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Abstract In laptop and desktop computers, clocks and
busses generate significant radio frequency interference
(RFI) for the embedded wireless data transceivers. RFI is
well modeled using non-Gaussian impulsive statistics. Data
communication transceivers, however, are typically designed
under the assumption of additive Gaussian noise and exhibit
degradation in communication performance in the presence
of RFI. When detecting a signal in additive impulsive noise,
Spaulding and Middleton showed a potential improvement
in detection of 25 dB at a bit error rate of 10−5 when using a
Bayesian detector instead of a standard correlation receiver.
In this paper, we model RFI using Middleton Class A and
Symmetric Alpha Stable (SαS) models. The contributions of
this paper are to evaluate (1) the performance vs. complexity
of parameter estimation algorithms, (2) the closeness of fit
of RFI models to the measured interference data from a
computer platform, (3) the communication performance vs.
computational complexity tradeoffs in receivers designed
to mitigate RFI modeled as Class A interference, (4) the
communication performance vs. computational complexity
tradeoffs in filtering and detections methods to combat RFI
modeled as SαS interference, and (5) the approximations to
filtering and detection methods developed to mitigate RFI for
a computationally efficient implementation.
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1 Introduction

We address the problem of mitigating RFI experienced by
the wireless data communication transceivers deployed on
a computation platform [1,2]. Table 1 lists several wireless
data communication standards and the computing platform
subsystems (esp. clocks and busses) that have common spec-
tral occupancy. The interference with wireless transceivers
is not only due to the near-field coupling with radiation
at frequencies of the driving clocks but also due to the
harmonics produced by these subsystems. In [3], the impact
of computational platform generated RFI on wireless LAN
(WLAN, IEEE 802.11b/g) data communication transceiver
was studied. It was shown that computational platform
generated RFI may increase the receiver noise floor ten-fold,
causing more than 50% loss in range and a significant impact
on the throughput performance.

RFI is a combination of independent radiation events
and is well modeled using non-Gaussian impulsive statis-
tics. Middleton’s Class A, B and C noise models [4] and
Symmetric Alpha-Stable (SαS) model [5] are perhaps the
most common statistical-physical models of RFI. They are
well-suited for modeling the predominantly non-Gaussian
random process that arises from the nonlinear phenomena
that govern electromagnetic interference.

In this paper, we restrict our attention to combating Class
A and SαS noise. We evaluate the detection performance of
a correlation receiver, a Wiener filter, and Bayes hypothesis
testing [6] to mitigate Class A interference. Further, com-
munication performance of the myriad filter [5], the hole
puncher filter [7] and the maximum a posteriori (MAP)
receiver in the presence of additive SαS noise is investigated.
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Table 1 Example of computer subsystems interfering with wireless
standards [8,9,10]

Standard Wireless
Networking

Interfering Clocks and
Busses

Bluetooth Personal Area
Network

Gigabit Ethernet, PCI Ex-
press Bus, LCD clock har-
monics

IEEE
802.11b/g

Wireless LAN
(Wi-Fi)

Gigabit Ethernet, PCI Ex-
press Bus, LCD clock har-
monics

IEEE 802.11n High-Speed
Wireless LAN

Gigabit Ethernet, PCI Ex-
press Bus, LCD clock har-
monics

IEEE 802.16e Mobile
Broadband
(Wi-Max)

PCI Express Bus, LCD clock
harmonics

IEEE 802.11a Wireless LAN
(Wi-Fi)

PCI Express Bus, LCD clock
harmonics

Computational complexity vs. communication performance
tradeoffs of the filtering and detection methods is evaluated
and approximations are proposed for computationally effi-
cient implementation.

The paper is organized as follows. Section 2 gives a
brief introduction to Middleton noise models and Symmetric
Alpha-Stable models. Section 3 describes different parameter
estimation algorithms for these models, and their communi-
cation performance vs. computational complexity tradeoffs.
Section 4 quantifies the performance of the above methods
applied to measured data provided by Intel Corporation.
Section 6 describes some RFI combating techniques for
Class A and SαS noise. Implementation aspects, results from
computer simulations and the communication performance
vs. complexity analysis of these algorithms is presented in
Section 7, 8, and 9, respectively.

