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Abstract—With increasing spatial reuse of the radio spectrum,
co-channel interference is becoming the dominant noise source
and may severely degrade the communication performance of
wireless transceivers. In this paper, we consider the problem
of statistical-physical modeling of co-channel interference. Sta-
tistical modeling of interference is a useful tool to analyze
the outage probabilities in wireless networks and to design
interference-aware transceivers. Our contributions include (1)
developing a unified framework to derive interference models
for various wireless network environments, (2) demonstrating
the applicability of the symmetric alpha stable and Middleton
Class A distributions in modeling co-channel interferencein
ad-hoc and cellular network environments, and (3) deriving
analytical conditions on the system model parameters for which
these distributions accurately model the statistical properties of
the interference. Simulation results allow us to compare the
key properties of empirical co-channel interference and their
statistical models under different wireless network environments.

I. I NTRODUCTION

Current and future wireless communication systems require
higher spectral usage due to increasing demand in user data
rates. One of the principal techniques for efficient spectral
usage is to implement a dense spatial reuse of the available
radio spectrum. This causes severe co-channel interference,
which limits the system performance. Knowledge of the in-
terference statistics is integral to analyzing performance of
wireless networks, including outage probability and through-
put, and can also be used to design transceivers with improved
communication performance [1], [2].

Statistical modeling of co-channel interference has been
extensively studied in literature, for both fixed topology wire-
less networks [3] and random Poisson interference fields [4],
[5]. The statistical techniques used in modeling interference
include empirical methods and statistical-physical methods.
Empirical approaches, such as using the Gaussian mixture
distribution [6], fit a mathematical model to measured received
signals, without regard to the physical generation mechanisms
behind the interference. Statistical-physical models, onthe
other hand, model interference based on the physical principles
that govern generation and propagation of the interference-
causing emissions. Statistical-physical models thus tendto be
more accurate than empirical models.

Key statistical-physical models include the symmetric alpha
stable model [7] and the Middleton Class A, B and C models
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[8]. The symmetric alpha stable model has been widely used
to model co-channel interference in a Poisson field of nar-
rowband interferers inad-hocnetwork environments [4], [5],
[9]. Middleton models have been derived under a wider range
of physical conditions that include narrowband and broadband
interference emissions and transients at the receiver. They also
model the background thermal noise present at the receivers
[8]. Middleton models, however, have not been widely used
to characterize the co-channel interference in wireless network
environments.

One of the key contributions of this paper is to develop
a unified framework to derive the co-channel interference
statistics in different wireless network environments andes-
tablish the applicability of the symmetric alpha stable and
Middleton Class A model inad-hoc and cellular network
environments. Analytical constraints on the system model
parameters for which these distributions accurately modelthe
statistical properties of the interference are also derived. When
exact statistics cannot be derived in closed-form, the paper
focuses on accurately modeling the tail probability of the
interference distribution.

We will use the following notation throughout this paper.
Random variables are represented using boldface notation,
deterministic parameters are represented using non-boldface
type,EX {f(X)} denotes the expectation of the functionf(X)
with respect to the random variableX, andP(·) denotes the
probability of a random event.

II. SYSTEM MODEL

Consider a wireless communication system in which the
receiver receives a signal of interest in the presence of
interfering signals. The interfering users are assumed to be
on the same plane as the receiver, concentrated on a spatial
interference spaceΓ(rl, rh), and be potentially infinite in
number. The receiver is assumed to employ a single omni-
directional antenna and is located at a distancerm from
the origin of the two-dimensional coordinate system. The
parametric interference spaceΓ(rl, rh) is defined as

Γ(rl, rh) =
{

x ∈ R
2 : rl ≤ ‖x‖ ≤ rh

}

(1)

where‖·‖ denotes the Euclidean norm. The three-dimensional
scenario, in which the interferers are located in a volume space
around the receiver, is a straightforward extension to the two-
dimensional scenario considered in this paper.



Fig. 1: Interference space and receiver location for different wireless network environments.

