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Optimal Downlink OFDMA Resource Allocation
With Linear Complexity to Maximize Ergodic Rates

Ian C. Wong, Student Member, IEEE, and Brian L. Evans, Senior Member, IEEE

Abstract—OFDMA resource allocation assigns subcarriers and
power, and possibly data rates, to each user. Previous research
efforts to optimize OFDMA resource allocation with respect to
communication performance have focused on formulations con-
sidering only instantaneous per-symbol rate maximization, and
on solutions using suboptimal heuristic algorithms. This paper
intends to fill gaps in the literature through two key contributions.
First, we formulate continuous and discrete ergodic weighted
sum rate maximization in OFDMA assuming the availability
of perfect channel state information (CSI). Our formulations
exploit time, frequency, and multi-user diversity, while enforcing
various notions of fairness through weighting factors for each
user. Second, we derive algorithms based on a dual optimization
framework that solve the OFDMA ergodic rate maximization
problem with O(MK) complexity per OFDMA symbol for M
users and K subcarriers, while achieving data rates shown
to be at least 99.9999% of the optimal rate in simulations
based on realistic parameters. Hence, this paper attempts to
demonstrate that OFDMA resource allocation problems are
not computationally prohibitive to solve optimally, even when
considering ergodic rates.

Index Terms—Broadband communication, information rates,
multiaccess communication, orthogonal frequency division mul-
tiple access (OFDMA), radio spectrum management.

I. INTRODUCTION

EXT-generation broadband wireless system standards,
Ne.g. IEEE 802.16¢ [1] and 3GPP-Long Term Evolution
(LTE) [2], consider Orthogonal Frequency Division Multiple
Access (OFDMA) as the preferred physical layer multiple ac-
cess scheme, esp. for the downlink. OFDMA allows multiple
users to transmit simultaneously on the different subcarriers
per OFDM symbol. In most scenarios, the channel response
for each user can be considered to be statistically independent,
esp. when there is considerable spatial separation among
the users. Thus, we could potentially exploit this multiuser
diversity through intelligent allocation of the subcarriers and
power to each user, and increase the overall performance of
the system.

The problem of assigning the subcarriers, bits, and powers
to the different users in an OFDMA system has been an
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area of active research. In [3] and [4], the margin-adaptive
resource allocation problem was investigated, whose objective
is to minimize the total transmit power given a set of fixed
user data rates and bit error rate (BER) requirements. This
formulation is useful primarily for applications which require
a fixed data rate, e.g. standard voice. Most of the subsequent
research have been on the rate-adaptive problem, whose
objective is to maximize the data rates subject to power
and/or BER constraints. This formulation is more relevant for
next-generation data-centric wireless networks. In [5], it was
shown that in order to maximize the ergodic sum capacity,
each subcarrier should be allocated to the user with the best
channel gain on it, and the power should be allocated using the
water-filling algorithm across time and frequency. However, no
fairness among the users was considered. Thus, the users that
have the best channel conditions will be assigned almost all
the resources, which leaves many users without a chance to
use the spectrum at all. Furthermore, [5] did not propose any
efficient algorithm to solve this problem.

In [6], an alternative formulation that considered fairness by
maximizing the minimum user’s data rate was solved by using
a subcarrier-exclusivity constraint relaxation method, similar
to the approach in [3]. In [7], prioritization was enforced using
a weighted sum rate maximization, and a similar constraint re-
laxation was used to derive the optimum subcarrier and power
allocation. Different weights were assigned to different users,
and a higher weight for a user would imply a higher priority
of getting resources. In [8], the sum data rate was maximized
under a proportional rate constraint; i.e., the rate of each
user should adhere to a set of predetermined proportionality
constants. The solution approach in [8] involves decoupling
the subcarrier and power allocation by first running a greedy
heuristic for subcarrier allocation, followed by solving a con-
vex power allocation problem given the subcarrier allocations.
In [9], tradeoffs between efficiency and fairness were realized
by maximizing a concave utility function of the user’s data
rate. Time diversity was also exploited in [9] by maximizing
the utility function of an exponentially weighted and time-
windowed average data rate of each user.

In most of the aforementioned work, the formulation and
algorithms only consider instantaneous performance metrics.
Thus, the temporal dimension is not being exploited when
the resource allocation is performed. Although [9] considered
some form of temporal diversity, their approach focused more
on the effect of the past channel information on the fairness,
rather than exploiting the time variations directly to improve
the overall data rate performance. Instead of considering only
instantaneous data rate, we formulate the problem considering
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user-weighted ergodic rates for both continuous (capacity-
based) and discrete (adaptive modulation and coding) rates.
This allows us to exploit the time dimension explicitly in the
formulation, and utilize all three degrees of freedom in our
system, namely frequency, time, and multiuser dimensions.
At the same time, we can enforce certain notions of fairness
through the user weights (e.g. proportional fairness can be
attained by setting the user weights as the reciprocal of the
user’s average rate so far [9]). A similar ergodic formulation
for continuous rates has been considered in [5], but their
approach is limited to the case of maximizing the unweighted
sum capacity, which is much simpler, but has limited practical
value because fairness is not considered.

