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1 Abstract—Optimizing OFDMA resource allocation
with respect to communication performance requires solv-
ing a nonlinear mixed-integer programming problem. As
a result, many researchers have fallen back on suboptimal
heuristic algorithms. In a recent paper, we demonstrate
that ergodic rate maximization is possible using a dual
optimization framework that results in a practically opti-
mal solution with complexity that is on the order of the
number of subcarriers times the number of users. One of
the primary disadvantages of considering ergodic rates is
the assumption that the channel distribution information
(CDI) is perfectly known at the transmitter. Therefore, this
paper proposes an adaptive algorithm based on stochastic
approximation methods that do not require knowledge of
the CDI. This algorithm converges to the optimal solution
with probability one, while for each OFDMA symbol, the
complexity is on the order of the number of subcarriers
times the number of users. There are no iterations in
a given OFDMA symbol time; instead, the ”iterations”
are actually performed across time (symbols). Simulation
results based roughly on a third-generation partnership
project, long-term evolution (3GPP-LTE) OFDMA system
corroborate our claims.

I. INTRODUCTION

The instantaneous sum-rate maximization with pro-
portional rate constraints have been studied previously in
[1] [2]. The main emphasis of these papers, in terms of
formulation, was on an instantaneous rate maximization
with instantaneous proportional rate constraints. Further-
more, the solution methods proposed were suboptimal
heuristics with complexity of O(MK log(K)) or higher.

In this paper, we use a dual optimization framework
to solve the ergodic sum-rate maximization with pro-
portional ergodic rate constraints. We show that the
proportional rate constraints can actually be imposed
by a weighted-sum rate dual, with the weights being
the dual optimal geometric multipliers themselves that
enforce the proportional rate constraints. We compared
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the performance of our algorithm with the previous
algorithm that gives the best performance [2], and show
that exploiting the temporal dimension using the ergodic
formulation provides huge rate gains versus the previous
state-of-the-art.

One main disadvantage of considering ergodic rates
is the assumption that the channel distribution infor-
mation (CDI) is perfectly known at the transmitter, and
thus the expected values of the rates can be computed.
Although methods to estimate the distribution function
are available [3], they are typically more suitable for
off-line processing rather than the online algorithms that
are needed in practical wireless system implementations.
Therefore, we also propose an adaptive algorithm based
on stochastic approximation methods [4] [5] that do
not require knowledge of the CDI, and is shown to
converge to the optimal solution w.p.1, while requiring
only O(MK) complexity per-symbol without iterations,
since the iterations are actually done across time.

.

II. PROPORTIONAL RATE MAXIMIZATION

The ergodic rate maximization problem with propor-
tional ergodic rate constraints can be formulated as

max
p(γ)∈P

Eγ

{ ∑

m∈M

∑

k∈K
Rm,k(pm,kγm,k)

}

s.t. Eγ

{ ∑

m∈M

∑

k∈K
pm,k

}
≤ P̄

Eγ

{∑

k∈K
Rm,k(pm,kγm,k)

}
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φmEγ

{ ∑

m∈M

∑
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Rm,k(pm,kγm,k)

}
, ∀m ∈M

(1)

where the φm terms are the proportionality constants for
each user m such that

∑
m

φm = 1. The constants φm



can be interpreted as the portion of the total ergodic sum
rate that should be allocated to each user m. We denote
by φ = [φ1, . . . , φM ]T the vector of proportionality
constants. By introducing a dummy optimization variable
R ≥ 0 that represents the ergodic sum rate, we can
rewrite the problem as

max
R∈R+,p(γ)∈P

R

s.t. Eγ

{ ∑

m∈M

∑

k∈K
pm,k

}
≤ P̄

Eγ

{∑

k∈K
Rm,k(pm,kγm,k)

}
≥ φmR

(2)

A similar reformulation as in (2) that uses a dummy
variable is proposed in [6] to solve for the max-min rate,
and in [7] for instantaneous proportional rates.

