Scalable Multi-core Sonar Beamforming with
Computational Process Networks

John F. Bridgman, III, Gregory E. Allen and Brian L. Evans
Applied Research Laboratories and
Dept. of Electrical and Computer Engineering
The University of Texas at Austin, Austin, Texas

Abstract—This paper evaluates the scalability with respect
to processor cores of a three-dimensional sonar beamforming
kernel implemented on a multi-core workstation. Beamforming
is an example of an extremely parallelizable problem. This im-
plementation is instrumented with OpenMP to exploit multi-core
computer systems. However, when executed on a 16-core machine,
this kernel scales much less than expected. We implement this
beamformer system within the scalable framework of Computa-
tional Process Networks to achieve additional performance and
processor utilization for a larger number of cores. On our bench-
mark machine, the implementation with Computational Process
Networks obtains a throughput speedup of more than two times
over OpenMP with the default settings, and 13% improvement
in throughput over OpenMP with optimized settings.

I. INTRODUCTION

A beamformer is a spatial filter which focuses an array of
sensors. The process of beamforming is a large computational
load. Because of the computational load of beamforming,
beamformers have traditionally been implemented in custom
hardware in order to achieve real-time performance. To save
cost, it is desirable to efficiently exploit the parallelism pro-
vided by modern commodity computer hardware. Use of the
single instruction multiple data (SIMD) instructions in the
x86 architecture also gives outstanding performance for digital
signal processing algorithms. OpenMP [1] is an application
programming interface to support shared memory parallelism
provided with many popular compilers. The beamforming
kernel used in this paper efficiently utilizes 2-core machines
using OpenMP and SIMD. However, when executed on a
machine with 16 cores, the kernel does not scale well.

OpenMP allows the addition of simple statements to auto-
matically parallelize sequential code. The basic abstraction of
OpenMP is the fork and join model. In this model, processing
initially proceeds sequentially. When a parallel construct is
encountered, threads are spawned and the work is distributed
among the threads. When the parallel work is complete, the
threads join together and the program continues sequentially.
Typical implementations spawn threads only once and keep
the threads around for the entire program lifetime as an
optimization. A typical usage of OpenMP is to parallelize a
loop which performs independent operations on each element
of a large array of data. The fork and join model is very useful
and can capture many forms of parallelism; but other forms,

This work was supported by the Independent Research and Development
Program at Applied Research Laboratories: The University of Texas at Austin.

like pipelining, are difficult to capture. OpenMP is a useful
tool, but its scalability is limited because of its fundamentally
sequential underpinnings. Therefore, we turn to another model.

Process networks [2] is a formal model of concurrency in
which concurrent processes can communicate via one-way
first-in first-out (FIFO) queues. A process network can be
represented by a directed graph of nodes and edges, where
each node represents a computational unit, and each edge
represent a queue. A process may not examine a queue
and must block if attempting to read from an empty queue.
This model provides deterministic behavior, but may require
infinite-length queues. Process networks are a subset of general
message passing. Unlike general message passing, process
networks are provably deterministic.

Computational Process Networks [3] (CPN) is a model and
framework for high-throughput signal and image processing
systems. CPN uses algorithms presented by [4] and [5] to
execute the process network in bounded memory where pos-
sible. CPN also provides thresholds and zero copy queues
to elide unnecessary copies [6]. This beamforming algorithm
moves megabytes of data, so reducing unnecessary copying
is important to maintaining performance. CPN can increase
the beamforming algorithm’s scalability by providing high
level parallelism to the larger components. In addition, the
CPN framework can be distributed across multiple machines
by using a network for remote queue communication. This
paper presents a modification of a beamformer implementation
which uses CPN to gain additional parallelism and scalability.
Effective usage of the memory and cache hierarchy are also
critical to the algorithm’s performance. The process network
model is inherently more concurrent than the fork and join
model, and is therefore more scalable. The contribution of
this paper is to compare how the process network model
can increase the performance of the presented beamforming
algorithm on multi-core processors, as compared to OpenMP.

The following is an outline of the rest of this paper.
Section II discusses the beamforming algorithm. Section III
describes our algorithm implementations. Section IV presents
benchmarking results. Section V concludes the paper.

II. SONAR BEAMFORMING

A common beamforming algorithm is a weighted delay-and-
sum of the sensors in an array. In order to specify the delays for
the algorithm, the geometry of the array must be known. The

Fig. 1. The forward quarter of the sensor array as viewed from above.