Furthermore, previous research have assumed that algo-
rithms to find the optimal or near-optimal solution to the
problem is too computationally complex for real-time im-
plementation. A popular approach to attain near-optimality
is constraint relaxation (see e.g. [3] [6] [7]). This approach
performs a convex reformulation of the problem by relaxing
the binary integer constraints x,,; € {0,1} which indicate
a subcarrier assignment of user m to subcarrier k; to interval
constraints 0 < x,, , < 1, where x,,, 1, is now a sharing factor.
The solution to the reformulated convex problem is then
projected back to the original constraint space by assigning
each subcarrier to the user with the largest sharing factor.
This heuristic approach is suboptimal, and more importantly,
is also computationally prohibitive, because it involves solving
a large constrained convex optimization problem with 2M K
variables with interval constraints and K + 1 linear inequality
constraints. Hence, the main focus of previous research have
been on developing heuristic approaches with typical com-
plexities in the order of O(M K?) (e.g. [4] [7]).

Our approach, on the other hand, is based on a Lagrangian
relaxation of the power constraints, instead of the constraint
relaxation proposed previously. This relaxation retains the
subcarrier assignment exclusivity constraints, but “dualizes”
the power constraint and incorporates it into the objective
function, allowing us to solve the dual problem instead. This
dual optimization framework is shown to be less complex
(O(MK) per iteration, with less than 10 iterations) and
achieves relative optimality gaps that are less than 1074
(i.e. achieving 99.9999% of the optimal solution) in typical
scenarios, and thus actually allowing us to claim practical
optimality. Note that the dual optimization approach is also
studied in [10], but their focus has been on instantaneous rate
optimization in DSL systems. Also note that during the review
of this paper, it was brought to our attention that [11] and
[12] have independently discovered a similar dual optimization
framework to solve a weighted-sum continuous instantaneous
rate maximization problem, which is similar to the algorithm
in Section III-G.

II. SYSTEM MODEL

We consider the downlink of a single OFDMA base station
with K-subcarriers and M-users indexed by the set £ =
{1,...,k,...,K} and M = {1,...,m,..., M} (typically
K > M) respectively. We assume an average transmit power
of P > 0, bandwidth B, and noise density Ny. The received

signal vector for the mth user at the nth OFDM symbol is
ym[n] = G [n|Hy, [n]x,[n] + w.,[n)] (1

where y,,[n] and @,,[n] are the K-length received and
transmitted complex valued signal vectors; Gp,[n] =

dlag{\/ Dm0y -y /Pm, k[N } is the diagonal gain allo-

cation matrix; wm[ ] ~ CN(0,02Ik) with noise variance
afu = NoB/K is the white zero-mean, circular-symmetric,
complex Gaussian (ZMCSCG) noise vector; and H,,[n] =
diag{hm1[n],..., hm, x[n]} is the diagonal channel response

matrix, where

—jQTFTikAf. (2)

ngz

are the complex-valued frequency-domain wireless channel
fading random processes, given as the discrete-time Fourier
transform of the N; time-domain multipath taps gy, ;[n] with
time-delay 7; and subcarrier spacing A f. These taps are mod-
eled as stationary and ergodic discrete-time random processes
with tap powers o2, ;, which we assume to be independent
across the fading paths 7 and across users m. Since gm,i[1n] is
stationary and ergodic, so is A, ;[n]. Hence, the distribution
of h,,[n] is independent of n through stationarity, and we can
replace time averages with ensemble averages in the problem
formulations through ergodicity. In the subsequent discussion,
we shall drop the index n when the context is clear for
notational brevity.

We assume! that the time domain channel taps are indepen-

m k

dent ZMCSCG random variables g, ; ~ CN'(0,02, ;) with
total power o2, = Y., o7, ;- Then from (2), we have
m ~CN(0g,Rn,,) 3
Ry, = WX, W4
where W is the K x N, DFT matrix with entries [W] ; =
e IZmTkAS k= —K/2 —1,...,K/2;i = ., N; and
Y dlag{om Lyeees J%7Nt} is an N; x N; diagonal matrix

of the time-domain path powers. Since we also assume that the
fading for each user is independent, then the joint distribution
of the stacked fading vector for all users h = [hT,... AT
is likewise a ZMCSCG random vector with distribution h ~
CN (Oxar, Rp) where []T is the vector transpose and Ry, is
the KM x K M block diagonal covariance matrix with Ry,
as the diagonal block elements.

We let v, = [7m,17 s 77m,k]T where TYm,k = |hm,k|2/0'121;
denote the instantaneous channel-to-noise ratio (CNR) with
mean Yy, = an / aﬁj. Note that vy, ; for a particular subcar-
rier k and different users m are independent but not necessarily
identically distributed (INID) exponential random variables;
and for a particular user m and different subcarriers k are
not independent but identically distributed (NIID) exponential
random variables. Throughout the paper, we assume that the
transmitter has perfect knowledge of =y, for all users (perfect
CSI assumption), and that the resource allocation decisions
are made known to the users through an error-free control

m

! Although the results of this paper are applicable to any fading distribution,
we shall prescribe a particular distribution for the fading channels for
illustration purposes.



WONG AND EVANS: OPTIMAL DOWNLINK OFDMA RESOURCE ALLOCATION WITH LINEAR COMPLEXITY TO MAXIMIZE ERGODIC RATES 3

channel. The case where only partial channel knowledge is
available is investigated in [13].