The Lagrangian of (2) is given by

L(R, p(γ), λ, µ) = R + λ

(
P̄ − Eγ

{∑

k∈K

∑

m∈M
pm,k

})

+
∑

m∈M
µm

(
Eγ
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Rm,k(pm,kγm,k)

}
− φmR

)

(3)

where µ = [µ1, . . . , µM ]T is the vector of geometric
multipliers that are used to enforce the proportionality
constraints. The dual objective can then be written as

Θ(λ,µ) = max
R∈R+,p(γ)∈P

L(R, p(γ), λ, µ)

= λP̄ + max
R∈R+,p(γ)∈P

[
R

(
1− µT φ

)

− λEγ
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k∈K

∑

m∈M
pm,k

}

+
∑

m∈M
µmEγ

{∑

k∈K
Rm,k(pm,kγm,k)

}]

(4)

Focusing on the first term in the maximization
R

(
1− µT φ

)
, we observe that if 1 − µT φ > 0, then

the optimal solution would be R∗ = ∞, since R is a
free variable. This is clearly an infeasible solution for
the ergodic sum rate. Furthermore, if 1 − µT φ < 0,
then the optimal solution would be R∗ = 0. In this
case, the ergodic sum rate is zero and is uninteresting
from an optimization point of view. Thus, we would
like to constrain the multipliers to satisfy µT φ = 1,
which allows us to remove the dummy variable from

consideration since R
(
1− µT φ

)
= 0. Thus, (4) can be

simplified to

Θ(λ,µ) = λP̄+

KEγk

{
max
m∈M

(µmRm,k(p̃m,kγm,k)− λp̃m,k)
}

(5)

where p̃m,k = [µm/(λ ln 2)− 1/γm,k]
+. The dual prob-

lem can then be written as

g∗ = min
λ≥0,µ∈U

Θ(λ,µ) (6)

where U =
{
µ ≥ 0

∣∣µT φ = 1
}

. A possible method to
find the solution to (6) is to use subgradient search [8,
Ch. 6.3.1], which is a generalization of gradient-based
search methods to possibly non-differentiable functions.
From an initial guess λ0, the subgradient method gener-
ates a sequence of dual feasible points according to the
iteration

λi+1 =
[
λi − sigi

λ

]+
(7)

where gi
λ denotes the subgradient of Θ(λ∗(µi), µi) with

respect to λ, and si is a positive scalar step-size. A
similar subgradient method can be used to search for
the optimal µ∗ that enforces the proportional rate con-
straints, given by the iterations

µi+1 = ΠU
[
µi − sigi

µ

]
(8)

where gi
µ denotes the subgradient of Θ(λ∗(µi), µi) with

respect to µ, and ΠU [·] denotes projection onto the set
U .

The subgradient method is particularly attractive for
solving the dual problem, since the inequality constraint
evaluated at the optimal power vector for a given λ and
µ is itself the subgradient [8], i.e.

gi
λ = P̄ − P̂ i

tot (9)

where

P̂ i
tot = Eγ

{ ∑

m∈M

∑

k∈K
p∗m,k(λ

i, µi
m)

}
(10)

is the average power given λi,µi; and

gi
µ = R̄i − φR̄i (11)

where R̄i =
[
R̄i

1, . . . , R̄
i
M

]
with

R̄i
m = Eγ

{∑

k∈K
Rm,k(p∗m,k(λ

i, µi
m)γm,k)

}
(12)



as the vector of ergodic rates per user for a given µi,
and

R̄i =
∑

m∈M
R̄i

m (13)

is the ergodic sum rate. The optimal power given the
current λi and µi, p∗m,k(λ

i, µi
m), is similarly derived as

in [9, Eq. 10] with wm replaced by µi
m. The projection

operation can be simply performed by clipping and
rescaling the new iterate such that it is non-negative and
that it satisfies µT

i φ = 1. Hence, we can write (8) as

µi+1 =

[
µi − sigi

]+

φT [µi − sigi]+
(14)

where [x]+ implements max (xi, 0) for each element in
the vector argument x. The convergence properties of
(14) for different step-size selection rules have already
been studied previously (see e.g. [8, Ch. 6.3.1]). In our
numerical experiments, we use the simple diminishing
step-size rule

si =
β

i + α
(15)

where α and β are suitably chosen positive constants,

which satisfies si → 0 (for convergence) and
∞∑
i=0

si = ∞
(for allowing us to go “anywhere”).

