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Abstract—Previous research efforts on OFDMA resource allo-
cation have typically assumed the availability of perfect channel
state information (CSI). Unfortunately, this is unrealistic, pri-
marily due to channel estimation errors, and more importantly,
channel feedback delay. In this paper, we develop optimal
resource allocation algorithms for OFDMA systems assuming
the availability of only partial (imperfect) CSI. We consider
both continuous and discrete ergodic weighted sum rate max-
imization subject to total power constraints, and average bit
error rate constraints for the discrete rate case. We approach
these problems using a dual optimization framework, allowing
us to solve these problems with O(MK) complexity per symbol
for an OFDMA system with K used subcarriers and M active
users, while achieving relative optimality gaps of less than 10−5

for continuous rates and less than 10−3 for discrete rates in
simulations based on realistic parameters.

I. INTRODUCTION

Next generation wireless systems, e.g. IEEE 802.16e [1]
and 3GPP-Long Term Evolution (LTE) [2], consider Orthog-
onal Frequency Division Multiple Access (OFDMA) as the
preferred physical layer multiple access scheme, especially
for the downlink. OFDMA allows multiple users to transmit
simultaneously on the different subcarriers per OFDM symbol.
It is reasonable to assume that the channel response for
each user is statistically independent, especially when there
is considerable spatial separation among the users. Thus,
we could potentially exploit this multiuser diversity through
intelligent allocation of the subcarriers and power to each user,
and increase the overall performance of the system.

The problem of assigning the subcarriers, rates, and powers
to the different users in an OFDMA system has been an
area of active research over the past several years (see e.g.
[3] [4] [5] [6] [7] [8] [9]). These works considered various
formulations (e.g. rate maximization and power minimization)
while considering various notions of fairness (e.g. max-min
fairness, proportional data rates and utility-based fairness). A
common underlying assumption among these works is that
the channel state information (CSI) of the users are known
perfectly. This assumption is quite unrealistic due to channel
estimation errors, and more importantly, channel feedback
delay. Thus, in this paper, we focus on the case where only
imperfect (partial) CSI is available.

The effect of imperfect CSI for rate maximization in
wireless systems has been quite well studied for single-user
wireless systems. In [10], adaptive trellis-coded modulation
schemes using a single outdated channel estimate for single-
carrier systems in flat-fading channels were proposed. In [11],
uncoded adaptive modulation schemes using predicted CSI
were developed, also for single-carrier flat-fading channels.

In [12] and [13], the effect of channel estimation errors and
channel feedback delay on adaptive modulation for OFDM
systems in time and frequency selective channels was studied.
It was concluded that the detrimental effect of outdated chan-
nel information is significant, and that using channel prediction
[12] or using multiple channel estimates [13] is a viable way of
overcoming this delay. In [14], power allocation methods for
ergodic and outage capacity maximization in OFDM [14] were
studied assuming that the partial CSI distribution information
is available. Adaptive modulation in single-user single-carrier
Multiple-Input, Multiple-Output (MIMO) systems [15] and
MIMO-OFDM systems [16] assuming imperfect CSI have
also been investigated. However, no work to the best of the
authors’s knowledge considered the multiuser OFDM case.

In the multiuser OFDM (or OFDMA) case, the difficulty
arises from the fact that the exclusive subcarrier assignment
restriction (i.e. only one user is allowed to transmit on each
subcarrier) renders the problem to be combinatorial in nature.
This difficulty is evident even under the perfect CSI assump-
tion in the previous approaches, which advocated highly com-
plex convex reformulations [3] [7] to solve the problem near-
optimally; or lower complexity suboptimal greedy heuristics to
solve the problem in a practical setting [4] [5] [8]. Fortunately,
in our recent work on optimal resource allocation for ergodic
rate maximization in OFDMA systems with perfect CSI [17],
we have shown that using a dual optimization approach, the
problem can be solved with just O(MK) complexity per
symbol for an OFDMA system with M active users and K
used subcarriers. Furthermore, our solution results in relative
optimality gaps of less than 10−4 in typical scenarios, thereby
supporting us to claim practical optimality. Using a similar
dual optimization approach, we relax the assumption of perfect
CSI and formulate and solve the problem assuming the avail-
ability of imperfect CSI. We use the statistics of this imperfect
CSI to perform resource allocation for both continuous rate
(capacity based) and discrete rate (adaptive modulation and
coding based) maximization cases. We considered minimum
mean square error (MMSE) OFDM channel prediction in this
paper, but the framework can be easily extended to other
estimation/prediction approaches as well. We show that by
using the dual optimization framework, we can solve the
imperfect CSI problem with relative optimality gaps of less
than 10−5 for continuous rates and less than 10−3 for discrete
rates in cases of practical interest.

This paper is organized as follows. Section II discusses
the system model used in the paper, and the assumptions
on the channel model. Section III discusses the optimal
resource allocation algorithms for the continuous rate case
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(ergodic (Shannon) capacity) assuming partial CSI. Section
IV considers the more practically relevant case of allocation
for discrete rates (adaptive modulation). Section V presents
several numerical examples to solidify the claims in the paper.