At each sampling time instantn, the number of active
interferers are assumed to be distributed according to a spatial
Poisson process on the spaceΓ with density λ. As shown
in [4], this model is sufficient to capture both the emerging
interferers, whose contributions arrive at the receiver for the
first time at the time instantn, and interferers that first emerged
at some prior sampling time instantm < n but are still active
till the sample timen. Further, we assume that the interferers
transmit in an uncoordinated manner, which is required for the
Poisson assumption to be valid.

The baseband model for the sum interferenceY at the
receiver at any time instant can then be represented as

Y =
K
∑

i=1

r
− γ

2

i hiXi (2)

whereK is the random number of active interferers at that time
instant,i is the interferer index,ri is the random distance of
active interferers from the receiver,γ is the power pathloss
exponent,hi is the independent and identically distributed
(i.i.d.) random fast fading experienced by each interferer
emission, andXi are the random baseband emissions from
the active interferers.

We assume that all potential interferers havei.i.d. symmetric
narrowband emissions of the form [10]

Xi = Bi cos(φi) (3)

where Bi is the i.i.d. envelope, andφi is the i.i.d. random
phase of the emissions. Further, we assume that the emerging
times of the interferers are uniformly distributed betweenthe
sampling times at the receiver. Thus the phaseφi of the emis-
sions at the sampling instants can be assumed to uniformly
distributed between[0, 2π]. The assumption ofi.i.d. emissions
is valid for wireless communication networks without power
control and may not be true for modeling interference from
diverse types of interferers with unequal transmit power (e.g.
base stations and mobile users).

III. STATISTICAL MODELING

In this section, we derive the characteristic function of
the co-channel interference. We establish a unified frame-
work and derive the symmetric alpha stable model and the

Middleton Class A model (without the Gaussian component)
for interference inad-hocand cellular network environments.
The characteristic function of the sum interferenceY can be
expressed as

ΦY(ω) = Eri,hi,Xi,K

{

e
jω
∑

K

i=1
r
−

γ
2

i
hiXi

}

(4)

=

∞
∑

k=0

E

{

e
jω
∑

k

i=1
r
−

γ
2

i
hiXi |k in Γ(rl, rh)

}

×

P (k in Γ(rl, rh)) . (5)

Conditioned on the number of interferers present in the space
Γ(rl, rh), the interferer locations are mutually independent and
uniformly distributed across this space [7]. Henceforth, we
remove the conditioning on the number of interferers from
the expectation by noting that the interferers are uniformly
distributed in the spaceΓ(rl, rh). Further, in the absence
of power control, the emission from the interferers can be
assumed to be independent and identically distributed. The
characteristic function can be expressed as

ΦY(ω) =

∞
∑

k=0

[

E

{

ejωr
−

γ
2 hX

}]k

×

[

λπ
(

r2h − r2l
)]k

e−λπ(r2

h−r2

l )

k!
(6)

= e
λπ(r2

h−r2

l )
(

E

{

ejωr
−

γ
2 hX

}

−1

)

. (7)

By taking the logarithm ofΦY (ω), and noting thatX =
B cos(φ), the log-characteristic function is

ψY(ω) = λπ
(

r2h − r2l
)

(

Er,h,B,φ

{

ejωr
−

γ
2 hB cos(φ)

}

− 1

)

.

(8)
By using the identity

ej a cos(φ) =

∞
∑

k=0

jkǫkJk(a) cos(kφ) (9)

where ǫ0 = 1, ǫk = 2 for k ≥ 1, and Jk(·) denotes the
Bessel function of orderk, the log-characteristic function can



be expressed as

ψY(ω) = λπ
(

r2h − r2l
)

×
(

E

{

∞
∑

k=0

jkǫkJk

(

ωr
− γ

2 hB

)

cos(kφ)

}

− 1

)

.
(10)

Sinceφ is assumed to be uniformly distributed between0 and
2π, Eφ {cos(kφ)} = 0 for k ≥ 1, and (10) reduces to

ψY(ω) = λπ
(

r2h − r2l
)

(

Er,h,B

{

J0

(

ωr
−γ

2 hB

)}

− 1
)

.