III. ERGODIC RATE MAXIMIZATION IN OFDMA -
CONTINUOUS RATES

A. Problem Formulation

The capacity of user m on subcarrier k£ assuming inde-
pendent and identically distributed (IID) Gaussian signalling
under IID Gaussian noise is given as (see e.g. [7])

R(pm.k¥m,k) = 10gy(1 + Dm k¥Ym.k) bps/Hz 4)

Denote by p = [p!, - ,pk]" the vector of powers to be
determined, where py = [p1, - ,pmk]’. The exclusive
subcarrier assignment restriction in OFDMA can be written
as pi € P C RM,

Pr = {pr € RY pruippr o = 0¥m £ m'} (5

For notational convenience, we let p € P = Py X --- X
Pr C IR{‘ZK denote the space of allowable power vectors
for all subcarriers. Since we assumed perfect CSI, we can
consider the power allocation vector p(-y) as a function of the
realization of the fading CNR of all users v = [v{, ..., v1,]%.
The ergodic weighted sum capacity maximization problem is

then
Z W Z R (pm,k’)/m,k)}

/¥ = max Ew{
p(V)EP meM  kek

S.t. E“/{ Z Zpymkx} < P
meM ke

where E{-} is the expectation operator, w,, are positive
constants such that . w, = 1. Theoretically, varying
these weights allows us to trace out the ergodic capacity
region [14]; algorithmically, varying the weights allows us to
prioritize the different users in the system and enforce certain
notions of fairness?. A caveat for this ergodic weighted sum
capacity formulation, however, is that the w,,s need to be
held constant for a time period that allows the ergodicity
property of the channels gains to kick in, which may hurt
the fairness of the system. Fortunately, in next generation
OFDMA implementations (e.g. IEEE 802.16e [1] and 3GPP-
LTE [2]), the MAC layer hands down user-weights to the
physical layer on a per-frame (or longer) basis. This is because
holding weights constant for a period is beneficial from a
system implementation complexity perspective, requiring less
signaling and feedback overhead, while still enforcing fairness,
albeit on a larger timescale. Thus, depending on the frame
lengths (which in IEEE 802.16e can reach up to 20ms [1])
and the mobile speed, ergodicity can be assumed in a lot of
cases within the frame, and the ergodic weighted sum capacity
formulation is ideal in these scenarios. A comparison of the
fairness in ergodic and instantaneous rate formulations, and the
effect of the w,,’s on overall system performance, however,
is beyond the scope of this paper.

(6)

2Note that the choice of wy, is dependent on the system designer, and is
typically handed down to the physical layer from a higher layer, e.g. the MAC.
A possible choice is wm(n) = 1/Rm(n) where Ry, (n) is the average rate
for user m so far at time n, which was shown to approximate proportional
fairness [9]

B. Dual Optimization Framework

Note that the objective function in (6) is concave, but the
constraint space P is highly non-convex (it is in fact a discrete
space), and is in general very difficult to solve. Fortunately,
(6) is separable across the subcarriers, and is tied together
only by the power constraint. In these problems, it is useful
to approach the problem using duality principles [10] [15].
Let us write the Lagrangian

Z Wm Z R (Pm,k’Ym,k)}

meM ke

L(p(7),A) = Ey {

(N
H(p_m,{z S pmf,c})
ke meM
The dual problem is defined as
g* =minO(\) (8)

A>0

where the dual objective is given by

0\ = pgl)atgpL(p(’v)7 A)

(9a)

Z [me (pm,k")/m,k’)

=)\P + max E, {
meM

p(v)EP pre

= AP k] } (9b)

Z [me (pm,k'Ym,k)

=\P + max  [E,
Pr(v)EPk e

kex

— AP,k } 9¢)

Z [me (pm,k’}/m,k)

meM

max
Pr(7)EPx

:AP+ZE.,{

ke

= AP k] } (9d)

=\P + KE»yk {glea}\)fl |:pm;a)>(0 me(pm,k”Ym,k)

= AP k] } (%e)

where (9a) is the dual objective; (9b) follows from the linearity
of the expected value; (9c) follows from the fact that the
power variables are separable across the subcarriers®; (9d)
follows from the fact that the power variables are a function of
each realization of ~, allowing us to interchange the order of
maximization and expected value; and (9e) follows from the
fact that the channel gains are NIID across subcarriers and
the exclusive subcarrier assignment constraint. We have re-
duced the problem to a per-subcarrier optimization, and since
K > M, we have significantly decreased the computational
burden.

3The separability is due to the fact that the exclusive subcarrier allocation
constraint is enforced on a per-subcarrier basis (see (5)), and that the average
power constraint that ties the power variables across subcarriers has been
“dualized ” into the Lagrangian objective function
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The innermost maximization between the square brackets
in (9e) has a simple closed-form expression for the optimal
powers given as

i) = | — _LT (10)
Pk Y0m(A) Yk
where [z]t = max(0,z) and y0,(\) = Ln”z, which is a

simple “multi-level water-filling” power allocation with cut-
off CNR 70, (), below which we do not transmit any power,
and above which we transmit more power when the CNR vy, 4
is higher.

