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1 Abstract

This paper investigates the issue of high-rate, un-
derwater acoustic communication and the potential
of multi-input multi-output (MIMO) techniques to
achieve that end; further, this paper suggests that
implementation of such a system would benefit from
sonar array processing techniques such as multichan-
nel combining. In order to justify this assertion, this
paper first develops an algorithm for a hybrid ar-
ray processing, decision feedback equalization (DFE)
MIMO receiver. Subsequently, the hybrid receiver is
compared against a traditional MIMO-DFE receiver
of similar complexity. These simulations demonstrate
that the hybrid receiver improves receiver communi-
cation performance and attains higher spatial diver-
sity compared to a traditional MIMO-DFE receiver
structure.

2 Introduction

With potential applications ranging from military to
commercial to scientific, underwater acoustic (UWA)
communications continues to be a growing area of in-
terest to many in both the communications as well
as sonar fields; however, due to the unique propagat-
ing physics of sound waves in water, the development
of high-speed reliable digital communications systems
has lagged behind the advancements made in terres-
trial wireless communications. In short, the problem
of the underwater channel is twofold: a fundamen-
tal bandwidth limit as well as a propagation speed
that is orders of magnitude below that of terrestrial
wireless radiation [1] [2]. In order to address these
issues, recent focus has been given to spatial diversity
techniques that seek to create orthogonal communi-
cation channels to improve spectral utilization. This
paper focuses primarily on multi-input multi-output

(MIMO) spatial diversity, in which a source broad-
casts its message simultaneously over multiple chan-
nel inputs to a receiver that utilizes multiple channel
outputs, each with a statistically independent look at
the signal.

Spatial modulation seeks to use multiple, resolv-
able propagation paths between two arrays to cre-
ate, in effect, parallel independent spatial channels
within the single, physical ocean channel. The ben-
efits are completely analogous to those of increased
bandwidth [3]. At high signal-to-noise ratios (SNR),
the capacity of the channel theoretically increases lin-
early with the minimum number of antennas present
in the environment (min{Ntransmit, Nreceive} b/s/Hz
per 3 dB increase in SNR). This result assumes that
the receiver knows the response of the channel and
the system uses coherent signaling [4]. In order to
take advantage of the MIMO gain, the data stream
must be space-time encoded by emphasizing either
increased system capacity for higher data rates or in-
creased diversity for lower error rates. [3]. Assum-
ing uncorrelated propagation paths and an accurate
channel estimate, recovery of the Ntransmit sequences
is possible [3].

3 Problem Statement

Numerous variations of the MIMO receiver have been
examined in the literature; however, with the avail-
ability of arrays of transducers in underwater sonar
systems, this paper adopts a different receiver struc-
ture through the introduction of widely used sonar
processing techniques. By filtering signals within the
spatial domain, sonar array processing appears to
provide an intuitive solution towards the end of inde-
pendent spatial communication channels; therefore,
in specific applications, spatial array processing may
prove, at the least, a desirable companion to, and
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potentially, an attractive alternative for analogous
approaches in the temporal and frequency domains.
Underwater acoustic communication scenarios that
would benefit from the application of spatial array
processing include: first, systems that steer nulls to-
wards entities with which we do not wish to com-
municate, either for security reasons or to limit co-
channel interference; second, systems that utilize the
available spatial diversity to maximize the signal-to-
interference plus noise ratio (SINR). In theory, the
latter scenario would thereby eliminate the need for
lengthy (computationally expensive) equalization fil-
ters in channels that exhibit significant multipath
spread.

4 Combining Approaches

Utilizing multichannel combining algorithms [5] along
with decision feedback equalization, this paper fo-
cuses on the development of a hybrid receiver with
the goal of reducing receiver complexity and channel
overhead while improving signal-to-interference plus
noise ratios (SINR) at the equalizer output. Fig-
ure 1 demonstrates the proposed receiver architec-
ture: rather than multiple receive antennas, the sys-
tem employs multiple, spatially independent, receive
arrays consisting of multiple, spatially correlated, re-
ceive elements organized in an arbitrary spatial pat-
tern. Spatial independence simply implies that the
signals received at each array are independent of one
another; similarly, spatial correlation implies that,
within a particular array, the signal consists of a num-
ber of multipath arrivals time-shifted across the array
[5]. In the narrowband case, where the signal band-
width is significantly smaller than the inverse of the
propagation time across the array, and for sources in
the far field of the array, the time-shift reduces to
a simple phase offset. This paper utilizes the nar-
rowband assumption to model the propagation of the
multiple signal reflections across the receive array.