(11)
The log-characteristic function derived in (11) holds in general
for any space of narrowband interferers governed by the
parametersrh and rl and the receiver locationrm. The
receiver locationrm affects the expectation in (11). We now
consider the following two cases and further simplify the log-
characteristic function.

A. Ad-hoc network (Case I):rl = 0, rh → ∞
Consider anad-hoc network, as shown in Fig. 1, where

the interfering sources are distributed according to a spatial
Poisson point process on the plane. Note thatrm can be
assumed to be0 without any loss in generality of the result.
We consider the interference spaceΓ(0, rh) and take the limit
on the log-characteristic function asrh → ∞ [9]. Recall that
the expectation in (11) is conditioned such that the interferer
locations are uniformly distributed in the spaceΓ. The distance
of the interferer from the receiver thus follows the distribution

fr(r) =

{

2r
r2

h

if 0 ≤ r ≤ rh,

0 if r > rh.

Expanding the expectation in (11), we have

ψY(ω) = lim
rh→∞

λπr2h

( rh
∫

0

Eh,B

{

J0

(

ωr
− γ

2 hB

)} 2r

r2h
dr

− 1

)

. (12)

Integrating the above by parts, taking the limit asrh → ∞, and
noting thatlimrh→∞ EB,h

{

r2h

(

J0

(

wr
− γ

2

h Bh

)

− 1
)}

= 0,
we have

ψY(ω) = |w| 4

γ λπEh,B

{

h
4

γ B
4

γ

}

∞
∫

0

J
′

0(x)

x
4

γ

dx (13)

= −|w| 4

γ λπEh,B

{

h
4

γ B
4

γ

}

∞
∫

0

J1(x)

x
4

γ

dx. (14)

Equation (14) is the log-characteristic function of a symmetric
alpha stable distribution centered at zero such that

ψY(w) = −σ|ω|α (15)

whereα = 4
γ

is the characteristic exponent (0 < α ≤ 2), and

σ = λπEh,B {hα
B

α}
∫∞

0
J1(x)

xα is the dispersion parameter of
the symmetric alpha stable distribution [7], [9]. Hence, when
the interferers are distributed according to a spatial Poisson
process on the entire plane, the co-channel interference follows
a symmetric alpha stable distribution.

B. Cellular network (Cases II and III):rl > 0, rh < ∞,
rm < rl < rh

Consider a cellular network, as shown in Fig. 1, where all
the interferers are outside the cell in which the desired receiver
is present (rl > 0). Further, we consider the interferers within
a maximum distance beyond which the interferers do not
generate significant interference (rh <∞). In [10], Middleton
proposed an approximation of the log-likelihood function for
ω in the neighborhood of zero. From Fourier analysis, the
behavior of the characteristic function in the neighborhood
of zero governs the tail probabilities of the random variable.
The proposed approximation is based on the following identity
[10]:

Er,h,B

{

J0

(

ωr
−γ

2 hB

)}

= e−
w2

E
r,h,B{r

−γ
h
2
B

2}
4

(

1 + Θ(w4)
)

(16)
Here, Θ(w4) indicates a correction term with the lowest
exponent inω of four and is given by (19). Using this identity,
the log-characteristic function in (11) can be expressed as

ψY(ω) = λπ
(

r2h − r2l
)

(

e−
w2

E
r,h,B{r

−γ
h
2
B

2}
4 − 1

)

. (17)

Equation (17) is the log-characteristic function of a Middleton
Class A distribution (without the additive Gaussian compo-
nent) such that

ψY(w) = A

(

e−
w2

Ω2A
2A − 1

)

(18)

whereA = λπ
(

r2h − r2l
)

is the overlap index that indicates
the amount of impulsiveness of the interference, andΩ2A =
A×Er,h,B{r

−γ
h

2
B

2}
2 is the mean intensity of the interference

[8]. Hence, the co-channel interference where the interferers
are distributed according to a spatial Poisson process on the
spaceΓ(rl, rh), when0 < rl < rh < ∞, as observed at the
base station (rm = 0) or the mobile user (0 < rm < rl)
follows the Middleton Class A distribution. It should be
emphasized that the correspondence to the Middleton Class
A distribution is particularly valid for modeling the tail prob-
abilities.