Using (10) in (9e), the dual problem (8) can be written as

o =min [P+ K2, (e )] (D)
gk (’7]6; )\) = TEDEE?/\}EI {g’m,k(’)/m,kv )\)} (12)

where (12) is a max function over the m per-subcarrier dual
functions

gm,k’(')/m,k’; /\) =wn R (ﬁm,k(/\)’}/m,k) - /\ﬁm,k()\) (13)

_(w_m1n< Vmk >_w_m+_>\ >
In2 ~0,m (A) In2 vk
XU(Ym,k — Y0,m(N))

and where u(z) is the unit (Heaviside) step function with
u(0) = 1. Note that (13) is non-negative and is not differ-
entiable at g, 1(70,m(A), A) = 0.

C. Numerical Evaluation of the Expected Dual

Computing the expectation in (11) in a straightforward
manner involves an M —dimensional integral over the joint
pdf of the M —length fading vector -y, which is typically too
complex to solve using direct numerical integration techniques
(e.g. Gaussian quadrature) except for small M, e.g. 2 or 3,
since this requires O(N™) computations where N is the
number of function evaluations required for a one-dimensional
integral with the same accuracy [16]. However, if we can
somehow compute a closed-form expression for the pdf of
(12), then we can reduce the expectation to just a one-
dimensional integral that is solvable in O(MN). Since i, i
for different ms are INID, then (13) is likewise INID for
different ms. Thus, (12) is the largest order statistic of INID
random variables ¢, 1 (Vm,k, A) with pdf [17, Sec. 5.2]

fgk(gk’) = H Fgm,k(gk’) ( Z M) (14)

memM meM Fgm,k(gk)

where Fy . (gm.k) and fy, , (gm, k) are the cumulative distri-
bution function (CDF) and probability density function (PDF)
of Gm k(Ym, ks A), respectively.

In order to derive these distribution functions given the
distribution F’, , (Ym,k) Of Ym k. We need an expression for
the inverse function of gm k(Ym.k, A) With respect to Vi, &,
which is given as (see Appendix A)

-« _ _PYO,m(A)
'Ym,k(gm,k) = W (—e_( n2

5)

Im koo +1

Wim,

)) u(gm. k)

where W (x) is the Lambert-W function, which is the solution
to the transcendental equation W (2)e"V(*) = z. This function

is ubiquitous in the physical sciences, and efficient algorithms
have been developed for its computation [18]. Note that
’ym,k(o) = ’YO,m(/\) as expected.

Using this expression for the root, we can then derive the
cdf of vy, 1 as [19]

Fopo (gm.k) = Fyi (Y (g, k) w(grm, k) (16)

The pdf is then given as the derivative of (16) with respect to
Im.k

fgm,,k (gm,k) = va,k ('YO,m(A)) 5(9m,k)
f’Ym,,k ('?mk(gm,k)) ’?Enk(gm,k)
;)/m,k(gm,k) ﬁ)}”QL - A

A7)

u(gm,k’)

where §(x) is the Dirac delta function®. Finally, using (16)
and (17) in (14) and then in (11), our dual problem can now
be written as

4" = min [)\P LK / G fon (gk)dgk] (18)
0

A>0

D. Optimal Subcarrier and Power Allocation

Using standard duality arguments (see e.g. [15, Prop.
5.1.2]), the dual objective function in (18) can be shown to be
convex and continuously differentiable in the single variable
A. Thus, we could simply take its derivative with respect to
A and set it to zero to find the optimum geometric multiplier
A\*. However, the derivative function requires O(M?) compu-
tations due to the product terms in the pdf. Thus, it is more
efficient to resort to derivative-free line search procedures
that only need function evaluations, e.g. Golden-section or
Fibonacci search [16].

Once we determine \*, we plug it back into the optimal
power allocation function and arrive at the following simple
user assignment and power allocation for each subcarrier k&
given as

mz = arg WI?E%\}EI {me (ﬁm,k()‘*)lym,k) - A*ﬁmk(A*)}
(19)

Pk = Pm k(A)1(m = mj) (20)
where 1(z) is the indicator function, which evaluates to 1 if
x is true and O if false.

Note that it is possible that the dual optimal powers
do not satisfy the total power constraint. Hence, our fi-
nal power allocation values should be multiplied by n =

P/E, {ZmEM >okex pfn}k} which we plug back into the
objective in (6) to arrive at our computed primal optimal value

K
f* = E’Y { Z Wy, Z 10g2(1 + 77'7m,k’p:n,k)} (2D

meM ke

“Note that Fy,. «(gm,) is discontinuous at g, = 0 with

Fg,,,(07) =0 and Fgm,k(OJr) =Fy,, x (vo,m(N)).
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E. Bound on the Relative Duality Gap

The following theorem provides a bound on the relative
optimality gap which we can compute in order to assess how
far we are from the optimal value.

Theorem 1: Let f* > 0 and ¢g* > 0 given in (6) and (18)
be the optimal values of the primal and dual problems, and let
f * > 0 given in (21) be the computed feasible primal value.
Then the relative duality (optimality) gap can be bounded as

S (22)
Proof: The left inequality follows directly from the pos-
itivity of f* and the weak duality theorem [15, Prop. 5.1.3.
p. 495], which states that g* > f*. The right inequality is
because f* < f*, since f* is a feasible primal value and f*
is the optimal feasible primal value. [ ]
When the power constraints are met tightly, i.e.

