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Abstract—With increasing spatial reuse of the radio spectrum, [8]. The symmetric alpha stable model has been widely used
co-channel interference is becoming the dominant noise sme to model co-channel interference in a Poisson field of nar-
and may severely degrade the communication performance of \\vhand interferers irad-hocnetwork environments [4], [5],
wireless transceivers. In this paper, we consider the proleim 91. Middlet dels h b derived und id
of statistical-physical modeling of co-channel interferace. Sta- [9]. Mi ) eton m?_ els avg een derved under a wider range
tistical modeling of interference is a useful tool to analye Of physical conditions that include narrowband and broadba
the outage probabilities in wireless networks and to design interference emissions and transients at the receivey alse
interference-aware transceivers. Our contributions inclide (1) model the background thermal noise present at the receivers
developing a unified framework to derive interference moded [8]. Middleton models, however, have not been widely used

for various wireless network environments, (2) demonstrang to ch terize th h Linterf in wireless ok
the applicability of the symmetric alpha stable and Middleton 0 characterize the co-channelinterierence in wirele

Class A distributions in modeling co-channel interferencein ~ €nvironments.

ad-hoc and cellular network environments, and (3) deriving One of the key contributions of this paper is to develop

analytical conditions on the system model parameters for wish g unified framework to derive the co-channel interference

these distributions accurately model the statistical proprties of  ciadistics in different wireless network environments asd

the interference. Simulation results allow us to compare th . - - .

key properties of empirical co-channel interference and tleir tab“Sh the applicability of 'Fhe symmetric alpha stable and

statistical models under different wireless network envionments. Middleton Class A model inad-hoc and cellular network
environments. Analytical constraints on the system model

I. INTRODUCTION parameters for which these distributions accurately mtuk|

Current and future wireless communication systems requitgatistical properties of the interference are also delrivéhen
higher spectral usage due to increasing demand in user dgfgct statistics cannot be derived in closed-form, the pape
rates. One of the principal techniques for efficient spectrfPcuses on accurately modeling the tail probability of the
usage is to implement a dense spatial reuse of the availafgrference distribution. _ _
radio spectrum. This causes severe co-channel interferenc Y& Will use the following notation throughout this paper.
which limits the system performance. Knowledge of the if?@ndom variables are represented using boldface notation,
terference statistics is integral to analyzing perforneané deterministic parameters are represented using nondmedf
wireless networks, including outage probability and tigou  tyPe.Ex {f(X)} denotes the expectation of the functiffX)
put, and can also be used to design transceivers with imgroy¥th respect to the random variabk, andP(-) denotes the
communication performance [1], [2]. probability of a random event.

Statistical modeling of co-channel interference has been 1. SYSTEM MODEL
extensively studied in literature, for both fixed topologirev
less networks [3] and random Poisson interference fields [4l}
[5]. The statistical techniques used in modeling interfiese r
include empirical methods and statistical-physical mdtho
Empirical approaches, such as using the Gaussian mixt
distribution [6], fit a mathematical model to measured reeei
signals, without regard to the physical generation mecmsi
behind the interference. Statistical-physical models, tioa
other hand, model interference based on the physical piegi
that govern generation and propagation of the interferen
causing emissions. Statistical-physical models thus tertzk D(r,rp) ={z € R?:ry < 2| <71} (1)
more accurate than empirical models. ) ) )

Key statistical-physical models include the symmetrichalp where||-|| denotes the Euclidean norm. The three-dimensional

stable model [7] and the Middleton Class A, B and C modefcenario, in which the interferers are located in a volunaesp
’ around the receiver, is a straightforward extension to e t

This research was supported by Intel Corporation. dimensional scenario considered in this paper.

Consider a wireless communication system in which the
ceiver receives a signal of interest in the presence of
interfering signals. The interfering users are assumedeo b
(e} the same plane as the receiver, concentrated on a spatial
interference spacé'(r;,r,), and be potentially infinite in
number. The receiver is assumed to employ a single omni-
directional antenna and is located at a distamge from

the origin of the two-dimensional coordinate system. The
C%arametric interference spat¥r;, r) is defined as
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Fig. 1: Interference space and receiver location for diifierwireless network environments.