In this paper, “noise” and “interference” are used in-
terchangeably as representing unwanted signals. We de-
veloped a MATLAB toolbox (www.ece.utexas.edu/
~bevans/projects/rfi/software) that contains im-
plementation of the algorithms mentioned in this paper and
can be used to reproduce the obtained results.

2 RFI Modeling

Two general approaches for modeling electromagnetic inter-
ference (EMI) are through physical modeling and through
statistical-physical modeling. In physical modeling, each
source of EMI would require a different circuit model.
Statistical-physical models, on the other hand, are inde-
pendent of the physical conditions and provide accurate
universal models for EMI generated from natural and human-
made sources. Following are the two key statistical-physical
models for RFI.

2.1 Middleton Class A Model

Middleton Class A noise model represents narrowband
noise, i.e. when the interference spectrum is narrower than
the receiver bandwidth. The Class A model is uniquely
determined by the following two parameters [4].

– A is the overlap index. It is the product of the average
number of emissions events impinging on the receiver
per second and mean duration of a typical interfering
source emission, A ∈ [10−2,1] in general [11].

– Γ is the ratio of the Gaussian to the non-Gaussian
component intensity, Γ ∈ [10−6,1] in general[11].

The noise statistics for the Middleton Class A model can be
expressed as [4]

fZ(z) = e−A
∞

∑
m=0

Ame−z2/2σ2
m

m!
√

2πσ2
m

(1)

where σ2
m =

m
A +Γ

1+Γ
.

2.2 Symmetric Alpha Stable (SαS) Model

The practical applications of the Middleton noise models
are limited due to the intractable form of their distributions
[4]. Many authors have considered Symmetric Alpha Stable
(SαS) models as an approximation to Middleton models [12],
particularly when noise can be assumed to be broadband and
without a Gaussian component. In Section 4, we show that
the Symmetric Alpha Stable (SαS) model serves as a good
approximation for the physical phenomena underlying RFI.
A random variable is said to have a SαS distribution if its
characteristic function is of the form Φ(ω) = e jδω−γ|ω|α

where

– α is the characteristic exponent. It measures the “thick-
ness” of the tail of the distribution, where α ∈ [0,2].

– δ is the localization parameter. It is the median of the SαS
distribution and is also equal to the mean when 1≤α ≤ 2.

– γ is the scale parameter or the dispersion. It is similar to
the variance of the Gaussian distribution, where γ > 0.

3 Parameter Estimation

In this section, we discuss various parameter estimation
algorithms for both Class A and Symmetric Alpha Stable
(SαS) noise models.

3.1 Middleton Class A Model Parameter Estimation

An efficient parameter estimation method for Class A model
has been developed by Zabin and Poor based on the Expecta-
tion Maximization (EM) algorithm [11,13]. They express the

www.ece.utexas.edu/~bevans/projects/rfi/software
www.ece.utexas.edu/~bevans/projects/rfi/software
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Fig. 1 Fractional MSE in estimates of parameter A using EM algorithm
[11] for Class A model.

envelope probability density as a sum of weighted probability
densities, under the constraint that the sum of the weights is
equal to one. Let Θ = (A,K), where K = A×Γ , denote the
parameter set that has to be estimated.

The two steps, the expectation step (E-Step) and the max-
imization step (M-Step), of the expectation maximization
algorithm given in [13] are hence given as follows:

– E-Step: Evaluate Q(Θ |Θ (p)) , the expected value of the
log-likelihood function

– M-Step: DetermineΘ =Θ (p+1) to maximize Q(Θ |Θ (p))

Zabin and Poor [11] give a closed form of the log-
likelihood function Q(Θ |Θ (p)). The maximization step is
then developed as a two-step iterative procedure [11], where
we first maximize over A assuming that K is known and
then vice-versa. The first minimization can be expressed as
a polynomial of order 2 in A and the second minimization
can be expressed as a polynomial of order 4 in K (after the
linearizing approximation ). The two-step Maximization step
can therefore be solved efficiently as it reduces to finding
roots to polynomial equations of orders 2 and 4, respectively.