II. SYSTEM MODEL

A. OFDMA Signal Model

We consider a single Kfft−subcarrier with Lcp cyclic-prefix
length OFDMA base station, with K used subcarriers and M
active users indexed by the set K = {1, . . . , k, . . . ,K} and
M = {1, . . . ,m, . . . , M} (typically K À M ) respectively.
We assume an average transmit power of P̄ > 0, bandwidth B,
and noise density N0. The received signal vector for the mth
user at the nth OFDM symbol assuming perfect sample and
symbol synchronization, and sufficient cyclic prefix length, is
given as

ym[n] = Gm[n]Hm[n]xm[n] + wm[n] (1)

where ym[n] and xm[n] are the K-length received and
transmitted complex-valued signal vectors; Gm[n] =
diag

{√
pm,1[n], . . . ,

√
pm,K [n]

}
is the diagonal gain allo-

cation matrix; wm[n] ∼ CN (0, σ2
wIK) with noise variance

σ2
w = N0B/K is the spectrally and temporally white,

zero-mean, circular-symmetric, complex Gaussian (ZMCSCG)
noise vector; and Hm[n] = diag {hm[n]} with hm[n] =
[hm,1[n], . . . , hm,K [n]]T is the diagonal channel response
matrix, where hm,k[n] are complex-valued frequency-domain
wireless channel fading random processes for the mth user at
the kth subcarrier. For a particular symbol n, hm,k[n] is the
discrete-time Fourier transform of the Nt time-domain channel
taps with time-delay τi and subcarrier spacing ∆f = Fs/Kfft

hm,k[n] =
Nt∑

i=1

gm,i[n]e−j2πτik∆f . (2)

The gm,i[n] are the time-domain fading channel taps modeled
as stationary and ergodic discrete-time random processes, with
identical1 normalized temporal autocorrelation function

rm[∆] =
1

σ2
m,i

E{gm,i[n]g∗m,i[n + ∆]}, i = 1, . . . , Nt (3)

with tap powers σ2
m,i, which we assume to be independent

across the fading paths i and across users m. Since gm,i[n] is
stationary, hm,k[n] is also stationary, and the distribution of
hm[n] is independent of symbol index n. In the subsequent
discussion, we shall drop the symbol index n when the context
is clear for notational brevity. Although the results of this paper
are applicable to any fading distribution, we shall prescribe a
particular fading distribution for the partial CSI in the next
subsection for illustration purposes.

1We chose to make the identical normalized temporal autocorrelation
function assumption to simplify the presentation and notation, but is not crucial
to the development of our algorithms.

B. Partial Channel State Information

Assuming that the time domain channel taps are indepen-
dent ZMCSCG random variables gm,i ∼ CN (0, σ2

m,i), then
from (2), we have

hm ∼ CN (0K ,Σhm
)

Σhm = WΣgmWH
(4)

where W is the K × Nt DFT matrix with entries [W]k,i =
e−j2πτik∆f , k = −(K − 1)/2, . . . , (K − 1)/2; i = 1, . . . , Nt

and Σgm = diag{σ2
m,1, . . . , σ

2
m,Nt

} is an Nt × Nt diagonal
matrix of the time-domain path covariances2. Since we also
assume that the fading for each user is independent, then the
joint distribution of the stacked fading vector for all users h =
[hT

1 , . . . , hT
M ]T is likewise a ZMCSCG random vector with

distribution h ∼ CN (0KM ,Σh) where Σh is the KM×KM
block diagonal covariance matrix with Σhm

as the diagonal
block elements.

Suppose we wish to perform resource allocation for the m-
th user with actual fading channel vector hm at symbol index
n, but only P symbols of delayed and noisy estimates of the
channel Dt apart are available, which we denote as

h̃m[n− pDt] = hm[n− pDt] + em[n− pDt] (5)

where em[n − pDt] ∼ CN (0K , σ2
eIK) is the spectrally and

temporally white estimation error random vector with estima-
tion error variance σ2

e which is uncorrelated with hm[n−pDt].
This can effectively model a least-squares estimate of the chan-
nel using pilot tones with power σ2

t , resulting in σ2
e = σ2

w/σ2
t .

Stacking these into a PK-length vector, which we denote

as h̃m =
[
h̃T

m[n−Dt], h̃T
m[n− 2Dt], . . . , h̃T

m[n− PDt]
]T

,
results in a ZMCSCG random vector with PK × PK block
Hermitian-Toeplitz covariance matrix

Σh̃m
= Rm ⊗Σhm + σ2

eIPK (6)

where Rm is the Hermitian-symmetric and Toeplitz P ×
P temporal autocorrelation matrix with entries [Rm]i,j =
rm[(i−j)Dt] and ⊗ is the Kronecker product. The conditional
distribution of the desired channel hm given h̃m is then
hm|h̃m ∼ CN

(
ĥm, Σ̂m

)
where

ĥm = Σhmh̃m
Σ−1

h̃m

h̃m (7)

is the conditional mean estimator, which is also the MMSE
predictor for the channel [18];

Σ̂m = Σhm −Σhmh̃m
Σ−1

h̃m

ΣH
hmh̃m

(8)

is the conditional covariance, and is also the covariance matrix
for the ZMCSCG prediction error vector we denote as êm, and
Σhmh̃m

= rT
m ⊗ Σhm with rT

m = [rm[Dt], . . . , rm[PDt]] is
the K×PK cross-covariance matrix. Interestingly, the pdf of
hm given the MMSE estimate ĥm is identical to hm|h̃m, i.e.

hm|ĥm ∼ CN
(
ĥm, Σ̂m

)
(9)

2Following the convention in [1] and [2], we assume that the number of
used subcarriers K is odd by including the null subcarrier at index 0 as part
of the used subcarriers.