E iszM D okek p;‘n,k} = P, then the duality gap is zero,
and thus solving the dual problem also solves the primal
problem. In our numerical results, the power constraints are
met almost exactly, resulting in relative optimality gaps that
are practically zero (< 10~%). Thus, our approach can, for all
practical purposes, be considered an optimal solution to the
problem. This fortuitous phenomenon is brought about primar-
ily by the separability of the problem, and furthermore by the
fact that we have K separable terms (which is typically large)
and only a single constraint (average power constraint). This
problem structure has been shown to be particularly suitable
to dual optimization approaches, and has been noted in [10],
and more generally treated with a theoretical justification in
[15, Sec. 5.1.6].

F. Complexity Analysis

Once we determine \* by solving (18), we do not need to
update it as long as the statistics of the fading channel vector «
remain the same. Thus, the complexity of resource allocation
requires an initial O(INM) computations to determine \*,
where [ is the number of iterations for the line search proce-
dure to converge, and NV is the number of function evaluations
to compute the dual objective integral. The allocation in (19)-
(20) needs O(M K) computations per symbol.

G. Instantaneous Weighted Sum Rate Maximization

Although we have focused on the ergodic rate maximization
problem, our duality framework can be simplified to solve the
instantaneous rate maximization problem given as

f’ins! = g}éajl}’( Z Wm Z R (pm,k’)/m,k)
meM keKX (23)
S.t. Z me,k <P
meM kel

and is essentially identical to the problem considered in [7].
We use the dual optimization approach®, where the dual

SNote that [11] and [12] have independently come up with a similar dual
approach to this instantaneous rate maximization problem.

problem can be derived similarly as the ergodic case

* —min | AP R (P (A ,
Ginst r/\nzlgl +§Cg1€% {wm (p L,k( )'Ym,k)

- Aﬁm,k(A)H (24)

where P, x(\) is the same power allocation function given
in (10). Note the similarity to the ergodic case (c.f. (8)-(9e)),
where the primary difference is that the expected values are
no longer present. Using a similar line search procedure, we
can find the optimal )\’ and end up with the same optimal
subcarrier and power allocation functions as in (19)-(20). One
subtle, albeit important difference, is that in instantaneous
maximization, the optimal A’ is dependent on each channel
realization -, and thus needs to be computed every time the
channel changes. This is in contrast to the ergodic maximiza-
tion case where the \* depends on the distribution function of
the channel f, (), and thus needs to be computed only when
the statistics of the channel has changed. Thus, although the
initialization for the ergodic maximization is more complex,
the per-symbol resource allocation complexity ends up to
be less complex than the instantaneous optimization case.
Furthermore, because the total power in each time instant is
constrained to be less than or equal to P in the instantaneous
case, there is no flexibility of allowing the total power in each
time instant to vary (while still maintaining the average power
constraint across time) unlike the ergodic maximization case.

H. Constant Power Allocation

It has been established in previous research that constant
power allocation actually performs as well as optimal water-
filling, esp. in high SNR cases [20]. Under the constant power
allocation assumption, the power is set to P/K , and the
subcarrier allocation is simplified to

. P
mj = arg max {me (E'Wn,k)}

IV. ERGODIC RATE MAXIMIZATION IN OFDMA -
DISCRETE RATES

(25)

A. Problem Formulation

In this section, we derive resource allocation algorithms for
the practically relevant case of when only a discrete number
of modulation and coding levels are available (i.e. adaptive
modulation and coding). In the discrete rate case, the data
rate of the kth subcarrier for the mth user can be given by the
staircase function

To, o < Pm,kYm,k <11
d 1, T < Pm,kYm,k <172
Rm,,k(pm,,k’Wn,,k) = . . (26)
A
L1, NL—1 < PmkVm.k < NL
where {m}iec, £ ={0,...,L — 1}, are the SNR boundaries
which define a particular code-rate and constellation pair
combination that result in r; data bits per transmission with
a predefined target bit error rate (BER), and where r; > 0,
ri41 > 11, 70 =0, no = 0, and 71, = oo.



6 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 2, FEBRUARY 2008

The average discrete weighted-sum rate maximization can
then be formulated as

i —msx E, { S wn S RE pmw}
meM kex (27)
S.t. E»y Z me,k Sp
meM ke

B. Dual Optimization Framework

Following a similar dual framework in Section III-B, we
arrive at the dual objective (c.f. (9e))

©a(\) =P + KE, { Inax Lg}ggo (wn Rip, 1 (P, ¥om 1)

_)\pm,k):| } (28)

The main difference of the inner maximization in this case
with the continuous rate case in (9e) is that an, o (Pm kY k)
is a discontinuous function; hence, simple differentiation to
arrive at the optimal solution is not feasible. However, note

that we can divide the feasible region for p,, ; (i.e. the non-
negative real line) into L segments R!, = [%, ;”“ ) le

L. Since A and p,, . are both non-negative, we have

mefn,k(pm,k'mG) = APmk = WmnTt — APmk
é WmT — )\ivvpmk S RZ_
m,k

Thus, there are only L candidate power allocation functions

Php €92 ..., M} from which we need to choose the
Y,k v
one that maximizes w,,r; — A Zlk i.e. ﬁfmk, = m;yk/'ym,k
where m
I
[ € argmax wy, . — A—— (29)
’ lel Ym,k

This in turn also gives us the rate allocation R% k=T,
A straightforward computation of (29) would require (’)( )
complexity. However, if we assume that the discrete rate func-
tion Rd(pm}k'ym,k) is concave®, we can reduce the complexity
of finding the power allocation function by noticing that (29)
is equivalent to (see Appendix B for a proof)
A c Ti41—Tp Ty —7T

mk{zec , ‘1>}<30>
WmYm,k M+1—M M —"M-1

where with slight abuse of notation, we define (ro—r_1)/(no—
7—1) = oo. This can be interpreted geometrically by treating
oo Asa slope value for which we are looking for an
interval of consecutive slope values for which it belongs
(see [21] for a similar interpretation for single-user discrete
multitone systems). Since the set of rates and SNR region
boundaries r; and 1; are predefined in a communications
system, we can store the set of slopes into a lookup table,
thereby reducing the complexity of finding the optimal powers
to a single table lookup operation.