At each sampling time instant, the number of active Middleton Class A model (without the Gaussian component)
interferers are assumed to be distributed according to @aspafor interference inad-hocand cellular network environments.
Poisson process on the spaCewith density \. As shown The characteristic function of the sum interfererfifecan be
in [4], this model is sufficient to capture both the emergingxpressed as
interferers, whose contributions arrive at the receivertfe 4
first time at the time instant, and interferers that first emerged &y (w) = E,, n, x, K {ej Dt hixi}
at some prior sampling time instant < n but are still active

(4)

till the sample timen. Further, we assume that the interferers - = o SF T ThX
transmit in an uncoordinated manner, which is requiredtier t - ];)E {e - fin Tre,ma)
Poisson assumption to be valid. - .

f P (k n F(Tl, T‘h)) . (5)

The baseband model for the sum interfererifeat the

receiver at any time instant can then be represented as  conditioned on the number of interferers present in the spac

K I (r;, ), the interferer locations are mutually independent and
Y = Zri *h;X; (2) uniformly distributed across this space [7]. Hencefortte w

i=1 remove the conditioning on the number of interferers from

whereK is the random number of active interferers at that timghe expectation by noting that the interferers are unifgrmi

instant,s is the interferer indexr; is the random distance of distributed in the spacé'(r;,7). Further, in the absence

active interferers from the receiver, is the power pathloss of power control, the emission from the interferers can be

exponenth; is the independent and identically distributechssumed to be independent and identically distributed. The

(i.i.d.) random fast fading experienced by each interfergharacteristic function can be expressed as

emission, andX; are the random baseband emissions from

. . 00 4 k
the active interferers. o - _ By (w) = Z [IE {ejwr 3 th %
We assume that all potential interferers haud. symmetric P
narrowband emissions of the form [10] D (12 Z)w n(r2—r?)
TNy — T € o

X; = B; cos(¢);) 3) — (6)
where B; is thei.i.d. envelope, andp, is thei.i.d. random /\W(Ti_rf)(E{ejw;%hx}_l)
phase of the emissions. Further, we assume that the emerging =e (7)

times of the interferers are uniformly distributed betwebka
sampling times at the receiver. Thus the phasef the emis-
sions at the sampling instants can be assumed to unifor
distributed betweefD, 27]. The assumption dfi.d. emissions .
is valid for Wirelesiocorimunication r?etworks without powerY(‘”) = A (i, = 17) (ErvhvB@ {ewr e COS(¢)} - 1) .
control and may not be true for modeling interference from (8)
diverse types of interferers with unequal transmit poweg.(e By using the identity

base stations and mobile users).

I1l. STATISTICAL MODELING el 4co5(@) =N " jFey Ty (a) cos(ke) 9)
k=0

In this section, we derive the characteristic function of
the co-channel interference. We establish a unified framehereey = 1, ¢, = 2 for kK > 1, and Ji(-) denotes the
work and derive the symmetric alpha stable model and tBmssel function of ordek, the log-characteristic function can

By taking the logarithm of®y (w), and noting thatX =
nﬁ os(¢), the log-characteristic function is



be expressed as

by (w) = Am (rj =) x

<E {ijeka (wr_%hB) Cos(k¢)} _ 1> ' (10)
k=0

Since¢ is assumed to be uniformly distributed betweeand
27, Eg {cos(k¢)} = 0 for £ > 1, and (10) reduces to

Uy (@) =Am (1F = 17) (Ben {Jo (or"#0B) } 1)
(11)
The log-characteristic function derived in (11) holds imgeal

for any space of narrowband interferers governed by thg,

parametersr;, and r; and the receiver locatiom,,. The

B. Cellular network (Cases Il and Ill)r; > 0, r, < oo,
T <171 < Th

Consider a cellular network, as shown in Fig. 1, where all
the interferers are outside the cell in which the desiredixer
is present«; > 0). Further, we consider the interferers within
a maximum distance beyond which the interferers do not
generate significant interference, (< o). In [10], Middleton
proposed an approximation of the log-likelihood functiam f
w in the neighborhood of zero. From Fourier analysis, the
behavior of the characteristic function in the neighbotthoo
of zero governs the tail probabilities of the random varabl
e proposed approximation is based on the following idgnti

[10]:

receiver locationr,, affects the expectation in (11). We now

consider the following two cases and further simplify thg-lo

characteristic function.
A. Ad-hoc network (Case Iy, = 0,7, — o0

w2E, p p{r 70282}
— 1«

ErnB {Jg (wrfghB)} =e” (1 + @((Ifg)