IEEE TRANSACTIONS ON COMMUNICATIONS, ACCEPTED FOR PUBLICATION 3

Note that ĥm is also ZMCSCG with covariance Σĥm
=

Σhm
− Σ̂m. Thus, we can write

hm = ĥm + êm (10)

which is also known as the Statistician’s Pythagorean Theorem
[19]. We shall use this equation to generate both the partial
CSI and perfect CSI in the results section (Section V).

In ergodic capacity maximization with imperfect CSI, we
require the marginal distribution for each subcarrier. The
marginal fading distribution on subcarrier k conditioned on
the estimated channels is a non-zero mean complex Gaussian
random variable given as hm,k|ĥm,k ∼ CN (ĥm,k, σ̂2

m,k)
where ĥm,k is the kth element in ĥm and σ̂2

m,k is the kth
diagonal element in Σ̂m, which is essentially the prediction
error variance for that subcarrier. Thus, the channel-to-noise
ratio (CNR) γm,k = |hm,k|2/σ2

w conditioned on γ̂m,k =
|ĥm,k|2/σ2

w is in turn a non-central Chi-squared distributed
random variable with two degrees of freedom with pdf [20,
Eq. 2-1-118]

fγm,k
(γm,k|γ̂m,k) =

1
ρm,k

exp
(
− γ̂m,k + γm,k

ρm,k

)

I0

(
2

ρm,k

√
γ̂m,kγm,k

) (11)

where I0 is the zeroth-order modified Bessel function of the
first kind, and ρm,k = σ̂2

m,k/σ2
w is the ratio of the prediction

error variance to the ambient noise variance.

III. CONTINUOUS RATE MAXIMIZATION IN OFDMA WITH
PARTIAL CSI

A. Problem Formulation

The capacity for user m and subcarrier k is given as

Rm,k(pm,kγm,k) = log2(1 + pm,kγm,k) bps/Hz (12)

Denote by p = [pT
1 , · · · ,pT

K ]T the vector of powers to be
determined, where pk = [p1,k, · · · , pM,k]T . The exclusive
subcarrier assignment restriction can be written as pk ∈ Pk ⊂
RM

+ , where

Pk ≡ {pm,k ≥ 0|pm,kpm′,k = 0; ∀m 6= m′;m, m′ ∈M}
(13)

For notational convenience, we let p ∈ P ≡ P1 × · · · ×
PK ⊂ RMK

+ denote the space of allowable power vectors for
all subcarriers.

We assume that we have knowledge of the imperfect
CNR vector γ̂ = [γ̂T

1 , . . . , γ̂T
K ]T , γ̂k = [γ̂1,k, . . . , γ̂M,k]T ;

corresponding to an estimate of the actual CNR realization
γ = [γT

1 , . . . , γT
K ]T , γk = [γ1,k, . . . , γM,k]T . Thus, our power

allocation vector p can only be a function of γ̂. The weighted
expected sum rate maximization problem assuming partial CSI
can be written as

f∗ = max
p∈P

∑

m∈M
wm

∑

k∈K
Eγm,k

{Rm,k (pm,kγm,k)| γ̂m,k}

s.t.
∑

m∈M

∑

k∈K
pm,k ≤ P̄

(14)

where wm are positive constants such that
∑

m∈M
wm = 1.

Theoretically, varying these weights allows us to trace out the
ergodic capacity region [21] assuming partial CSI; algorithmi-
cally, varying the weights allows us to prioritize the different
users in the system and enforce certain notions of fairness,
e.g. proportional fairnes and max-min fairness [9].

B. Dual Optimization Framework

Similar to [17], we begin our development by observing
that the objective function in (14) is separable across the sub-
carriers, and is tied together only by the power constraint. We
will approach this problem using dual optimization techniques
[22]. The dual problem for (14) is defined as

g∗ = min
λ≥0

Θ(λ) (15)

where the dual objective is given as

Θ(λ) = max
p∈P

∑

m∈M
wm

∑

k∈K
E {Rm,k (pm,kγm,k)| γ̂m,k}+

λ

(
P̄ −

∑

k∈K

∑

m∈M
pm,k

)
(16a)

= λP̄ +
∑

k∈K
max

pk∈Pk

(16b)

∑

m∈M
wmE {Rm,k (pm,kγm,k)| γ̂m,k} − λpm,k

= λP̄ +
∑

k∈K
max
m∈M

(16c)

max
pm,k≥0

wmE {Rm,k (pm,kγm,k)| γ̂m,k} − λpm,k

where (16b) follows from the separability of the variables
across subcarriers, and (16c) from the exclusive subcarrier
assignment constraint. We have reduced the problem to a per-
subcarrier optimization, and since K À M , we have also
significantly decreased the computational burden.