The performance of the EM Estimator developed by
Zabin and Poor for Class A model has been shown in Fig. 1
for the estimation of parameter A. The number of iterations
taken by the EM estimator to converge is proportional to
A and K. The number of iterations was observed to vary
between 2 and 30 iterations to converge to a relative error
in successive estimates to be less than 10−7 in the range
of interest. The estimates were calculated using N = 1000
envelope data samples which were generated synthetically
based on the envelope distribution. Note that the envelope
probability density function (pdf) is expressed as an infinite
sum and only the first 11 terms were used in simulations. The
results were averaged over 50 Monte-Carlo simulation runs.

3.2 Symmetric Alpha Stable (SαS) Parameter Estimation

An efficient, computationally fast estimator was developed
by Tsihrintzis and Nikias [12]. It is based on the asymptotic
behavior of extreme-order statistics, and is described next.

Let X = {X1,X2, . . . ,XN} be a collection of indepen-
dent realizations of a random variable with the pdf f and
cumulative density function (cdf) F . Let XM and Xm be
the maximum and the minimum in the given sequence,
respectively. Statistics of XM and Xm are referred to as
extreme-order statistics of the collection. For the alpha-stable
model, it can be shown, using the theorem for Feasible
Asymptotic Distribution for Extreme-Order Statistics, that
the density of maxima and minima ( fM and fm ) approach
the Frechet distributions as N→∞ [12]. Hence the estimators
for the three parameters of the alpha-stable models are given
as follows [12].

– Localization Parameter (δ ) estimator is given by δ̂ =
median(X1,X2, ...,XN)

– Characteristic Exponent (α) estimator divides the cen-
tered data (= X− δ̂ ) into L non-overlapping segments of
equal length (= N/L), calculates the standard deviation
s and s of the sequence

{
ln
(
X l
)}

and {− ln(−X l)},
respectively, where l ∈ [1, L]. Here X l and X l are the
maximum and minimum of the data segment l, respec-
tively. The estimator for the characteristic exponent is
then given by α̂ = π

2
√

6

(
1
s + 1

s

)
.

– Dispersion (γ) estimator is given by γ̂ =

 1
N

N
∑

k=1
|Xk−δ̂ |p

C(p,α̂)


α̂
p

where C(p, α̂) = 1
cos( π

2 p)
Γ (1− p

α̂ )
Γ (1−p) and p is an arbitrary

choice for the order (0≤ p≤ α̂/2) of fractional moment.

The performance of the extreme-order statistics method
[12] was observed when setting γ = 5 (dispersion parameter)
and δ = 10 (localization parameter) and by varying α

(characteristic exponent) over its entire range (0 ≤ α ≤ 2).
Estimates were calculated using N = 10000 data samples
generated synthetically based on the characteristic function
of symmetric alpha stable model. The data was segmented
into L = 1250 sets for the estimator for the characteristic
exponent α . Fractional lower-order moments of 1/3 were
used in the estimator for the dispersion parameter by choos-
ing p = α̂/3. The mean square error in the estimates for the
characteristic exponent (α) is given in Fig. 2. The results
were averaged over 100 Monte-Carlo simulation runs.

4 Measured Data Fitting

Measurements of radio frequency interference (RFI) on a
computation platform were obtained from Intel Corporation.
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Fig. 2 MSE in the estimates of the characteristic exponent for N =
10000 synthetic data samples, true parameters δ = 10 (localization), γ

= 5 (dispersion), L = 1250, p = α/3.

Measurement data was collected using a 20GSPS scope
which represented actual radiated data. Twenty-five sets of
measurement data were recorded in different configuration
of the computation platform (i.e. different subsystems active
etc). The noise was assumed to be broadband, i.e. noise
bandwidth was greater than the receiver bandwidth, and
the radio was used to listen to the platform noise only
(no data communication was being carried out). No further
information was provided. For each measurement dataset,
80000 baseband noise samples were used to generate a
sample probability density function (pdf) to compare with
the estimated Middleton Class A model, symmetric alpha
stable model and the Gaussian model. The Kullback-Leibler
(KL) divergence [14] is used to quantify the closeness of two
probability distribution functions, where a KL divergence of
zero indicates an exact match of the densities. The empirical
probability density of the measured data was estimated using
kernel smoothing density estimators.