6Concavity for this discontinuous staircase function simply means that
the slopes when “connecting the dots” of the edges of the staircase are
non-increasing. This assumption is quite reasonable, and is applicable to
uncoded square QAM constellations [20], DMT bit allocation using SNR gap
approximation [21], and in coded modulation using empirical BER values [4,
Fig. 1].

Finally, we can write the discrete rate maximization dual
problem as

g = min AP + KBy, {gi (v, M)} 31
93, A) = max {g 1 (., V) } (32)

where (32) is a max function over the m per-subcarrier dual
functions given as
A— }
Ym,k

Note that despite the negative term in (33), gfmk(%n,,k, A) is
always non-negative. This is because both ¢ and 7y are equal
to zero, hence the lowest possible value for the objective is
zZero.

gk (Ymoges A) = max {wmm (33)

C. Numerical Evaluation of the Expected Dual

Similar to the continuous rate case (cf. III-C), we require
an M-dimensional integral to compute the expectation in (31)
in a straightforward manner. Thus, we proceed similarly as
the continuous rate case to derive a closed-form expression
for the pdf of g,‘f in (32) and reduce the computation to just
a single integral. The key to the derivation is to derive the
CDF and PDF of (33), and use the same formula used in the
continuous rate case for the maximum order statistic given
in (14). Making the same assumption that the discrete rate
function (26) is concave, the CDF and PDF are given as (see
Appendix C for a derivation)

ot (gm.) = (g k) Py, (51) (34)
+
+ Z ’Ym k mln (hl(gm k) Sl-‘rl)) - F’Ym,k (SZ)]
1e£\0
For (Gmi) = 0(gm ), (51) (35)
hi(gm, 1)
+ D 1) €8) Fros (lomi)) =55
1eL\0 771
where
Any
hi(gd )= 36
l(gm,,k) [wmrl — ggmk]Jr ( )
o= Al —mi-1) 37)
wm,(rl - Tl—l)

Figs. 1-2 shows an example of the cdf and pdf for w,, = 1,
A =1, 4 = 20 dB, and discrete rate function given in
Section V. We also plot the L individual terms that sum
to the functions, giving us better insight into how these
functions are derived. We also superimposed empirical curves
generated using Monte-Carlo generation for verification. It can
be seen that for the pdf, only certain ranges of gfn’ & actually
“activate” a particular component of a rate level [, which is
analytically given as the range in the indicator function in (35).
Furthermore, once the level [ is activated for a given range of
9% 1» we simply take the derivative of F,, , (hi(gs, ;) with
respect to g2 , which is given as the terms multiplied to the
indicator function in (35).
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1.4 T
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- ==
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=3

1+ CDF - Analytical
X CDF - Empirical

Fig. 1. Analytical and empirical CDF (34) of the discrete rate marginal
dual function gfn , (33) with the L individual terms that sum to the CDF,
corresponding to each discrete rate level.
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Fig. 2. Analytical and empirical PDF (34) of the discrete rate marginal
dual function gfln i (33) with the L individual terms that sum to the PDF,
corresponding to each discrete rate level.

Finally, using (34)-(35) in (14), then in (31), the dual
problem can be written as

. 5 4 dyg.d
g = min {APJFK/O gkfgg(gk)dgk} 38)

D. Optimal Discrete Rate, Subcarrier, and Power Allocation

The optimum solution to (38) denoted by A* can be found
using similar line search techniques. The optimal subcarrier,
rate, and power allocation is then determined using A* as

Ul
*) _ T _ )\* m,k 39
My, = arg Max wmri;, P (39)
Ry w =1 1(m =mp) (40)
* nl:n *
Dy p = —=1(m = my) A1)

TYm,k
where [7, ;. is given by (30) with A = A*. An upper bound
on the relative duality gap of this algorithm can be derived
similar to Section III-E. The complexity analysis is also similar
to III-F, except for the additional O(L) factor to compute

TABLE I
SIMULATION PARAMETERS

Parameter Value
Subcarriers 128
Used Subcarriers 76
Bandwidth 1.25 MHz
Sampling Freq. 1.92 MHz
CP Length 6 samples

the dual objective (38), giving an initialization complexity of
O(INML); and the additional O(log(L)) for the table lookup
operation in (30), giving a resource allocation complexity of
O(MK log(L)).