Here, ©(w?*) indicates a correction term with the lowest

Consider anad-hoc network, as shown in Fig. 1, whereexponent inv of four and is given by (19). Using this identity,
the interfering sources are distributed according to aiabatthe log-characteristic function in (11) can be expressed as

Poisson point process on the plane. Note thgt can be

assumed to b@ without any loss in generality of the result. "

We consider the interference spdc, r;,) and take the limit
on the log-characteristic function ag — oo [9]. Recall that

v (w) = A (i — 1) <e_ w2Er’h’B{:—ﬂh2B2} - 1) . @7

the expectation in (11) is conditioned such that the interfe Equation (17) is the log-characteristic function of a Mietuin
locations are uniformly distributed in the spaceThe distance Class A distribution (without the additive Gaussian compo-

of the interferer from the receiver thus follows the distiion
2,,‘ .
= if 0<r <y,
J(r) { Oh if 7>y
Expanding the expectation in (11), we have

(71@}1,3 {JO (wr*%hB) } f_;‘dr
h

0
- 1). (12)

Integrating the above by parts, taking the limitrgs— oo, and

. 2
lim Amry,

Th—00

Yy (w)

noting thatlim,, ..o Eg n {r% (JO (wr,:%Bh) - 1)} =0,
we have
Uy (W) = [w|* ArEy p {h%B%}/ I (f) da (13)
0 7
= —|w|* MEnp {h%B%}/ Jl(f) dr.  (14)
€T

0
Equation (14) is the log-characteristic function of a syrnme
alpha stable distribution centered at zero such that
Yy (w) = (15)
wherea = % is the characteristic exponertt € a < 2), and

—olwl|®

nent) such that
w2Qq 4
Yy (w) = A <e 74 — 1)

where A = M (r7 —r?) is the overlap index that indicates
the amount of impulsiveness of the interference, &8x3d =

AXE’“"“’B{; "B} s the mean intensity of the interference
[8]. Hence, the co-channel interference where the interfer
are distributed according to a spatial Poisson process @n th
spacel'(r;,ry), when0 < r; < rp < oo, as observed at the
base station+,, = 0) or the mobile userq < r,, < 7)
follows the Middleton Class A distribution. It should be
emphasized that the correspondence to the Middleton Class
A distribution is particularly valid for modeling the tailrpb-
abilities.

The approximation in (16) and the subsequent interference
model in (18) is valid for; > 0 andr,,, < r;, Sincefloy — o
asr; — 0 or asr,,, — r; which is not physical since the mean
intensity is always finite in this case. This is unlikase lin
Section IlI-A where the interference was modeled fpe= 0.
This is the key difference between the symmetric alpha stabl
and Middleton Class A models for interference.

Asr, — oo, the overlap indeXd — oo also, while the mean
intensity Q2,4 of the interference is finite. From (18), it can
be shown that the Middleton Class A model is equivalent to

(18)

o = M\E, g {h*B*} fooo % is the dispersion parameter ofa Gaussian model a4 — oo. The Gaussian model, however,
the symmetric alpha stable distribution [7], [9]. Hence,eamh may be an inaccurate model for the sum interference in this
the interferers are distributed according to a spatial wis scenario. This is due to the fact that tiw?) correction

process on the entire plane, the co-channel interferericavio
a symmetric alpha stable distribution.

term in (16) cannot be ignored ag — oo. The parameter
r,, however, can be bounded above in magnitude because the



interference power cannot be observed if its intensityvgdlo ~ Using (24), the tail probability for the Middleton Class A

than the receiver noise floor [10]. distribution with parametersl and{,4 can be expressed as
Next, we quantify the range of the system model parameters

over which the Middleton Class A model provides an accu- 2 eAA™ ] Y

rate approximation to the co-channel interference in tallu Prca(Y >y) = Z_:l m) §erfc [2mSiaa (26)

network environments. Th@(w?) correction term in (16) can "= A

be expressed as [10] 2

for y > 0. Here erfez) = —= [ e~ dt represents the com-

x

i k w2k lementary error function. The tail probability for a Gaiass

22k | " Ez {Z} random variable with variance? can be expressed as
k=2
(19) 1 Y
where the random variabl& = r~"h2B2, and F, (a; b; z) Poavss(Y >y) = gerfc| = |. (27)
. . . . . V20
is the confluent hypergeometric function of the first kind.
From (16), a first-order measure of the accuracy of the V. RESULTS