We expect the Middleton Class model and the symmetric
alpha stable model to approximate the measured data distri-
bution better than the Gaussian model for impulsive noise
measurements. Further, the symmetric alpha stable model is
expected to provide a closer fit than the Middleton Class A
model since the measured RFI is broadband. Fig. 3 compares
the KL divergence of distribution of the estimated models
from the measured pdf. The measurement sets have been
sorted to have increasing KL divergence from the estimated
Gaussian model, i.e. increasing impulsiveness of the noise
samples. As seen from the figure, both symmetric alpha
stable and the Middleton Class A model provide a better
approximation to the measured data distribution as compared
to the Gaussian model.

Table 2 lists the estimated parameters and the correspond-
ing KL divergence from the measured data distribution for
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Fig. 3 Kullback-Leibler (KL) divergence of the measured PDF from
the estimated symmetric alpha stable PDF, Middleton Class A PDF and
an equi-powered Gaussian PDF for twenty-five measured RFI datasets.

Table 2 Estimated model parameters and the corresponding KL
divergence from the measured data distribution using symmetric alpha
stable (SαS), Middleton Class A and Gaussian noise models.

RFI
Model

Parameter Estimated
Value

KL Diver-
gence

SαS
Localization (δ ) −0.0065

0.0308Dispersion (γ) 0.2701
Characteristic Expo-
nent (α)

1.4329

Class A Overlap Index (A) 0.0854 0.0494Gaussian Factor (Γ ) 0.6231

Gaussian Mean (µ) 0 0.1577
Variance (σ2) 1
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Fig. 4 PDF of measured data compared with the estimated symmetric
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Gaussian PDF. Table 2 lists the estimated parameters for each of the
noise model.
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a moderately-high impulsive RFI dataset (measurement set
18 in Fig. 3). The KL divergence of the empirical density
was computed as 0.0308 from the estimated symmetric alpha
stable density, 0.0494 from the estimated Middleton Class A
density and 0.1577 from an equi-power Gaussian density.
Hence, the measured RFI data was modeled better by the
symmetric alpha stable model and the Middleton Class A
model as compared to the Gaussian model. The distribution
of the measured data, estimated symmetric alpha stable
model, Middleton Class A model and the Gaussian model
is shown in Fig. 4 to provide a visual justification for the
same.

5 System Model

We employ a simple communications model with additive
white Gaussian noise replaced by Class A and symmetric
α-stable noise. The discrete time received signal is

x(n) = ∑
k

√
Ess(k)gtx(n− kT )+ z(n) (2)

where s(n) is a sequence of transmitted symbols, gtx(·) is the
sampled pulse shape, Es is the transmitted signal energy and
z(n) is Class A or symmetric α-stable noise. The signal-to-
noise ratio (SNR) for Class A noise is defined as SNR = Es

σ2
Z

,

where σ2
Z is second moment of the noise. On the other hand,

since the second order moment of alpha stable processes
do not exist, we define the concept of generalized SNR as
GSNR = 10log Es

γ
, where γ is the dispersion parameter of

SαS process.
Two basic receiver structures are used. For the nonlinear

pre-filtering, we first pass the received signal through a
nonlinear filter hnl(·), then through a matched filter grx(·)
and into a decision rule Λ(·). This receiver model has been
studied in the case of zero-memory nonlinearity by Miller
and Thomas who motivate it by the fact that it is the structure
of a locally optimum detector in additive white noise [15,
6]. The other receiver structure is the standard matched filter
grx(·) followed by a MAP decision rule (Bayes Detection)
Λ(·) designed for Class A and SαS noise distribution.

For the maximum a posteriori (MAP) detector, both
Miller [15] and Middleton [6] mention that multiple samples
of the received signal provide a method to obtain large
performance gains in impulsive noise. Miller assumes a N-
path diversity; thus he has N independent versions of the
signal. On the other hand, Middleton assumes he has N
samples of the received signal, using a fractional sampling
approach. In this work, we adopt the approach used by
Middleton, although the results can be easily extended to
the framework proposed by Miller.