4.1 Channel Model

Let us begin the development of our receiver by
first exploring some assumptions about the channel.
First, assume that the communication system utilizes
NT transmit sources and let xi[n] be the discrete-
time signal transmitted by source i ∈ {1, . . . , NT };
further, let us define the 1 × NT transmit vector
Xn = (x1[n] · · ·xNT

[n])T . Similarly, assume that the
system utilizes NR receive arrays consisting of Ne ar-
ray elements and let yj,k[n] be the discrete-time sig-
nal received at array j ∈ {1, . . . , NR}, element k ∈
{1, . . . , Ne}; next, let us denote the 1×NRNe receive

Figure 1: The hybrid multichannel combining and
MIMO-DFE receiver developed in Section 4.2. The
receiver adopts the following naming convention:
combiner gain aj,k and phase ejφj,k , MIMO-DFE
feedforward matrix W, MIMO-DFE feedback matrix
B and symbol decision device, which is represented
by a step.

vector Yn = (y1,1[n] · · · yNR,Ne [n])T . Finally, this pa-
per adopts a tapped-delay-line channel model to em-
ulate multiple propagation paths between source and
destination.

4.2 Receiver Algorithm

Turning our attention to the receiver depicted in Fig-
ure 1, let us begin the development of the multi-
channel combiner, MIMO-DFE signal processing al-
gorithm. As in [5], this paper adopts multichannel
combing as the preferred array processing algorithm
towards the end of improved receiver performance.
Though suboptimal, the hybrid multichannel com-
biner, MIMO-DFE receiver demonstrates competi-
tive results and has the benefit of reduced compu-
tational complexity. This result depends strongly on
the assumption that the signals propagating across
the arrays are correlated.

Let us define the output of array j’s multichan-
nel combiner as ŷj [n] =

∑Ne

k=1 ãj,kyj,k[n] where ãj,k

denotes the complex combiner weight of array j, el-
ement k. Again, we can simplify the above equation
by packaging the combiner outputs into vector form
Ŷn = (ŷ1[n] · · · ŷNR

[n])T giving Ŷn = AYn, where A
denotes the NR ×NRNe matrix of combiner weights.
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After multichannel combining, the receiver reduces
to the well-studied MIMO-DFE receiver. Due to the
wealth of literature on the topic, this paper forgoes
an extensive study of the subject in favor of a brief
overview. In essence, we want to design a NT×NRNf

feed-forward filter W as well as a NT × NT Nb feed-
back filter B to minimize the mean-squared error be-
tween the output sequence X̂n and transmitted signal
Xn. With a slight abuse in notation, the output of
the MIMO-DFE can be written

X̂n = WAYn −BX̂n−1 (1)

Defining the error at time n as en = Xn − X̂n,
then the values of A, W and B that achieve min-
imum mean square error must satisfy the orthog-
onality principle E

[
en

(
X̂n

)∗] = 0. In order to
solve for and adapt the filter coefficients that achieve
minimum mean-squared error, this paper explores a
widely adopted adaptive algorithm called least-mean-
squares (LMS).

4.3 Least Mean Squares

Belonging to the class of stochastic gradient algo-
rithms, least-mean-squares (LMS) is a popular lin-
ear adaptive algorithm characterized by fast conver-
gence and low computational complexity [6]. Al-
though competing algorithms such as recursive-least-
squares (RLS) offer improved convergence rates, the
LMS algorithm requires fewer computational re-
sources than any other. For an N -tap finite impulse
response (FIR) filter, LMS requires O(N) multiply-
and-accumulate operations per update, compared to
O(N2) for RLS. Techniques such as affine projection,
which provides a continuum of implementation com-
plexity between LMS and RLS, as well as several
“fast” variations of the RLS algorithm attempt to
find a happy medium between computational com-
plexity and convergence; however, the need for such
alternatives depends largely on the coherence time of
the communication channel in question. In light of
the goals outlined in Section 4, this paper cares less
about the performance of any one specific adaptive
filtering algorithm, and instead, focuses on improving
communication performance through effective utiliza-
tion spatial diversity; therefore, the choice of LMS,
for both its implementation simplicity as well as its
low computational complexity, suits our needs. Keep
in mind that a more complex channel tracking algo-
rithm may make sense when actually implementing
the receiver in channels that exhibit significant tem-
poral variation.

The primary difficulty in implementing the LMS al-
gorithm for the multichannel combiner, MIMO-DFE

receiver centers around the fact that the multichan-
nel combiner and the DFE feedforward taps are in-
herently intertwined. Let us denote the output of the
DFE feedforward filter as

z[n] = (z1[n] · · · zNT
[n])T (2)

where

zi[n] =
NR∑
j=1

Nf−1∑
l=0

Ne∑
k=1

aj,kyj,k[n− l]wi,j [l] (3)

Taking the derivative with respect to aj,k gives
δzi[n]
δaj,k

=
∑Nf−1

l=0 wi,j [l]yj,k[n− 1], leading to the LMS
update equation

an+1
j,k = an

j,k +µ

NT∑
i=1

ei[n]
( Nf−1∑

l=0

wn
i,jyj,k[n−1]

)∗

(4)

The additional summation term emerges from the
mismatch between the dimensionality of the error
vector and that of the combiner weights. Rather than
adapting to an arbitrary error vector entry, the com-
biner adapts to the aggregate error.