approximation can be expressed by comparing the coefficienUsing the physical model discussed in Section II, we apply
of the w? term in Q*M against the coefficient Monte-Carlo numerical techniques to simulate the co-ckann
of thew? in the correction term®(w*). Using the fact that mterferen_ce observed at the receiver in various wweleegs n
work environments. At each sample instant, the location of
Fr(=25152) = 1(I2 — 4z +2), (20) the active interferers is generated as a realization of a two
2 dimensional spatial Poisson point process with intensity
the coefficient ofw* in the correction term (i.ec,) can be 10~* within the regionI'(r;,7;,). Parameter values for, 7y,
expressed as andr,,, change according to the wireless network model under
E {ZQ} _2E {Z}]2 cpnsideration. It should be_noteq that param(_e_ters den_oting
_Z z . (21) distance are are treated as dimensionless quantitiessadoibs
128 not influence the statistics of the resultant interference.
Thus, the Middleton Class A model provides a good approxi- From (2), the interference observed at the receiver at each
mation when the system model parameters, sueh,as, rm.  time instant is a sum of narrowband emissions, as given by (3)

Cq

and~ satisfy from the active interferers ifi (r;, 7, ) which have experienced
Eg {ZQ} —2[Ey {Z}]2 [Ez {Z}]2 propagation pathloss and fast-fading. T our simulati(ms,
198 33 (22) assume a power path-loss exponent= 4 and Rayleigh

fading (h) with unit energy. The amplitude of the interferer

Ernp {r"?h'B*} 1 emissions,B, was chosen as a constant for a particular
4 [E, S neB2Y? 2 wireless environment such that the tail probabilitgY > y),
. x1 ’h’E.; {r H . _at an interference threshold gf= 10 is of the order ofl0—>.

A desirable attribute of the Middleton Class A model ishe probability distribution of co-channel interferenseem-
the existence of a closed-form expression for the proligbilipirically estimated fron500000 time samples of the received

density function. Using the log-characteristic function(18), interference using kernel smoothed density estimators.

<< 1 (23)

the probability density function can be expressed as Accuracy of the statistical-physical models for co-chdnne
- N _ 2 interference is established by comparing the empiricaliand
—A e "A™ e om terference model tail probabilities. We compare the asyipt
= 1 —_— 24
fry)=e W)+ mX_:l m! 2no, (24) decay rates of the tail probabilities given by
2 —m . i - log (P(Y >
vyhere or, 84 and §(-) denotes the Dirac delta func ply) = — g (P( y)) (28)
tional. Y
IV. TAIL PROBABILITIES wherep(y) is the asymptotic decay rate at interference ampli-

In this section, we give the analytical expressions for &-ﬂettudey. The decay rate is the rate at which the tail probability

probabilities of the three interference models discusseithé asymptotically approaches zero. Impulsi_ve dis?ribut_iha_se
paper. The tail probability of a symmetric alpha stable and smaller decay rates as compared to non-_lmpul_swg dls_tubﬂt
variable with parameters ando is given as [7] and are hence referred to as heavy-tailed distributiong Th

decay rates are a useful metric to compare the extreme value

Poos(Y > y) = y_%’;C (@) (25) Statistics of different statistical models with respect the
empirically estimated distribution.
asy — oo, where Following are the results comparing symmetric alpha stable
2 whena = 1, a_nd_Mi(deeton Class A _distributions against the empirical
Cla) = { R otherwise distribution of co-channel interference for each of thealéss
T(2—a) cos(Z2) network environment described in Section Ill. Further, we
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Fig. 2: Decay rates for simulated and interference modétibligions in Case Fig. 4: Decay rates for simulated and interference modétibigions in Case
| (rp, =00, =0,B =2). II-b (rp, = 80, = 20, B = 1600).

TABLE I: Kulback-Liebler divergence between empirical amddel distribu-
6 ; ; ; tion in different wireless network scenarios.