6 Filtering and Detection

After discussing different noise models and evaluating their
fit to real data, this section evaluates the detection per-
formance of various detection algorithms that make use
of these models. In particular, it starts by discussing the
Wiener filter, a linear algorithm, then moves to discussing the
optimal Bayes detection (MAP detector). After that it ends
by giving two nonlinear preprocessing techniques that can
be inserted before the correlation receiver for performance
gain as described in Section 5: the myriad filter and the hole
puncher.

6.1 Wiener Filtering

The Wiener filter is the optimal linear filter in terms of
minimizing the mean-squared error, and an finite impulse
response Wiener filter is designed using the famous Wiener-
Hopf equations. It assumes that the corrupting noise and the
desired signals are wide sense stationary. It is used as a linear
filter preceding the correlation receiver (see Section 5).

6.2 Coherent Bayes Detection

Bayes detection is performed by choosing the hypothesis
(bit) that maximizes the probability of receiving a signal
given the sent hypothesis. Using Class A pdf, Spaulding and
Middleton derived the optimal decision rule and its small
signal approximation for coherent Class A detection [6].

The Bayes approach to detection is based on hypothesis
testing. Spaulding and Middleton considered the case of
digital binary signaling (two hypothesis H1 and H2) [6].
Using an additive noise model , the optimal Bayesian
detection rule for a binary hypothesis case is given by:

Λ(X) = p(H2)p(X |H2)
p(H1)p(X |H1)

<H1

≥H2

1 where X is the received signal,

and p(.) is obtained from Class A pdf.
By taking the Taylor series expansion of the Class A pdf

and retaining the first-order terms of the gradient, Spaulding
and Middleton were able to obtain a simplified expression
for the detection rule, given as

x∗ = ∇X ln pZ(X) ·4S =
N

∑
i=1

(s1i− s2i)
d

dxi
ln pZ(xi) ≶H1

H2
0.

(3)

This formula has a form similar to the standard correlation
receiver for Gaussian noise with the exception of the non-
linearity d

dxi
ln(·) that precedes it.
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6.3 Myriad Filtering

Myriad filters provide a filtering framework with high sta-
tistical efficiency in bell-shaped impulsive distributions like
the SαS distribution. Gonzalez and Arce [5] have shown that
myriad filters present important optimality properties along
the α-stable family. The myriad filter is a sliding window
algorithm, that outputs the myriad of the sample window.
The myriad of order k of a set of samples x1,x2, . . . ,xN is
defined as

β̂k = argmin
β

N

∑
i=1

log[k2 +(xi−β )2]

= argmin
β

N

∏
i=1

[k2 +(xi−β )2] (4)

The robustness of this filtering stems from the free-tunable
parameter k (linearity parameter). This parameter k deter-
mines the behavior of the myriad filter: for large k the myriad
follows the behavior of a linear estimator, as the value of k
decreases the estimator becomes more resilient to impulsive
noise. The choice for k can be determined by the following
empirical formula k(α) =

√
α

2−α
γ

1
α where α and γ are the

parameters of the SαS noise [5]. It is used as a nonlinear filter
preceding the correlation receiver (see Section 5).

6.4 Hole Punching

The algorithm is a nonlinear filter that emulates the func-
tionality of a hard limiter by setting a received sample to
zero when it exceeds some threshold value THP [16,7]. Its
functionality can be represented as

gHP[n] =
{

x[n] |x[n]| ≤ Thp
0 |x[n]|> Thp

(5)

The intuition is that when a large value is received, we assume
it is an impulse and cannot be sure what the true value is. Hole
punching works well in impulsive noise, however it does not
affect Gaussian noise. The advantage of hole punching is the
significantly reduced computational complexity. It is used
as a nonlinear filter preceding the correlation receiver (see
Section 5).

7 Implementation Aspects

After presenting the theoretical background, this section de-
scribes various implementation approaches to the described
algorithms. In many cases, direct implementations of the
above methods result in high computational complexity.
As a result, simpler implementations are given and their
performance-complexity tradeoff evaluated in Section 9. In
particular, we discuss the Bayesian detection rule and its

small signal approximation and explore the performance of
using a lookup table of quantized pdf values and truncated
series approximation for Class A noise. In addition to that, we
discuss MAP detectors based on (SαS) pdf approximation,
hole punching, and different implementations of Myriad
filtering.