The approximation in (16) and the subsequent interference
model in (18) is valid forrl > 0 andrm < rl, sinceΩ2A → ∞
asrl → 0 or asrm → rl; which is not physical since the mean
intensity is always finite in this case. This is unlikeCase I in
Section III-A where the interference was modeled forrl = 0.
This is the key difference between the symmetric alpha stable
and Middleton Class A models for interference.

As rh → ∞, the overlap indexA→ ∞ also, while the mean
intensity Ω2A of the interference is finite. From (18), it can
be shown that the Middleton Class A model is equivalent to
a Gaussian model asA→ ∞. The Gaussian model, however,
may be an inaccurate model for the sum interference in this
scenario. This is due to the fact that theΘ(ω4) correction
term in (16) cannot be ignored asrh → ∞. The parameter
rh, however, can be bounded above in magnitude because the



interference power cannot be observed if its intensity is lower
than the receiver noise floor [10].

Next, we quantify the range of the system model parameters
over which the Middleton Class A model provides an accu-
rate approximation to the co-channel interference in cellular
network environments. TheΘ(ω4) correction term in (16) can
be expressed as [10]

Θ(ω4) =
∞
∑

k=2

(EZ {Z})k
w2k

22kk!
EZ

{

1F1

(

−k; 1;
Z

EZ {Z}

)}

(19)
where the random variableZ = r

−γ
h

2
B

2, and 1F1 (a; b;x)
is the confluent hypergeometric function of the first kind.
From (16), a first-order measure of the accuracy of the
approximation can be expressed by comparing the coefficient

of theω4 term in e−
w2

E
r,h,B{r

−γ
h
2
B

2}
4 against the coefficient

of theω4 in the correction termΘ(ω4). Using the fact that

1F1 (−2; 1;x) =
1

2
(x2 − 4x+ 2), (20)

the coefficient ofω4 in the correction term (i.e.c4) can be
expressed as

c4 =
EZ

{

Z
2
}

− 2 [EZ {Z}]2

128
. (21)

Thus, the Middleton Class A model provides a good approxi-
mation when the system model parameters, such asrh, rl, rm,
andγ satisfy

∣

∣

∣

∣

∣

EZ

{

Z
2
}

− 2 [EZ {Z}]2

128

∣

∣

∣

∣

∣

<<
[EZ {Z}]2

32
(22)

⇒
∣

∣

∣

∣

∣

Er,h,B

{

r
−2γ

h
4
B

4
}

4 × [Er,h,B {r−γh2B2}]2
− 1

2

∣

∣

∣

∣

∣

<< 1. (23)

A desirable attribute of the Middleton Class A model is
the existence of a closed-form expression for the probability
density function. Using the log-characteristic function in (18),
the probability density function can be expressed as

fY(y) = e−Aδ(y) +

∞
∑

m=1

e−AAm

m!

e
− y2

2σ2
m√

2πσm

(24)

whereσ2
m = m

A
Ω2A and δ(·) denotes the Dirac delta func-

tional.

IV. TAIL PROBABILITIES

In this section, we give the analytical expressions for the tail
probabilities of the three interference models discussed in the
paper. The tail probability of a symmetric alpha stable random
variable with parametersα andσ is given as [7]

PSαS(Y > y) =
y−ασαC(α)

2
(25)

asy → ∞, where

C(α) =

{ 2
π

whenα = 1,
1−α

Γ(2−α) cos(πα
2 )

otherwise.

Using (24), the tail probability for the Middleton Class A
distribution with parametersA andΩ2A can be expressed as

PMCA(Y > y) =

∞
∑

m=1

e−AAm

m!