We denote the optimal power allocation function for the
innermost per-user and per-subcarrier problem in (16c) as
p̂m,k(λ), which can be found using simple differentiation, (see
[14] for a similar derivation, albeit for a single-user system),
and is given as

p̂m,k(λ) =





pm,k : E
{

γm,k

1+pm,kγm,k

∣∣∣ γ̂m,k

}
= γ0,m,

E{γm,k|γ̂m,k} ≥ γ0,m

0 ,E{γm,k|γ̂m,k} < γ0,m

(17)

where γ0,m = λ ln 2
wm

. This can be interpreted as a multi-
level water-filling with cut-off CNR γ0,m similar to [17, Eq.
10], except that the cut-off is now based on the conditional
mean of the CNR given its estimate, instead of the actual
CNR. Using the pdf in (11), the conditional mean is simply
Eγm,k

{γm,k| γ̂m,k} = γ̂m,k + ρm,k. Note that when we have
perfect CSI, ρm,k = 0 and (17) actually reduces to the multi-
level waterfilling equation for perfect CSI in [17, Eq. 10].
There is no closed form solution to (17), but it can be solved
using numerical integration of the expectation, and a zero-
finding procedure like bisection method [23] to find the power
allocation.
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Plugging (17) into (16c) and then in (15), we arrive at the
following dual problem in the single variable λ

g∗ = min
λ≥0

λP̄ +
∑

k∈K
max
m∈M

(18)

wmE {Rm,k (p̂m,k(λ)γm,k)| γ̂m,k} − λp̂m,k(λ)

Using standard duality arguments (see e.g. [22, Prop. 5.1.2]),
the objective in (18) can be shown to be convex in the
single variable λ, but is actually not continuously differentiable
due to the presence of the max function. Hence, power-
ful derivative-based minimization methods such as Newton’s
method cannot be used. Fortunately, we can use derivative-
free single-dimensional line search methods that only need
function evaluations, e.g. Golden-section or Fibonacci search
[23] to find the optimum multiplier λ∗.

C. Optimal Subcarrier and Power Allocation

The optimal multiplier λ∗ determines the optimal cutoff
SNR γ∗0,m = λ∗ ln 2

wm
. This can then be plugged back into

the power allocation function (17) to arrive at the optimal
subcarrier and power allocations:

m∗
k = arg max

m∈M
E {wmRm,k (p̂m,k(λ∗)γm,k)| γ̂m,k}
− λ∗p̂m,k(λ∗)

p∗m,k =
{

p̂m,k(λ∗), m = m∗
k

0, m 6= m∗
k

(19)

Note, however, that it is possible that the candidate power
allocation does not satisfy the total power constraint, since the
constraint is not enforced explicitly. Hence, our final power
allocation values should be multiplied by a constant

η =
P̄∑

m∈M

∑
k∈K

p∗m,k

(20)

which we plug back into the objective in (14) to arrive at our
computed primal optimal value

f̂∗ =
∑

m∈M
wm

∑

k∈K
Eγm,k

{
log2(1 + ηp∗m,kγm,k)

∣∣ γ̂m,k

}

(21)
Unfortunately, the above procedure is still highly computa-

tionally intensive, since for each candidate λ in the line search
iterations, we need to compute MK power allocation values
(17), each of which requires a zero-finding routine where a
function value evaluation involves numerical integration to
compute the expectation. Although both the line search and
the zero-finding routines typically converge within very few
iterations (< 10 in our experiments), the numerical integration
procedure requires a lot more iterations (> 50), and hence
is the main computational bottleneck. We shall overcome this
problem using a closed-form approximation to the expectation
in the power allocation function, as described in the next
subsection.

D. Power Allocation Function Approximation

Our approach to approximating the expectation in (17) is
to use a Gamma distribution to approximate the non-central
Chi-squared distribution of γm,k|γ̂m,k (11), which is known to
approximate the body of this pdf quite well [24, p. 55]. This
approximation is given by

fγm,k
(γm,k|γ̂m,k) ≈ βα

Γ(α)
γα−1

m,k exp (−βγm,k) (22)

where α = (Km,k +1)2/(2Km,k +1) is the Gamma pdf shape
parameter with

Km,k =
γ̂m,k

ρm,k
(23)

as the specular to diffuse power ratio, equivalent to the
K−factor in a Ricean pdf; and β = α/(γ̂m,k + ρm,k) is
the Gamma pdf rate parameter. Using this pdf, we can use
[25, Section 3.383.10] to arrive at the following closed form
approximation to the integral

E
{

γm,k

1 + pm,kγm,k

∣∣∣∣ γ̂m,k

}

≈ βα

Γ(α)

∫ ∞

0

γα
m,k

1 + pm,kγm,k
e−βγm,kdγm,k

=
α

pm,k

(
β

pm,k

)α

e
β

pm,k Γ
(
−α,

β

pm,k

)
(24)

where Γ(a, x) is the incomplete Gamma function [25, Section
8.350]. Using (24) in (17) to solve for pm,k, we are able
to closely approximate the power allocation function p̂m,k.
We plot the power allocation function using the Gamma
pdf approximation and the actual Chi-squared pdf in Fig. 1
with γ0 = 1 for various ρm,k = σ̂2

m,k/σ2
w. Note that the

approximation error is negligible, with a normalized mean-
squared error of 5× 10−5 and maximum error of 2.7× 10−4,
while the computation of the approximation is almost 300×
faster than the actual using very crude computational time
measurements in Matlab 7.2 (tic-toc).