7.1 Class A Bayesian Detection Implementation

The pdf of a Class A random variable is given by an
infinite series as given in Section 2.1. This makes direct
implementation impossible. However, it is noticed that the
latter terms in the series have a diminishing weight (m! in the
denominator), that eventually tends to zero as m→ ∞. Thus
the pdf can be approximated by truncating the series given by
(1), after a certain m. In Section 8, we show the performance
of this approximation as the number of truncated terms varies.

On the other hand, a low complexity implementation
is given by the form of a look up table. As a result, the
problem reduces to quantizing Class A pdf into discrete
values, and using those values in the MAP detector. The
main premise in this implementation is that the parameters
of the Class A model do not vary significantly with time or
that the communication performance is not very sensitive to
parameter inaccuracies.

7.2 Symmetric α-Stable MAP Detector Implementation

The Symmetric α-Stable random variable does not have a
closed form pdf. This complicates the design of the MAP
detector, since the pdf has to be approximated using the
characteristic function given before in Section 2.2. Many
approximations for the Symmetric α-Stable pdf exist but they
suffer from numerical instability [17,18]. A well-behaved
and computationally tractable approximation was proposed
by Kuruoglu [19]. The author shows that we can write
a symmetric α-stable random variable as the product of
a Gaussian random variable and a positive stable random
variable. If we define a normal random variable X ∼N(0,2γx)
and another, positive stable random variable Y which is

independent of X , such thatY ∼ Sαz/2(−1,cos(παz
4 )

2
αz ,0), we

get a symmetric α-stable random variable Z = Y
1
2 X . Letting

V = Y
1
2 , we see that

fZ(z) =
∫

∞

−∞
fZ|V (z|v) fV (v)J(z,v)dv (6)

= 1√
2π

∫
∞

−∞
e
− z2

2γv2 fV (v)v−1dv (7)

where J(z,v) is the Jacobian of Z with respect to V .
The most pertinent concept in this work is the realization

that the pdf fZ(z) can be sampled uniformly to form a finite
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mixture model approximation. The approximation can be
written as

pα,0,γ,µ(z) =
∑

N
i=1 v−1

i e
− (z−µ)2

2γv2
i h(vi)

∑
N
i=1 h(vi)

(8)

where N is the number of components in the mixture.
To generate this pdf, we can take the characteristic

function of theY and evaluate it at N equally spaced points by
taking the fast fourier transform (FFT). Finally we compute
the finite pdf using the fact that the mixing function h(v) =
2v fY (v2) and plugging it in (8) yielding

pα,0,γ,µ(z) = ∑
N
i=1 2e

− (z−µ)2

2γv2
i fY (v2

i )
∑

N
i=1 fY (v2

i )
. (9)

This pdf approximation forms the basis for an approxi-
mation to the MAP detector. A better approximation can be
obtained by replacing the uniform sampling by a adaptive
optimal sampler that would minimize the squared error.

7.3 Symmetric α-Stable Myriad Filter Implementation

The myriad filter is a constrained optimization problem
where the output β ∈ [xmin,xmax], given that xmin and xmax are
respectively the minimum and maximum value of the data
samples in the filtered window. Since the objective function
is a polynomial function of β , it is also differentiable in β .
By Fermat’s theorem, extreme function values are stationary
points of the objective function. Using the previous theorem,
we propose the following algorithmic implementation of the
myriad filter.

1. Expand the polynomial given by (4) in β .
2. Take its derivative by multiplying the coefficients by

the appropriate constant according to the corresponding
power of β .

3. Root the obtained polynomial and retain the real roots.
4. Evaluate the objective function at the roots and the

extremities and output the minimum.

By going through all the stationary points and the
extremities we guarantee finding the minimum over the
required domain.

A less complex implementation is obtained by restricting
our search space just to the samples in the window, ie.
β ∈S = {x1,x2, . . . ,xN}. This filter is called the Selection
myriad filter [20].