Modifying the LMS algorithm presented in [7] to
account for the multichannel combiner, the adap-
tive MIMO-DFE update equations take the following
form

Wn+1 = Wn + µenAn+1Yn (5)

Bn+1 = Bn + µenX̂n−1 (6)

Note the interdependence of the DFE feedforward fil-
ter coefficients W and the multichannel combiner el-
ement weights A in the LMS update equations: the
adaptation of one parameter directly influences the
adaptation of the other. As a result, convergence will
require a successful collaboration between the two.

5 Simulation Methodology

The simulation results in Section 5.1 were generated
using a 2×2 uncoded MIMO system. Utilizing a sim-
ple spatial multiplexing scheme, in which the trans-
mitter partitions the source message into NT sepa-
rate data streams, the system seeks diversity simply
through spatial reuse. Spatial multiplexing requires
the following conditions in order to fully realize the
benefits of spatial diversity:

1. Independent transmit data streams

2. Independent signal paths from each of the chan-
nel inputs to each of the channel outputs

3. Knowledge of the channel at the receiver
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Assuming a uniformly generated random bitstream
source, we achieve the first condition by simply divid-
ing the source into NT separate data streams. The
second condition is a central requirement for spatial
diversity, and thus, for the purposes of our simula-
tion, we shall assume it holds true. In light of this
assumption, we generate our simulation channel us-
ing an exponentially distributed delay and Rayleigh
distributed complex tap weight. The final condition
we achieve through training.

Each receive array has 10 elements, whose spac-
ing satisfy the narrowband assumption. The chan-
nel exhibits a total of 20 propagation paths: 5 from
each transmit source to each receive array. In terms
of computational complexity, the hybrid receiver uti-
lizes 260 adaptive filter elements (20 adaptive com-
biner weights, 160 DFE feedforward taps and 80 DFE
feedback taps) while the traditional MIMO-DFE re-
ceiver utilizes 320 adaptive filter elements (200 DFE
feedforward taps and 120 DFE feedback taps).

Before continuing, let us briefly explore the validity
of the channel model chosen for our simulation set.
Though central to both the development and simula-
tion of communication systems, modeling of the un-
derwater acoustic channel continues to be a bone of
contention among researchers in the field [8]. Frac-
tured between deterministic ray theory based mod-
els and stochastic fading models, no one model ef-
fectively characterizes a typical underwater channel.
Factors such as depth, distance, temperature, sur-
face agitation and number of scatterers favor certain
models over others. For instance, the ray based mul-
tipath model used in our simulations has been shown
to accurately model the medium range, shallow water
channel [8]. Whether this model can be extended to
accurately characterize underwater channels of differ-
ing ranges and depths exceeds the scope of this paper.
Consequently, though we set out to develop a receiver
that improves communication performance with the
general requirement of spatial diversity, bear in mind
that our simulation results are quite specific to one
particular underwater channel.

5.1 Simulation Results

The results of the simulation can be seen in Figure 2.
Despite similar computational complexity, the hybrid
receiver clearly outperformed the traditional MIMO-
DFE in both output signal-to-interference plus noise
ratios (∼3-5 dB improvement) as well as error rates.
Utilizing fewer adaptive filter elements, the hybrid
receiver achieved greater spatial diversity utilization
than the traditional MIMO-DFE.

Considering the relatively high error rates seen in

Figure 2(b), further improvements may be obtained
through use of space-time coding, a topic that this
paper ignores. In addition, use of sparse equalizers, a
common technique employed in UWA communication
systems, may alleviate much of the complexity exhib-
ited by the standard DFE benchmarked here within;
however, since both receivers compared in this paper
utilize the same style of equalizer, it is not clear that
sparse equalization would benefit one more than the
other. Regardless, this may be an area of potential
improvement in terms of both performance as well as
reduction in computational complexity, and as such,
deserves further exploration.

(a) SINR Comparison

(b) Error Rate Comparison

Figure 2: Simulation results of the 2× 2 MIMO sys-
tem. Improved spatial diversity gain attained with
hybrid array receiver proposed in this paper.
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6 Concluding Remarks

Exhibiting lower computational complexity and im-
proved receiver performance, the hybrid receiver
demonstrates the potential of array processing in
compensating for the underwater channel impair-
ments that currently limit achievable acoustic com-
munication capacity. Leveraging the large sonar ar-
rays currently in deployment throughout the world’s
oceans, the multichannel combiner MIMO-DFE al-
gorithm could greatly improve modern acoustic com-
munication capabilities at the relatively small cost of
a software implementation.
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