The instantaneous discrete rate maximization algorithm can
also be derived by solving for the optimal instantaneous
geometric multiplier A* using (31) without the expectation
and using the actual CNR vector «. The allocation rules are
also given by (19)-(20) using the multiplier \* . A further
simplification is to assume constant power allocation, where
the user selection is

inst

. p
mj, = arg ax mefn}k (E’Ym,,k) (42)

V. NUMERICAL RESULTS

We consider an OFDMA system based on a 3GPP-LTE
downlink [2] with parameters given in Table I. We simulate the
frequency-selective Rayleigh fading channel using the ITU-
Vehicular A power delay profile (PDP) [22] which has a
root-mean-square delay spread of o, = 0.37us and 50%
coherence bandwidth of B, = 1/(50,) ~ 540 kHz. Each
user’s complex Gaussian channel vector realization h., is then
generated independently using (3) according to the PDP.

In Fig. 3, we compare the capacity regions for the continu-
ous rate allocation case with 2 users using 10,000 channel
realizations and varying w; between 0 and 1, and setting
wy = 1—w;. We see that ergodic rates maximization has better
performance than the other methods due to its ability to exploit
the temporal dimension. The gain is also more pronounced
for low SNRs and more disparate user weights, which is
analogous to previous studies in adaptive modulation, e.g. [5]
[20], which concluded that the exploitation of the additional
temporal dimension through the ergodic formulation is most
useful when other degrees of freedom have been significantly
curtailed. Fig. 4 shows the sum capacity as the number of users
M is increased. We ran 500 frames with 1000 symbols per
frame, where we draw a random realization of the normalized
user weights w,, and hold it constant for each frame. We see
the effect of multiuser diversity in that the capacity is actually
increasing as the number of users increase. The gain of ergodic
rates over the other methods diminish as we increase M,
which is consistent with [5].

In Table II, we present other relevent metrics for the
continuous rate maximization algorithms. For the ergodic rate
maximization, the first main column indicates the average
number of function evaluations required to numerically com-
pute the integration of (18) with a tolerance of 1076, and
the second main column indicates the average number of
Golden-section search iterations to solve for A* in the dual
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0 0.5 1 15 2 25 3
Capacity for user 1 (bps/Hz)

Fig. 3. 2-user capacity region for ergodic and instantaneous continuous rate
maximization and constant power allocation.

; ;
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~|
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Fig. 4. Sum continuous rates for different numbers of users.

problem (11) with a tolerance of 10~%. The second column
for instantaneous rate maximization is the average number of
iterations for each channel realization. The third column for
both cases is the relative duality gap upper bound computed
by (22). Note that the duality gaps are negligible, and thus
both algorithms can be considered optimal.

For the discrete rate allocation results, we assume a Grey-
coded square 2"'-QAM modulation scheme, where the BER
in AWGN can be approximated to within 1-dB for r;, > 2 and

—1.6
BER < 10~3 by BER ~ 0.2¢ 27 -1 " [20]. Fig. 5 shows
the results of resource allocation, with rate set r; € {0,2,4,6}
bits with SNR thresholds 7, € {—00,9.97,16.96,23.19} dB
computed using a BER constraint of 1073, Note that we
assume that channel coding is not present in this case for
simplicity, but since the framework merely needs the SNR
thresholds and rate values, our results also apply to the coded
case as long as the discrete rate function is concave.

Note that the general trends are similar to the continuous
rate case, except that the advantage for ergodic rates is much
more pronounced, and a large loss is incurred by the constant
power allocation case. This is due to the big loss of freedom
in the rate allocation (limited to just 4 rates in contrast to an

Capacity Region for 2 Users
3 T T

T T
——&— Ergodic Rates

— © — Instantaneous Rates
—A— - Constant Power

25r

Capacity for user 2 (bps/Hz)

0 0.5 1 1.5 2 25 3
Capacity for user 1 (bps/Hz)

Fig. 5. 2-User Capacity Region for ergodic and instantaneous discrete rate
maximization.

.
I Ergodic
1.8 [ Instantaneous i b
I Constant Power |

Capacity (bps/Hz)

0.8

0.4

0.2r

8 12 16
No. of Users (M)

Fig. 6.  Sum discrete rates for different numbers of users.

infinite number of rates in the continuous case), which when
coupled with constant power allocation results in a huge loss
in performance. Note that increasing degrees of freedom in
other dimensions, e.g. having more users or subcarriers will
decrease this performance loss [5]. Fig. 6 shows the sum rates
as the number of users is increased for the three different
methods using a similar simulation setup as in the continuous
rates case. We see similar trends as in the continuous rates
case, but also with more pronounced gains for the ergodic
rates case. Table III shows the average number of iterations
and the relative optimality gaps for the discrete rate allocation
algorithms. Note that the number of function evaluations are
higher, due primarily to the discontinuities in the cdf and pdf
functions (see Figs. 1-2).

Table IV shows the resource allocation complexity order
of the different algorithms. If we use the average numbers
given in Tables II and III, the ergodic rate algorithms are less
complex than the instantaneous rate algorithms per symbol
on average, as long as the rate of change of the channel
fading statistics (roughly at the rate of change of slow fading,
e.g. Log-normal shadowing) is much lower than the rate of
change of the actual channel realizations (roughly at the rate
of fast fading, e.g. Rayleigh fading), such that the initialization
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TABLE 11
RELEVANT METRICS FOR THE CONTINUOUS RATE RESOURCE ALLOCATION ALGORITHMS

Metric No. of Func. Eval. (V) No. of Iterations (/) Relative Gap (x10~5)