We can interpret the multiplier vector µi as a vector
of priorities for the users, wherein we try to increase the
priority of a user while it is still unable to get its allocated
“portion of the pie” φmRi. Upon convergence, we arrive
at the optimal µ∗ which is the vector of appropriate
weights for each user such that the proportionality con-
straints are met, and its corresponding λ∗ that enforces
the average power constraint.

III. ADAPTIVE ALGORITHMS FOR OFDMA RATE

MAXIMIZATION

In the previous section, we assumed the availability
of the channel distribution information (CDI) at the
transmitter. Although there are methods that allow us
to estimate this (e.g. goodness-of-fit tests followed by
maximum likelihood parameter estimation [3]), they are
typically quite computationally intensive, and are more
suitable for offline processing. In our scenario, it is
important to be able to perform the resource allocation in
real-time, hence online adaptive algorithms are more de-
sirable. In this section, we outline a framework based on
stochastic approximation to perform adaptive OFDMA
resource allocation that allows us to do without the CDI.
Note that stochastic approximation methods have been
studied in the context of wireless network scheduling

for TDMA in [10], and for weighted-sum continuous
rate maximization for a downlink OFDMA system [11].

A. Stochastic Approximation Solution to the Dual Prob-
lem

The fundamental stochastic approximation iteration
we employ is based on the subgradient iterations given
in (7) and (8), but performed across time, i.e.

λ[n + 1] = [λ[n]− βngλ[n]]+ε (16)

µ[n + 1] = ΠU [µ[n]− βngµ[n]] (17)

where [x]+ε = max(x, ε) for a small constant 0 < ε ¿ 1
and is used in (16) as a modified projection operator to
prevent λ from going to zero (which results in infinite
power), and βn is a real-valued step-size chosen to satisfy

∞∑

n=0

βn = ∞, βn ≥ 0, βn → 0 (18)

Furthermore, we employ an auxiliary filter to perform
subgradient averaging

gλ[n + 1] = (1− αn)gλ[n] + αnĝλ[n]

= gλ[n] + αn(ĝλ[n]− gλ[n])
(19)

gµ[n + 1] = (1− αn)gµ[n] + αnĝµ[n]

= gµ[n] + αn(ĝµ[n]− gµ[n])
(20)

with αn as a non-negative step-size chosen to satisfy

αn ≥ 0,
βn

αn
→ 0,

∞∑

n=0

(β2
n + α2

n) < ∞ (21)

and where ĝλ[n] and ĝµ[n] are approximations to the
subgradient given the current CNR realization γ[n] and
the current estimates for the multipliers λ[n] and µ[n].
This method that employs averaging of the search direc-
tions are called averaged, aggregated, or mixed stochastic
gradient or quasigradient methods [12]. Note that the
conditions on step sizes αn and βn are to ensure w.p.1
convergence (see [13] for proof). A possible choice is
given by

βn =
b1

b2 + n
(22)

αn =
a1

a2 + n0.4
(23)

with real constants a1 > 0, a2 ≥ 0, b1 > 0, and b2 ≥ 0.
Although the diminishing step-size ratio requirement al-
lows a simple convergence proof, it causes a degradation
of the local rate of convergence. Fortunately, the use of
small constant step-sizes to improve tracking capability



was also recently shown to converge w.p.1 [4], and this
is what we use for the simulations in section IV.

A suitable approximation to the subgradient would
be to replace the expectations with the instantaneous
(sample) subgradient, which can be computed via a
single iteration of the “multi-level waterfilling” with
“max-dual user selection” [9] procedure. We repeat this
operation here for convenience:

p̃m,k[n] =
[

µm[n]
λ[n] ln 2

− 1
γm,k[n]

]+

(24)

m∗
k[n] = arg max

m∈M
{µm[n]Rm,k (p̃m,k[n]γm,k[n])

−λ[n]p̃m,k[n]}
(25)

p∗m,k[n] =
{

p̃m,k[n], m = m∗
k[n]

0, otherwise (26)

where we use γm,k[n] to denote the channel gain for
user m and subcarrier k at time n. Observe that in the
process of our stochastic subgradient iterations, we also
generate the resource allocation procedure for time n
given by (24)-(26).