E. Bound on the Relative Duality Gap

If we let f∗ > 0 and g∗ > 0 be the optimal values of
the primal and dual problems given in (14) and (18), and let
f̂∗ > 0 given in (21) be the computed feasible primal value,
the relative duality (optimality) gap can be bounded as (see
[17, Thm. 1] for a similar discussion and proof)

0 ≤ g∗ − f∗

f∗
≤ g∗ − f̂∗

f̂∗
(25)

The left inequality follows directly from the non-negativity of
f∗ and the weak duality theorem [22, Prop. 5.1.3. p. 495],
and the right inequality follows from f̂∗ ≤ f∗ since f̂∗ is
a feasible primal value and f∗ is the optimal feasible primal
value. In our numerical results, we show that the resulting
optimality gaps using our algorithm are practically zero (<
10−5). Thus, our approach can, for all practical purposes, be
considered an optimal solution to the problem. This fortuitous
phenomenon is brought about primarily by the separability
of the problem, and furthermore by the fact that we have K
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Fig. 1. Power allocation as a function of estimated CNR (γ̂) with γ0 = 1
for various ρm,k = σ̂2

m,k/σ2
w . A solid line indicates the optimal power

allocation, ’x’s denote the approximation, and the dashed line correspond to
the simple waterfilling allocation.

separable terms (which is typically large) and only a single
constraint (average power constraint). This problem structure
has been shown to be particularly suitable to dual optimization
approaches, and has been noted in [26] (for the instantaneous
optimization case), and more generally treated in [27].

F. Complexity Analysis
In each search iteration for λ in (18), we need to compute

MK candidate power allocation functions given by (17) and
(24). Each power allocation value calculation requires a zero-
finding routine, e.g. bisection or Newton search [23], which
we assume requires Ip function evaluations to converge. After
determining the power allocation value, we then use it in the
ergodic capacity integral in (18), which we assume requires
Ic function evaluations to compute. Finally, assuming that we
require Iλ line search iterations to solve for the optimum λ,
the overall complexity is O(IλMK(Ip + Ic)). Ignoring the
constants Iλ, Ip, and Ic, the complexity is just O(MK).

IV. DISCRETE RATE MAXIMIZATION IN OFDMA WITH
PARTIAL CSI

In this section, we derive resource allocation algorithms for
the practically relevant case of when only a discrete number
of modulation and coding levels are available (i.e. adaptive
modulation and coding).

A. Problem Formulation
1) Discrete rate function: In the discrete rate case, the data

rate of the kth subcarrier for the mth user can be given by the
following staircase function

Rd
m,k(pm,kγm,k) =





0, pm,kγm,k < η0

r1, η0 ≤ pm,kγm,k < η1

...
...

rL, ηL−1 ≤ pm,kγm,k < ηL ≡ ∞
(26)

where {rl}l∈L, L = {1, . . . , L} are the L available discrete
information rates in increasing order, and {ηl}L−1

l=0 are the SNR
boundaries chosen in such a way that the information rate rl

is supportable subject to an instantaneous BER constraint. In
the perfect CSI case, the candidate power allocation function
that satisfies the BER constraint for each possible rate rl is
simply multi-level fading inversion (MFI), i.e. p

(l)
m,k = ηl/γm,k

[17]. This allows us to do away with having a BER function,
since all that we require are the SNR rate region boundaries
ηl which can be computed offline. However, with imperfect
CSI, the average rate is given as

R̄m,k =
∑

l∈L
rlP (ηl−1 ≤ pm,kγm,k < ηl|γ̂m,k) (27)

Since we do not have the perfect CSI information γm,k,
simply performing MFI on the imperfect CSI γ̂m,k does not
guarantee satisfaction of the BER constraint, and is illustrated
in the results section (Section V). This necessitates a different
approach of fulfilling the BER constraint.

2) Closed-form average BER function: With the imperfect
CSI assumption, we require a BER function that can be
expressed in terms of the SNR pm,kγm,k for a given rl in
order to enforce the average BER constraint. Suppose that
we have this BER function for a given rate rl denoted as
BERl(pm,kγm,k), which could be derived using theoretical
analysis or curve fitting from empirical data, the average BER
constraint can be written as

Eγm,k
{BERl(pm,kγm,k)|γ̂m,k} = BER (28)

Solving for pm,k in (28) for each l ∈ L, we have L power
allocation functions to choose from.