SNR 5dB|10dB|15dB 5dB|10dB|15dB 5dB|10dB|15dB

Ergodic Rates 47.91 50.09 | 53.73 8.091 7727 | 7.727 7.936 | 5.462 | 5.444

Instantaneous Rates — — — 8.344 8.333 8.539 .0251 .0226 .0159
TABLE III

RELEVANT METRICS FOR THE DISCRETE RATE RESOURCE ALLOCATION ALGORITHMS

Metric No. of Func. Eval. (N) No. of Iterations (1) Relative Gap (x10~%)
SNR 5 dB | 10 dB | 15 dB 5 dB | 10 dB | 15 dB 5 dB | 10 dB | 15 dB
Ergodic Rates 62.09 91.55 133.0 9.818 10.55 9.909 8711 .9507 .5322
Instantaneous Rates — — — 17.24 17.20 17.30 3.602 1.038 .3996
TABLE 1V .
COMPLEXITY FOR THE RESOURCE ALLOCATION ALGORITHMS. M-No.  1hus, we can write
OF USERS, K -NO. OF SUBCARRIERS, LL-NO. OF DISCRETE RATES, N-NO. . (/\)
OF FUNCTION EVALUATIONS FOR INTEGRATION, I-NO. OF LINE SEARCH %% (_e*(gm,k 2 +1)) _ Yo,m (44)
ITERATIONS. Ym,k
Algorithm Initialization | Runtime which when solved for v, x gives us (15).
Cont. Ergodic Rates O(INM) O(MK)
Cont. Instantaneous Rates | — O(IMK)
Cont. Constant Power - O(MK) APPENDIX B
Disc. Ergodic Rates O(INML) | O(MK log(L)) PROOF OF (30)
Disc. Instantaneous Rates | — O(IMK log(L))
Disc. Constant Power — O(MK log(L)) Observe that (29) implies
[ A
Wt | — =5 > — e L\ DG, (45)
P)/m,k m,k

is performed less often. One caveat, however, is that the
ergodic rate algorithms require information on the channel
fading distribution function, which need an additional level
of complexity and feedback overhead. Furthermore, the peak-
to-average power ratio of the power allocation in the ergodic
rates case is typically higher than for instantaneous rates, and
even more so for constant power allocation.

VI. CONCLUSION

We derived optimal resource allocation algorithms for con-
tinuous and discrete ergodic weighted sum rate maximization
in OFDMA systems based on a dual optimization framework
with per-symbol complexity of O(MK) per iteration. The
algorithms are shown to achieve relative optimality gaps of
less than 10~ in practical scenarios. We have also shown that
ergodic rate maximization is actually less complex per symbol
than instantaneous rate maximization, and thus presents an
attractive communication performance vs. complexity tradeoft.
The most gains in ergodic maximization occur at low SNRs
and for discrete rate cases, primarily because of decreased
degrees of freedom in these scenarios.

APPENDIX A
DERIVATION OF THE INVERSE FUNCTION (15) OF ¢y, 1 (13)

Since g i for vm x> vYo,m is monotonically increasing
and non-negative, there exists a unique inverse function. After
some algebraic manipulation, we have

m(A) -
_om(A)
TYm,k

Y0,m (N)
TYm,k

_ef(gm k u?’i +1) (43)

Observe that this is in the form of the Lambert-W function
W (x) [18], which is the solution to W (x)exp (W(z)) = =.

After some algebraic manipulation, (45) can be written as

L A M
l m,k S m,k -
=", . W Ym, k My, —

for all [ > I,  and forall [ <7 ;. which is equivalent to

m,k?

LT A T T
max — < < min - (46)
Pl M =M, o WmWmk <G M — T

Since the slope Ar/An is non-increasing for a concave
function, we arrive at (30).

APPENDIX C
DERIVATION OF THE CDF (34) AND PDF (35) OF g;in,k (33)

)

(47)

T —Ti-1
M — M-1

First, we use (30) to get
7 — 17 A
I+1 l <

(erl — M WmYm,k
=P (81 < Yk < S141)

Pl =1=

where s; is defined in (37). Then, using the law of total
probability [19], we have

(gfn k)

_ZP mk*

lel
x P (mazcwmrl/ —)\
= E :P mk —
lel

x P (wmrl - A

Fg;z

r*n,k = l)

(48)

< g% i
TYm,k m

m
Ym,k

< gm k

S < Ymk < Sz+1)
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1e£\O

= U(Q;in 1) P(Ymk < 51)
1eL\O

=u(g 1) Py (51) + Y [Py (min (hugi, i), s101)) — Py (s0)]"

1eL\0

+ Y Pl =1

Vi (Vm,k < hz(g%k)’é’l <Yk < 51+1>
) P, = 1)

> P (51 < Y < min (hu(gl, 1), s141))

(49)

Note that since \—2

m,

is negative, P (w7

is non-negative, then if w,,r; — gfn &
_ )\ m
Ym,

Ui
Ym,k — G,k

DS gg@,k
=P (vm k< hi(gd, k))

where hi(g2, ) is defined in (36), and where we safely defined
Z = o00,Vx > 0. However, for [ = 0, we have r; = 0 and

0
— n
m = 0, and P (wmm —Ags < 9%

gg@,k > 0. We can now simplify (48) as shown in (49) at the
top of the page. Finally, the pdf (35) is the derivative of (49)
with respect to gfn} K

) = 1. Hence, we can

write P (wmm - A

) is always one since
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