8 Simulations

Fig. 5 provides simulation results for a raised cosine pulse
(10 samples per symbol period, 10 symbols period per
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Fig. 5 Communication performance in the presence of Middleton Class
A interference with parameters A = 0.1 and Γ = 0.5×10−2.

symbol) sent through a memoryless channel (hence no inter-
symbol interference) and corrupted by Middleton Class A
interference (with A = 0.1 and Γ = 0.5×10−2). The Wiener
filter does not offer much improvement over the correlation
receiver since it is a linear filter that is suboptimal in non-
Gaussian noise. The improvement in communication perfor-
mance by using the Bayes detection rule is approximately 25
dB for a bit error rate of 10−3. The small signal approximation
performance varies according to the operating SNR. At low
SNRs (below −7dB), a gain of around 20dB is obtained.
However, at higher SNRs the small signal approximation fails
to achieve the high gains due to the inaccuracy of the Taylor
expansion for higher amplitude signals but still maintains
a good gain of around 10dB for the higher SNR range (0-
15dB). In addition to that, simulations have shown that only
relatively few terms (around 3) contribute the most to the
communication performance under Class A impulsive noise
mitigation.

The performance of the lookup table implementation is
given in Fig. 6. As discussed in Section 7.1, the lookup table
implementation consists of mainly quantizing the Class A
pdf into Q levels. The performance degradation is about
3dB for a 10-level quantization, and only 1dB for a 20-
level quantization. As seen later, this method reduces the
computational complexity considerably. However, updating
table values to parameter changes is more difficult, which
makes it more suitable for an implementation in system
where the environment does not change rapidly.

Fig. 7 compares the communication performance in the
presence of additive SαS noise with α = 0.9, γ = 1, and
δ = 0. The myriad filtering is preceded by the parameter
estimation for SαS and followed by the correlation receiver.
It is observed that the performance of the MAP detector is
the best, followed by the myriad filter, hole punching, and
then the standard correlation receiver. The performance gap
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Fig. 6 Communication Performance of the Class A look up table
detector with Q quantization levels in the presence of Class A
interference with parameters A = 0.1 and Γ = 0.5×10−2.
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Fig. 7 Communication performance in the presence of additive SαS
noise with parameters α = 0.9, γ = 1, and δ = 0.

between the MAP approximation and the myriad filter is
around 4dB at a BER of 10−1, while the gap between the
myriad and the hole puncher is around 2dB. It is interesting
to note that the simple hole puncher performed relatively
well compared to the myriad and the correlation receiver.
However, this only applies to the 2PAM case. Under higher
order modulation techniques, the hole puncher performance
suffers from severe degradation.

Fig. 8 shows the communication performance using
both the polynomial rooting approach, and the significantly
lower complexity selection myriad filter. The polynomial
rooting method only provides marginal benefits, as a result
the simpler selection myriad is considered as the preferred
method of implementation.

Fig. 9 illustrates how the concept of oversampling
improves the communication performance under impulsive
SαS noise. As N is reduced the performance of the MAP
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Fig. 8 Performance comparison between the optimal myriad and the
selection myriad in the presence of additive SαS noise with parameters
α = 1.5, γ = 1, and δ = 0.
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Fig. 9 MAP detector performance with varying the time-bandwidth
product (N) in the presence of additive SαS noise with parameters
α = 1.5, γ = 1, and δ = 0.

degrades, which agrees with the results obtained by Middle-
ton for the case of Class A noise [6]. However, it should be
noted that performance variations are relatively small which
will prompt us to use smaller values of N which are more
practical to use. As N increases, the sampling rate of the
analog to digital converter must increase as well. For large
bandwidth signals, this may prove intractable.