In order to simplify our development, we derive a closed-
form expression for (28) assuming the fading distributions
derived in Section II, and a representative BER prototype
function that has been empirically shown to fit a lot of practical
scenarios (see e.g. [28]). This prototype BER function is given
by

BERl(pm,kγm,k) = al exp (−blpm,kγm,k) (29)

where al and bl are constants that are searched to fit the actual
BER function for each rl. For example, if we assume a Grey-
coded square 2rl -QAM modulation scheme in AWGN, the
BER function can be approximated to within 1-dB for rl ≥ 2
and BER ≤ 10−3 with al = 0.2 and bl = 1.6/(2rl − 1) [28].
Using (29) in (28) with the pdf in (11), we have after some
algebraic manipulation

E{BERl(pm,kγm,k)|γ̂m,k} = (30)

â
(l)
m,k

∫ ∞

0

exp
(
−x

(
b̂
(l)
m,kpm,k + 1

))
I0

(
2
√

Km,kx
)

dx

where x = γm,k/ρm,k, Km,k = γ̂m,k/ρm,k, and

â
(l)
m,k = al exp (−Km,k)

b̂
(l)
m,k = blρm,k

(31)

Note that (30) can be interpreted as the Laplace transform of
I0(2

√
Km,kx) with parameter s = b̂

(l)
m,kpm,k + 1, which is

given in [29, Eq. 29.3.81]. Hence, a closed form expression
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Fig. 2. Discrete rate power allocation as a function of estimated CNR (γ̂)
with γ0 = 1 for various ρm,k .

for (30) can be written as Hence, a closed form expression for
(30) can be written as

E{BERl(pm,kγm,k)|γ̂m,k}

=
â
(l)
m,k

b̂
(l)
m,kpm,k + 1

exp

(
Km,k

b̂
(l)
m,kpm,k + 1

)
(32)

3) Closed-form power allocation function: Equating (32)
with the target BER, we arrive at the closed form expression
for the candidate power allocation function given the estimated
CNR γ̂m,k and data rate rl (see Appendix for derivation)

p̂
(l)
m,k =

1

b̂
(l)
m,k


 Km,k

W
(

BERKm,k/â
(l)
m,k

) − 1


 (33)

where W (x) is the Lambert-W function, which is the solution
to the transcendental equation W (x)eW (x) = x. This function
is ubiquitous in the physical sciences, and efficient algorithms
have been extensively studied for its computation [30]. It is
important to emphasize that (33) gives us the power allocation
value that fulfills the average BER constraint when rl is chosen
as the rate for a particular user m and subcarrier k given
imperfect CSI γ̂m,k. Fig. 2 shows the power allocation as a
function of the estimated CNR γ̂m,k for uncoded 4−QAM and
64−QAM for various ρm,k. We also plot the power allocation
function when treating the γ̂m,k as perfect, i.e. p

(l)
m,k = ηl/γ̂m,k

called multi-level fading inversion on imperfect CSI (Imperfect
CSI-MFI). We can see that as ρm,k decreases (prediction
accuracy increases), the power allocation function approaches
that of Imperfect CSI-MFI. On the other hand, a higher ρm,k

requires higher power in order to ensure the average BER
requirement is met, especially for low estimated CNR γ̂m,k.
Note also that the power allocation functions approach the
Imperfect CSI-MFI value as γ̂m,k becomes large, despite the
value of ρm,k.

4) Closed-form average rate function: Using (33) in (27),
the average rate given that rl is chosen as the transmission

rate can be written as

R̄m,k(rl) =
∑

i∈L
riP

(
ηi−1 ≤ p̂

(l)
m,kγm,k < ηi|γ̂m,k

)
(34)

=
∑

i∈L
riP

(
ηi−1

p̂
(l)
m,k

≤ γm,k <
ηi

p̂
(l)
m,k

∣∣∣∣∣ γ̂m,k

)

=
∑

i∈L
ri

(
Fγm,k

(
ηi

p̂
(l)
m,k

∣∣∣∣∣ γ̂m,k

)
− Fγm,k

(
ηi−1

p̂
(l)
m,k

∣∣∣∣∣ γ̂m,k

))

From [20, Eq. 2.1-124], we have the following closed-form
expression for the cdf of a non-central Chi-squared random
variable

Fγm,k
(x| γ̂m,k) = 1−Q

(√
2γ̂m,k

ρm,k
,

√
2x

ρm,k

)
(35)

where Q(a, b) is the Marcum-Q function. Using (35) in (34),
we have a closed-form expression for the average rate for user
m and subcarrier k given a choice of transmission rate rl.