1

2
erfc





y
√

2mΩ2A

A



 (26)

for y > 0. Here erfc(x) = 2√
π

∫∞

x
e−t2dt represents the com-

plementary error function. The tail probability for a Gaussian
random variable with varianceσ2 can be expressed as

PGAUSS(Y > y) =
1

2
erfc

(

y√
2σ2

)

. (27)

V. RESULTS

Using the physical model discussed in Section II, we apply
Monte-Carlo numerical techniques to simulate the co-channel
interference observed at the receiver in various wireless net-
work environments. At each sample instant, the location of
the active interferers is generated as a realization of a two-
dimensional spatial Poisson point process with intensityλ =
10−4 within the regionΓ(rl, rh). Parameter values forrl, rh
andrm change according to the wireless network model under
consideration. It should be noted that parameters denoting
distance are are treated as dimensionless quantities as this does
not influence the statistics of the resultant interference.

From (2), the interference observed at the receiver at each
time instant is a sum of narrowband emissions, as given by (3),
from the active interferers inΓ(rl, rh) which have experienced
propagation pathloss and fast-fading. In our simulations,we
assume a power path-loss exponentγ = 4 and Rayleigh
fading (h) with unit energy. The amplitude of the interferer
emissions,B, was chosen as a constant for a particular
wireless environment such that the tail probability,P(Y > y),
at an interference threshold ofy = 10 is of the order of10−5.
The probability distribution of co-channel interference is em-
pirically estimated from500000 time samples of the received
interference using kernel smoothed density estimators.

Accuracy of the statistical-physical models for co-channel
interference is established by comparing the empirical andin-
terference model tail probabilities. We compare the asymptotic
decay rates of the tail probabilities given by

ρ (y) = − log (P(Y > y))

y
(28)

whereρ(y) is the asymptotic decay rate at interference ampli-
tudey. The decay rate is the rate at which the tail probability
asymptotically approaches zero. Impulsive distributionshave
smaller decay rates as compared to non-impulsive distributions
and are hence referred to as heavy-tailed distributions. The
decay rates are a useful metric to compare the extreme value
statistics of different statistical models with respect tothe
empirically estimated distribution.

Following are the results comparing symmetric alpha stable
and Middleton Class A distributions against the empirical
distribution of co-channel interference for each of the wireless
network environment described in Section III. Further, we
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Fig. 2: Decay rates for simulated and interference model distributions in Case
I (rh = ∞, rl = 0,B = 2).
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Fig. 3: Decay rates for simulated and interference model distributions in Case
II-a (rh = 40, rl = 20, B = 1800).

compare the empirical distribution of co-channel interference
to a Gaussian distribution with equal variance for all scenarios.

A. Ad-hoc network (Case I):rl = 0, rh → ∞
Case I describes the wirelessad-hocnetwork model, where

the interferer are located in the regionΓ(0, rh) and distributed
as a spatial Poisson process with intensityλ. In Section III,
we have shown that the resulting interference would have a
symmetric alpha stable distribution. Fig. 2 shows the decay
rates of the empirical distribution compared with the statistical
models. The empirical distribution indeed matches closelyto
an alpha stable distribution in terms of decay rates. Note that
the Middleton Class A model is not suitable in this case as
Ω2A → ∞ (as discussed in Section III).

B. Cellular network (Case II):rl > 0, rh <∞, rm = 0

Case II describes the cellular network model where the
receiver is located at the center of the cell. We assume
that the base station employs time or frequency allocation
amongst the users and hence no interferers are present within
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Fig. 4: Decay rates for simulated and interference model distributions in Case
II-b (rh = 80, rl = 20, B = 1600).

TABLE I: Kulback-Liebler divergence between empirical andmodel distribu-
tion in different wireless network scenarios.