9 Complexity vs. Performance Comparison

In this section, we provide a high level analysis of the
computational complexity for each of the previous methods,
according to the interference type.
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Table 3 Complexity vs. performance comparison for Class A noise
mitigation algorithms

Method Computational
Complexity

Detection Per-
formance

Bayesian Θ(NMKU) High
Small Signal Approx. Θ(NMK) High at low SNR
Correlation Θ(M) Low
Wiener Θ(MT ) Low
Look Up Table Θ(ML) High

9.1 Class A Noise Mitigation Algorithms

It is expected that the Bayesian detection rule to be the most
complex, followed by Wiener filtering, and the correlation
receiver, and then the lookup table. To see this, one should
observe that the complexity of the Bayesian detection is
Θ(NMKU) operations to perform detection, due to the
complex pdf function for Class A noise, where M is the
number of samples per symbol, N is the number of terms
we retain from the infinite series, U is the cardinality of the
signaling space and K is the number of operations required
to compute a transcendental function (an exponential in
this case). The small signal approximation reduces the
complexity to Θ(NMK). This is because the computation of
the nonlinearity in (3) requires Θ(NK) and it has to be done
for M samples. The Wiener filer on the other hand requires
Θ(MT ) operations to compute its output, where T is the
number of taps of the Wiener filter. The correlation receiver
in the given setting only requires Θ(M) operations. At last,
the look up table approach requires Θ(L) searches, where
L is the number of quantization levels, for each of the M
samples. This results in a Θ(ML) complexity. Taking these
complexities and the results of Section 8, it is noticed that
additional gain comes at the cost of higher complexity. The
results are summarized in Table 3.

9.2 Symmetric α-Stable Noise Mitigation Algorithms

The computational complexity per symbol of the simple
hole puncher is Θ(M), where M is the oversampling ratio.
This follows from the fact that every sample must be
evaluated and a decision made about it. The complexity of
the myriad filter depends on the specific implementation.
To perform the polynomial rooting approach we need: (a)
polynomial expansion (equivalent to a convolution) with
complexity Θ(MW 2), (b) root finding which is equivalent to
eigenvalue decomposition of complexity Θ(MW 3), and (c)
W multiplications. Thus the complexity of the polynomial
rooting approach is given by Θ(MW 3). On the other hand,
the implementation of the selection myriad requires us
to multiply W values for each value and compare them
leading to Θ(MW 2) complexity. The performance difference

Table 4 Complexity vs. performance comparison for symmetric α-
Stable noise mitigation algorithms

Method Computational
Complexity

Detection Per-
formance

MAP Approximation Θ(MNS) High
Myriad (Optimal) Θ(MW 3) Low
Myriad (Selection) Θ(MW 2) Low
Hole Puncher Θ(M) Low

between these two methods, given in Fig. 8, is minimal which
justifies the preference of the less complex selection myriad.

The complexity of the approximate MAP is Θ(MNS)
where N is the number of Gaussian components in the
Gaussian mixture used to approximate the SαS distribution,
and S is the constellation size. This follows from the fact the
we need to sum N weighted exponentials for S times. The
results are summarized in Table 4.

10 Conclusion

This paper describes the problem of platform RFI noise that
is becoming more relevant as the computational platforms
continue to shrink. The paper starts by describing the problem
and its relevance in current communication systems. Then it
provides a mathematical description of the noise statistics by
providing various models that are being used to model this
time of noise. After that, the paper gives various algorithms
that can be used to estimate the parameters of the mentioned
models and goes on to evaluating the accuracy of the given
models in fitting real data samples.

After modeling the noise, the paper addresses the ques-
tion of what can be done to mitigate the effects of impulsive
noise. It describes various approaches for both Class A and
SαS noise, and analyzes their complexity vs. performance
tradeoff. It is noticed that the effects of the impulsive
noise can be mitigated by the application of the appropriate
methods for both Class A and SαS noise. For Class A noise
mitigation, it is observed that the small signal approximation
provides the best performance vs. complexity tradeoff at
low SNRs. For higher SNR, the MAP detector can be used
with a reduced number of terms in the series expansion
for reduced computational complexity. On the other hand,
the selection myriad filter achieves a good balance between
the complexity and performance for SαS noise mitigation.
Both of the aforementioned methods are made up of a non-
linear filter preceding the standard correlation receiver, which
makes them attractive for practical system deployment. It is
also noticed that oversampling in the order of 40 samples is
enough to achieve considerable gains under impulsive noise.

In conclusion, this paper described computationally trac-
table methods for mitigating impulsive noise which can have
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a substantial impact on current wireless receivers embedded
in computational platforms such as laptops and cellphones.
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