5) Optimization problem: Considering the above develop-
ment, we can think of our decision variables in this case as
a vector of rate allocation indices l = [lT1 , . . . , lTK ]T where
lTk = [l1,k, . . . , lM,k]T and lm,k ∈ {0, 1, . . . , L}. The exclusive
subcarrier assignment restriction can be written as lk ∈ Lk,
where

Lk = {lm,k ∈ {0, 1, . . . , L}|lm,klm′,k = 0; ∀m 6= m′} (36)

For notational convenience, we let l ∈ L = L1 × · · · × LK

denote the space of allowable rate allocation indices for all
subcarriers. Note that a decision of lm,k = 0 means that neither
rate nor power is transmitted on subcarrier k by user m. Thus,
we can define R̄m,k(r0) ≡ 0 and p̂

(0)
m,k ≡ 0. The discrete

weighted sum rate maximization problem with partial CSI is
then formulated as

f∗d = max
l∈L

∑

m∈M
wm

∑

k∈K
R̄m,k(rlm,k

)

s.t.
∑

m∈M

∑

k∈K
p̂
(lm,k)
m,k ≤ P̄

(37)

where the power allocation function is given by (33) and the
average rate by (34).

B. Dual Optimization Framework

Following a similar development as in Section III, the dual
problem can be written as

g∗d = min
λ≥0

λP̄ +
∑

k∈K
max
m∈M

max
l∈L∪{0}

R̄m,k(rl)− λp̂
(l)
m,k (38)

where we can once again use a univariate line-search method
such as Golden-section search to compute for the optimum
multiplier λ∗d. Note that neither (33) nor (34) depend on λ.
Hence, we can pre-compute these quantities for all l ∈ L,
m ∈M, and k ∈ K before running the line search iterations.
Using λ∗d, we arrive at the optimal rate allocation indices

l∗m,k = arg max
l∈L

wmR̄m,k(rl)− λ∗dp̂
(l)
m,k (39)
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TABLE I
COMPLEXITY FOR THE OPTIMAL RESOURCE ALLOCATION ALGORITHMS

WITH IMPERFECT CSI. M -NO. OF USERS, K-NO. OF SUBCARRIERS,
Iλ-NO. OF LINE SEARCH ITERATIONS FOR DUAL PROBLEM.

Algorithm Complexity
Continuous Rate Allocation O(MKIλ(Ip

a+ Ic
b))

Discrete Rate Allocation O(MK(Iλ + Lc))
a No. of zero-finding iterations for the power allocation

function (17)
b No. of function evaluations for numerical integration

of the expected capacity (18)
c No. of discrete rate levels (26)

which in turn give us the optimal subcarrier, rate, and power
allocation:

m∗
k = arg max

m∈M
wmR̄m,k(rl∗m,k

)− λ∗dp̂
(l∗m,k)

m,k (40)

p∗m,k =

{
p̂
(l∗m,k)

m,k , m = m∗
k

0, m 6= m∗
k

(41)

r∗m,k =
{

rl∗m,k
, m = m∗

k

0, m 6= m∗
k

(42)

Finally, similar to the continuous rate case in Section III-E, the
duality gap can be computed as in (25) to characterize how
far away the solution is from the optimal. Furthermore, in
cases where the power constraint is violated, we can employ
a suitable heuristic to ensure that the constraint is met (c.f.
(20)). One intuitive heuristic is to find a subcarrier k and user
m with the least allocated rate but the most allocated power,
and redistribute his power minus the constraint violation to the
other subcarriers to improve their margins.

C. Complexity Analysis

Before running the line search iterations to compute for λ∗

in (38), we need to compute MKL power allocation values
(33) and average rate values (34) and store it in memory. This
is followed by the search iterations which we assume to require
Iλ, wherein each iteration requires O(MK) operations (38).
The overall complexity order for the discrete rate resource
allocation algorithm is thus O(MK(L + Iλ). Since L and Iλ

are just constants independent of M and K, the complexity is
O(MK). Note that in contrast to the continuous rate case, the
ability to pre-compute the power and rate allocations, and the
existence of closed-form solutions for these, actually result
in the discrete rate allocation being less complex than the
continuous rate allocation. This is fortunate because the dis-
crete rate case is more practically relevant. Table I summarizes
the complexity analysis for both continuous and discrete rate
algorithms.

V. RESULTS AND DISCUSSION

We present several numerical examples to substantiate our
theoretical claims. Our simulations are roughly based on a
3GPP-LTE downlink [2] system with parameters given in
Table II.

We simulate the frequency-selective Rayleigh fading chan-
nel using the ITU-Vehicular A channel model [31]. We assume

TABLE II
SIMULATION PARAMETERS

Parameter Value Parameter Value
Subcarriers (Kfft) 64 Vehicular speed (V ) 120 kph

Used Subcarriers (K) 33 Doppler frequency (Fd) 289 Hz
Bandwidth (B) 1.25 MHz Prediction filter length (P ) 4

Sampling Freq. (Fs) 1.92 MHz Pilot spacing (Dt) 7
Carrier Freq. (Fc) 2.6 GHz CP Length Lcp 6 samples
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Fig. 3. 2-user capacity region for continuous rate optimal resource allocation
with imperfect CSI. We also show the capacity region for optimal allocation
with perfect CSI, and using multi-level waterfilling (MWF) on the imperfect
CSI.

Clarke’s U-shaped power spectrum [24] for each multipath tap,
resulting in the temporal autocorrelation function rm[∆] =
J0(2π∆FdDt(Kfft + Lcp)/Fs) where J0(x) is the zeroth-
order Bessel function of the first kind [29, Ch. 9]. To simulate
imperfect CSI, we generate IID realizations of ĥm and its
prediction error vector êm as discussed in Section II-B. This
allows us to also generate the “actual” channel hm for the
perfect CSI cases using (10).