Model Distribution

Wireless network α-stable Class A Gaussian
scenario (w/o Gaussian term)
Case I 0.0032 – 4.1727

Case II-a 0.1993 0.0069 0.5628

Case II-b 0.0548 0.0914 0.2068

Case III-a 0.1804 0.0089 0.5733

Case III-b 0.0992 0.1369 0.3376

the cell. We place the receiver at the origin of our two-
dimensional space and the interferers are located within the
regionΓ(rl, rh) such thatrl > 0, rh < ∞. In Section III, we
show that the probability density function at the extreme values
of the resultant interference in this environment is modeled
well using the Middleton Class A distribution. The model
is accurate only for certain ranges of the system parameters
rl and rh as given by (23). Case II is sub-divided into two
scenarios: Case II-a and Case II-b. In Case II-a, the simulation
parameters are within range of values given by (23) withrl and
rh as20 and40, respectively. Fig. 3 shows the decay rates
of co-channel interference generated in this wireless network
are approximated well by the Middleton Class A. For these
values of parametersrl andrh, the higher-order terms in the
characteristic function from (18) are negligible. In Case II-
b, the effect of the higher-order terms in the characteristic
function is illustrated by choosing parameter valuesrl andrh
as 20 and 80, respectively. Fig. 4 shows that the Middleton
model from (24) is no longer a good approximation to the
density function of received interference.

C. Cellular network (Case III):rl > 0, rh <∞, rm < rl

Case III also describes a cellular network, but unlike Case
II the receiver is located away from the center of the cell.
The distance of the receiver from the cell center (origin) is
given by rm. We simulate co-channel interference for two
scenarios: in case III-a the receiver is located close to the
cell center (rm << rl), and in case III-b the receiver is



TABLE II: Statistical-physical modeling of co-channel interference in different wireless network environments.

Symmetric Alpha Stable Middleton Class A (w/o Gaussian component)

1. Statistical-physical model for
interference in

a. wirelessad-hocnetwork environment (rl = 0,
rh → ∞)

b. wireless cell-edge users in cellular network
environment (rm → rl, rh → ∞)

a. wireless cellular network environment (rm <

rl < rh, rl > 0, rh >> rl)

2. Statistical property modeled exact statistics tail probability
3. Accurate model for rl = 0 or rm = rl, andrh >> rl when conditions in (23) are met
4. Additive thermal noise Middleton Class B (narrowband) model [8] Middleton Class A model

8 8.5 9 9.5 10
0

1

2

3

4

5

6

7

Interference Amplitude

D
ec

ay
 R

at
e

 

 

Empirical
Class A (w/o Gaussian)
α−Stable
Gaussian

Fig. 5: Decay rates for simulated and interference model distributions in Case
III-a (rh = 40, rl = 20, rm = 3, B = 1600).
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Fig. 6: Decay rates for simulated and interference model distributions in Case
III-b (rh = 40, rl = 20, rm = 15, B = 400).

located close to the edge of the cell(rm → rl). Figs. 5 and 6
show the corresponding decay rates for cases III-a and III-
b, respectively. The parameterrm has the value3 and 15
for scenarios III-a and III-b, respectively. Fig. 5 shows that
when the receiver is closer to the cell center, the resulting
interference distribution has decay rates similar to thoseof
the Middleton Class A distribution. Fig. 6 shows that when
the receiver is closer to the cell edge, the decay rates of the
empirical interference distribution resemble those of an alpha
stable distribution.

Another method to quantify the accuracy of fit of a statistical
model is to use the Kulback-Liebler (KL) divergence [11],
where a KL-divergence of zero indicates an exact match of
the densities. Table I lists the KL-divergence values between
empirical and model distributions for different network envi-
ronments. Correspondence in tail probabilities does not imply
a lower KL-divergence, since the KL-divergence finds the rel-
ative error between two distribution functions over their entire
support. Thus, while the alpha stable model has a relatively
low KL-divergence with respect to the other statistical models,
it may still be an inaccurate model for modeling the extreme
statistics (as in Case II and Case III-a).

In all of the network models discussed above, the statistics
of co-channel interference are not modeled well by the Gaus-
sian distribution, particularly at high interference amplitudes.
The Gaussian distribution decays far too quickly to model the
impulsive nature of co-channel interference accurately.

Key insights from this paper are summarized in Table II.
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