The per-user instantaneous rate is then given as

Rm[n] =
∑

k∈K
Rm,k

(
p∗m,k[n]γm,k[n]

)
(27)

with instantaneous total power

P [n] =
∑

m∈M

∑

k∈K
p∗m,k[n] (28)

The subgradient approximations are then given as

ĝλ[n] = P̄ − P [n] (29)

ĝµ[n] = R[n]− φR[n] (30)

where R[n] = [R1[n], . . . , RM [n]]T and R[n] =∑
m∈M

Rm[n]. Using (29)-(30) in the subgradient averag-

ing operations (19)-(20) completes our algorithm. Fig. 1
shows the block diagram for the proposed algorithm.

The complexity of this algorithm is significantly lower
than our previously proposed algorithms assuming per-
fect CDI [9], since all that is needed is the multi-level
waterfilling and max-dual user selection with O(MK),
followed by O(M) updates for the rates, power, and
multipliers. Hence, we do away completely with the ini-
tialization complexity, and have allowed our “iterations”
to be performed over time and on the fly. .

Fig. 1. Block diagram for adaptive OFDMA resource allocation
for ergodic sum-rate maximization with ergodic proportional rate
constraints.
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Fig. 2. Two-user capacity region for ergodic sum-rate maximization
with proportional rate constraints.

IV. RESULTS AND DISCUSSION

We consider an OFDMA system roughly based on a
3GPP-LTE downlink [14], with 128 subcarriers, 76 used
subcarriers, 1.25 MHz bandwidth, 1.92 MHz sampling
frequency, and a cyclic prefix length of 6 samples. We
simulate the frequency-selective Rayleigh fading channel
using the ITU-Vehicular A channel model. We generate
10000 IID channel realizations per data point, where
for each user’s channel realization hm, we generate a
complex Gaussian random vector with Nt independent
entries, each with variance corresponding to the power
delay profile for the corresponding path. Fig. 2 shows the
M = 2 user capacity region with φ1 = 0.1 to φ1 = 0.9
in 0.1 increments and φ2 = 1− φ1 for the following:

1) Analytical: Numerical evaluation of the per-user
ergodic rate integral (12)
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Fig. 3. Evolution across iterations of the exponentially averaged
user rates and power, and their corresponding geometric multipliers.
Theoretical values solved using a perfect CDI assumption is shown
in dotted lines.

2) Empirical: Sample average of the per-user rates by
using the pre-computed λ∗ and µ∗

3) Adaptive: Sample average of the per-user rates of
the algorithm in Sec. III-A with constant step-size
αn = βn = 0.005

4) Wong04: Sample average of the per-user rates
using the current state-of-the-art algorithm for pro-
portional rate OFDMA resource allocation [2]

Observe that in contrast to the weighted-sum rate ca-
pacity regions [9, Fig. 3], the rate points for all the
methods are neatly spaced along the boundary of the rate
region since we constrain R̄1/R̄2 = φ1/φ2, confirming
that the algorithms indeed enforce the proportional rate
constraints. We also observe that methods 1-3 give
essentially identical results, confirming our analysis in
the previous sections. On the other hand, using a per-
symbol algorithm [2], which is more complex than
our algorithms, has significantly poorer performance,
because it is suboptimal to start with, and that it is unable
to exploit the temporal dimension.

Fig. 3 shows the evolution of the exponentially aver-
aged user rates R̄m[n] = (1− βn)R̄m[n− 1] + βnRm[n]
and average power P̄ [n] = (1− βn)P̄ [n− 1] + βnP [n],
together with the multipliers λ[n] and µ[n] with initial-
izations λ[0] = P̄ , gλ[0] = 0, µ[0] = φ/(φT φ), and
gµ[0] = 0 for an SNR of 15 dB and for proportionality
constants φ = [0.1, 0.9]T (the results are similar for other
φ values). We can see that the iterates converge to their
offline-equivalent optimal values, which are shown by
the dotted lines.

V. CONCLUSION

In this paper, we derived the optimal algorithm for
OFDMA resource allocation for ergodic sum-rate max-
imization subject to ergodic rate proportionality con-
straints. It is shown that the proportional rates can
be enforced by a weighted-sum rate formulation using
optimally chosen weights, which are themselves the
dual-optimal geometric multipliers. We developed an
adaptive algorithm that updates the geometric multipliers
over time using a subgradient search and stochastic
subgradient averaging. It is based on general stochastic
approximation principles, which can be shown to con-
verge to the optimal solution w.p.1 [13].
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