · · · , i and n = 1, 2, · · · , Nr, which is given in [1]. Thus, we can

lower bound the ergodic sum capacity with BD by

E
[
CBD(H1,··· ,K , P, σ2)

] ≥ max
i∈{1,2,··· ,I}

CBD(HAi
, P, σ2). (15)

Second, we upper bound the Ergodic Sum Capacity of DPC. The sum capacity of a K-user

broadcast channel with DPC is upper bounded if the receivers are allowed to cooperate [18].
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Let H = [H∗
1 H∗

2 · · · H∗
K ]∗, N = max{Nt, KNr} and M = min{Nt, KNr}, then

E
[
CDPC(H1,··· ,K , P, σ2)

] ≤ E

[
max

{Q: Q≥0,Tr(Q)≤P}
log

∣∣∣∣I +
1

σ2
HQH∗

∣∣∣∣
]

=
M∑

m=1

E

[
log

(
1 +

Pm

σ2
λ2

m

)]
≤ M

∞∫

σ2/Γ0

log

(
Γ0α1

σ2

)
pN,M(α1)dα1 , Ccoop(H1,··· ,K , P, σ2)

(16)

where Q = E (xx∗) and x is the sum transmitted signal from the base station antenna array,

λ2
m is mth unordered eigenvalue of H∗H and α1 , λ2

1; pN,M(α1) is the distribution for α1,

which can be found in [1]. The parameter Γ0 is optimized so that the ergodic sum capacity is

maximized with the average power constraint, i.e. M
∫∞

σ2/Γ0

(
Γ0 − σ2

α

)
pN,M(α)dα = P . Details

on the inequality (16) can be found in [21].

With the above two bounds, we can directly upper bound the ergodic sum capacity gain of

DPC over BD as

E [CDPC(H1,··· ,K , P, σ2)]

E [CBD(H1,··· ,K , P, σ2)]
≤ Ccoop(H1,··· ,K , P, σ2)

max
i∈{1,2,··· ,I}

CBD(HAi
, P, σ2)

. (17)

VI. NUMERICAL RESULTS

In this section, we compare the sum capacity achieved by 1) DPC implemented with the

iterative water-filling algorithm [7], 2) BD with receive antenna selection (BD w RxAS), and 3)

BD without receive antenna selection (BD w/o RxAS). Monte Carlo simulations show that in

Rayleigh fading channels, BD achieves a significant part of the ergodic sum capacity of DPC.

And the bound in (17) is tight for medium to high SNRs or when K ≤ bNt

Nr
c.

Fig. 1 shows the ergodic sum capacity of DPC vs. BD under different SNRs, with Nt = 10,

Nr = 2, and K = 5. In the low SNR regime, BD achieves almost the same sum capacity as

DPC. As SNR goes to infinity, the sum capacity of both DPC and BD increase with the same

slope. Essentially, the ratio of the sum capacity of BD and DPC equals one in asymptotically

low and high SNR regimes [15]. Fig. 2 shows the gain of DPC over BD from the curves in Fig.

1, as well as the bound on the gain evaluated from (17). As the SNR increases, the bound in

(17) gets tighter. For low SNR, the bound in (17) is loose mainly because 1) the lower bound
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on BD assumes an equal power allocation to all non-zero eigenvalues; 2) the cooperative upper

bound on DPC is also loose in low SNR. The bound in the low SNR regime is, however, less

interesting because it has been proven in [15] that the sum capacity of BD equal that of DPC

for asymptotically low SNRs.

Fig. 3 shows the ergodic sum capacity of DPC vs. BD for different Nt, with Nr = 2 and

K = 3. As the number of transmit antenna increases, the sum capacity of BD gets closer to the

sum capacity of DPC. Fig. 4 shows the gain of DPC over BD from the curves in Fig. 3, with

SNR = 20 dB. It is observed that the bound from (17) is fairly tight for Nt > KNr, which

corresponds to a practical under-loaded system.

Fig. 5 shows the ergodic sum capacity of DPC vs. BD for different numbers of users, with

Nt = 10 and Nr = 2. For small numbers of users, BD achieves almost the same sum capacity

as DPC. As the number of users increases, DPC exhibits higher performance than BD. Fig. 6

shows the gain of DPC over BD from the curves in Fig. 5, with SNR = 20 dB. For small

numbers of users, the bound from (17) is very tight. For larger numbers of users, the bound

from (17) loosens, which is due to the fact that the lower bound on the sum capacity of BD in

(15) does not take multiuser diversity into consideration.

VII. CONCLUSIONS

In this paper, we compare the sum capacity of BD with and without receive antenna selection

to that of DPC. For a given set of channel realizations, the sum capacity gain of DPC over BD

can be generally bounded by min{Nt, K}, where Nt and K are the number of transmit antennas

and the number of users, respectively. The ergodic sum capacity gain of DPC over BD is also

studied in a Rayleigh fading channel. Simulations show that BD can achieve a significant part

of the total throughput of DPC. An upper bound on the ergodic sum capacity gain of DPC over

BD is proposed. The bound is very tight for medium to high SNRs or when K ≤ bNt

Nr
c, which

is useful in estimating how far away BD is from being optimal in terms of ergodic sum capacity.
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Fig. 1. Ergodic sum capacity of DPC vs. BD in Rayleigh fading channels. Nt = 10, Nr = 2, K = 5.
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Fig. 2. Ergodic sum capacity gain of DPC over BD in Rayleigh fading channels. Nt = 10, Nr = 2, K = 5.
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Fig. 3. Ergodic sum capacity of DPC vs. BD in Rayleigh fading channels. Nr = 2, K = 3.
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Fig. 5. Ergodic sum capacity of DPC vs. BD in Rayleigh fading channels. Nt = 10, Nr = 2.
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Fig. 6. Ergodic sum capacity gain of DPC over BD in Rayleigh fading channels. Nt = 10, Nr = 2, SNR = 20 dB.
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