| | Model Distribution |
5 1 Wireless network| «-stable Class A Gaussian
= Empirical scenario (w/o Gaussian term)
ar —v— Class A (w/o Gaussian)| | Case | 0.0032 - 4.1727
© — % q-Stable Case Il-a 0.1993 0.0069 0.5628
g —o— Gaussian Case II-b 0.0548 0.0914 0.2068
z° ] Case lll-a 0.1804 0.0089 0.5733
g Case I1I-b 0.0992 0.1369 0.3376
5l
(Fe—8—8—s—8—a—8 §—e—8 & 88888880 the cell. We place the receiver at the origin of our two-
dimensional space and the interferers are located withén th
o = . S - region(r;, ) such thatr;, > 0,7, < co. In Section Ill, we
Interference Amplitude show that the probability density function at the extremleiesa
Fig. 3: Decay rates for simulated and interference modetfibiigions in Case of the r_esultant Interference in this e_nw_ron_ment is modele
ll-a (rp, = 40,7, = 20, B = 1800). well using the Middleton Class A distribution. The model

is accurate only for certain ranges of the system parameters
r; andr, as given by (23). Case Il is sub-divided into two
compare the empirical distribution of co-channel inteefeze scenarios: Case Il-a and Case Il-b. In Case lI-a, the siiulat
to a Gaussian distribution with equal variance for all scirsa parameters are within range of values given by (23) witand
r, as20 and 40, respectively. Fig. 3 shows the decay rates
A. Ad-hoc network (Case ly; = 0,7, — oo of co-channel interference generated in this wireless ogtw
Case | describes the wirelead-hocnetwork model, where are approximated well by the Middleton Class A. For these
the interferer are located in the regidi0, r;,) and distributed values of parameters andr;, the higher-order terms in the
as a spatial Poisson process with intensityin Section Ill, characteristic function from (18) are negligible. In Case |
we have shown that the resulting interference would haveba the effect of the higher-order terms in the characteristi
symmetric alpha stable distribution. Fig. 2 shows the dec#iynction is illustrated by choosing parameter valugandry,
rates of the empirical distribution compared with the statal as 20 and 80, respectively. Fig. 4 shows that the Middleton
models. The empirical distribution indeed matches closely model from (24) is no longer a good approximation to the
an alpha stable distribution in terms of decay rates. Naa¢ tiensity function of received interference.
the Middleton Class A model is not suitable in this case as
(a4 — oo (as discussed in Section I11). C. Cellular network (Case Ill)r; > 0, rp, < 00, oy < 177
Case Il also describes a cellular network, but unlike Case
B. Cellular network (Case Il)r; > 0, rp, < 00, 77 = 0 Il the receiver is located away from the center of the cell.
Case Il describes the cellular network model where thEhe distance of the receiver from the cell center (origin) is
receiver is located at the center of the cell. We assurgéen by r,,. We simulate co-channel interference for two
that the base station employs time or frequency allocatisnenarios: in case lll-a the receiver is located close to the
amongst the users and hence no interferers are presennwittell center(r,, << ), and in case lll-b the receiver is



TABLE II: Statistical-physical modeling of co-channel énterence in different wireless network environments.

| | Symmetric Alpha Stable

| Middleton Class A (w/o Gaussian component) |

1. Statistical-physical model fo

interference in T — 00)

a. wirelessad-hocnetwork environments( = 0,

b. wireless cell-edge users in cellular netwo
environment ¢, — ry, rp — 00)

a. wireless cellular network environment,{ <
ry <rp, >0, >>71)

~

2. Statistical property modeled | exact statistics

tail probability

3. Accurate model for rp=00rry, =71, andr, >>r;

when conditions in (23) are met

4. Additive thermal noise

Middleton Class B (narrowband) model [8]

Middleton Class A model

7 T T T
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Fig. 5: Decay rates for simulated and interference modetfibiigions in Case
l-a (rp = 40,r; = 20, ry, = 3,B = 1600).
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Fig. 6: Decay rates for simulated and interference modétibigions in Case
-b (rp, = 40,7 = 20, rym = 15, B = 400).

Another method to quantify the accuracy of fit of a statidtica
model is to use the Kulback-Liebler (KL) divergence [11],
where a KL-divergence of zero indicates an exact match of
the densities. Table | lists the KL-divergence values betwe
empirical and model distributions for different networkven
ronments. Correspondence in tail probabilities does nplym
a lower KL-divergence, since the KL-divergence finds the rel
ative error between two distribution functions over theitiee
support. Thus, while the alpha stable model has a relatively
low KL-divergence with respect to the other statistical rmisd
it may still be an inaccurate model for modeling the extreme
statistics (as in Case Il and Case lll-a).

In all of the network models discussed above, the statistics
of co-channel interference are not modeled well by the Gaus-
sian distribution, particularly at high interference aihples.
The Gaussian distribution decays far too quickly to model th
impulsive nature of co-channel interference accurately.

Key insights from this paper are summarized in Table II.
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