In Fig. 3, we show the 2-user capacity region for con-
tinuous rate allocation with imperfect CSI (Imperfect CSI-
Optimal) with 5000 channel realizations per data point. We
also show the capacity region using optimal instantaneous
rate resource allocation assuming perfect CSI (Perfect CSI-
Optimal), which is essentially multi-level waterfilling (MWF)
[17]; and the capacity region when we simply use MWF on
the imperfect CSI (Imperfect CSI-MWF). Note that in all
cases, rate maximization with imperfect CSI through channel
prediction performs quite close to the case with perfect CSI.
More important, Imperfect CSI-MWF performs similar to
Imperfect CSI-Optimal. This can be explained by noticing that
the optimal power allocation assuming imperfect CSI is almost
equal to the waterfilling curve (see Fig. 1) except for very
low estimated CNR. However, due to the effect of frequency
and multiuser diversity, the subcarrier is typically assigned to
the user with the highest CNR; thus, the power allocation is
quite often almost identical to performing waterfilling on the
imperfect CSI. A similar observation was also made in [14],
albeit for the single user scenario.

Fig. 4 shows the discrete rate region for the optimal resource
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allocation algorithm assuming imperfect CSI (Imperfect CSI-
Optimal). We also show the rate region achieved by using
optimal resource allocation for discrete rates with perfect CSI
(Perfect CSI-Optimal), which is essentially MFI [17], and by
using MFI on the imperfect CSI (Imperfect CSI-MFI). Observe
that due to the imperfect CSI assumption, Imperfect CSI-
Optimal loses approximately 8% of the sum capacity when
compared to Perfect CSI-Optimal. Observe also that Imperfect
CSI-MFI results in a rate region that is quite close to the
Perfect CSI-Optimal, and actually results in higher raw rates
than the Imperfect CSI-Optimal. However, if we consider the
average BER for each subcarrier shown in Fig. 5, Imperfect
CSI-Optimal actually meets the average BER constraint of
10−3 (within ±2%), but Imperfect CSI-MFI results in average
BER violations of between 30−180%. Interestingly, the shape
of the BER for Imperfect-CSI-Suboptimal closely resembles
the shape of the prediction error variance σ̂2

m,k, shown in Fig.
6. This is intuitively satisfying, since a larger prediction error
results in a larger mismatch between perfect and imperfect
CSI, which is not taken into account by the Imperfect CSI-MFI
algorithm. Thus, Imperfect CSI-MFI is equally aggressive in
rate and power allocation even when the CSI prediction error
is quite large. Our proposed Imperfect CSI-Optimal algorithm,
on the other hand, is actually more conservative in rate and
power allocation when the prediction MSE is large, thus allow-
ing the average BER to be met. In a practical communications
system, this would mean the difference of whether a packet
is decoded successfully or not. Thus, using Imperfect CSI-
MFI would result in unnecessary packet retransmissions and
delays, and consequently decrease the throughput significantly.
An explicit characterization in terms of throughput, however,
is beyond the scope of this paper.

Table III shows the other relevant metrics of the optimal re-
source algorithms. The first column shows the average number
of line-search iterations it took to converge to a tolerance of
10−4. The second column shows the resulting relative duality
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gaps given by (25). We can see that the duality gaps are
virtually zero, and thus both algorithms can be considered
optimal for all practical purposes.

VI. CONCLUSION

We have derived optimal resource allocation algorithms for
ergodic continuous and discrete rate maximization assuming
the availability of partial CSI. Using a dual optimization
approach, we derived algorithms with complexity O(MK)
per iteration and achieve relative duality gaps that are less
than 10−5 for continuous rates and 10−3 for discrete rates in
typical scenarios. Surprisingly, closed form expressions for the
power allocation and average rates for the discrete rate case
result in a lower complexity solution for discrete rates than
for continuous rates.
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TABLE III
RELEVANT METRICS FOR THE RESOURCE ALLOCATION ALGORITHMS

Metric No. of Iterations (Iλ) Relative Gap (×10−4)
SNR 5 dB 10 dB 15 dB 5 dB 10 dB 15 dB
Continuous Rates 8.599 8.501 8.686 .0840 .0568 .0412
Discrete Rates 21.33 21.15 21.12 71.48 7.707 5.662

APPENDIX A
DERIVATION OF (33)

Equating (32) to BER and after some algebraic manipula-
tion, we have

Km,k

b̂
(l)
m,kpm,k + 1

exp

(
Km,k

b̂
(l)
m,kpm,k + 1

)
=

Km,k

â
(l)
m,k

BER (43)

Observe that this is in the form of the Lambert-W function
W (x) [30], which is the solution to W (x) exp (W (x)) = x.
Thus, we can write

W

(
Km,k

â
(l)
m,k

BER

)
=

Km,k

b̂
(l)
m,kpm,k + 1

(44)

which when solved for pm,k gives us (33).
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