Horizontal

beamformer Fan 1 beams
for fan 1
Vertical Horizontal

Elements - beamformer Fan 2 beams

beamformer

for fan 2
Horizontal

beamformer Fan 3 beams
for fan 3

Fig. 2. Vertical and horizontal stages of the beamforming algorithm.

delays required to steer a beam in a particular direction are the
signal propagation time from each of the sensors onto a plane
that is orthogonal to the steering direction. The geometry used
in this paper is a cylindrical array composed of 256 staves.
Each stave is a vertical column of 12 elements. Each stave lies
on one of 560 points equidistant around a circle. The staves
are in groups of eight with one empty point between each in
the group. Groups are separated by three or five points as can
be seen in Fig. 1. The extra gaps between certain staves allow
space for mechanical structure in the array.

The presented beamforming algorithm is composed of two
stages: vertical and horizontal. The vertical beamformer forms
three sets of stave outputs by steering and summing the 12
vertical elements in each stave. These three sets of stave
outputs can be individually steered in the vertical dimension.
The operations performed on each set of outputs is identical,
but with different coefficients for weights and delays. After the
vertical beamforming is complete, the staves are upsampled in
space from 256 to 560 for the horizontal beamformer. Effec-
tively, the horizontal beamformer sees 560 virtual staves on its
input where 304 of them are always zero. This upsampling is
done inside the horizontal beamformer to reduce unnecessary
calculations. The horizontal beamformer forms a set of 560
beams which are equally spaced around the circle. The final
output is three “fans” of beams.

For the rest of this discussion, the algorithms for a single
vertical output are used and it is understood that each of these
calculations is repeated. Three horizontal beamformers operate
on the three sets of stave outputs from the vertical beamformer,
as shown in Fig. 2. Because the staves lie on a circle, circular
convolution beamforming [7] can be used to exploit geometric
symmetry and significantly reduce the number of required
calculations. This produces a set of beams that can be steered
both vertically and horizontally.

For this system, sampled element data at the beamformer

is assumed to already be frequency shifted to baseband and
downsampled. The input to the vertical beamformer is a
set of element data streams x[s][e][n], for each stave s and
vertical element e. The weighting and beamforming delay is
implemented as a set of 4-tap fractional delay finite impulse
response (FIR) filters, h,[e][n]. The fractional delay filters are
computed according to an algorithm presented in [8]. For the
calculation of a vertical output set, each stave utilizes the
same series of weights and delays. Because the algorithm
performs delays at baseband, an additional complex correction
factor Ble] is also required. This correction factor could be
combined into the filter, but leaving the correction factor
separate makes the filter all real for the vertical beamformer.
This reduces the number of operations for each multiplication
in the convolution from six operations to two. The output for
each stave is

y[S][k]:i > _alsllellk —hulell]| Blel. (D)

where y[s][k] is the output stream of the vertical beamformer
for stave s and time index k. There are 3072 total elements
(256 * 12) that must be filtered. For a sample rate of 75kHz,
the vertical beamformer takes about 16.6 billion floating point
operations per second for all three output sets.

The horizontal beamformer is similar to the vertical beam-
former but uses circular convolution. A straightforward equa-
tion to produce horizontal beam m from a set of M virtual
staves is

M-1L—1
bim][k] = > > ylsl[k — [[m][s][] 2)
s=0 [=0
where L is the length of the fractional delay FIR filter, and the
weighting and baseband correction is combined into the filter,
h. For each horizontal beam to be produced, (2) would have
to be computed. In this form, arbitrary beams can be formed
from arbitrary staves.

However, we wish to form M horizontal beams that are
equally spaced around the circle, and use the same weights,
delays, and (geometrically relative) staves to form each of the
beams. This gives us symmetry in the filter with regards to m
and s. Specifically, for any integer n,

him][s][l] = h[(m + n) mod M][(s + n) mod M][l]. (3)

We can therefore define a new filter hy[n][l] to exploit this
symmetry. It is a subset of the original h[m][s][l] where n =
(m — s) mod M. Changing (2) to use the symmetric hj the
equation becomes

ik = 3" 3" wlsllk — i l(m — 5) mod MI[l.)
s=0 [=0

Swapping the summands we get

L-1M-1

][k = 37 3" yls]lk — Jhn(m — 5) mod MI[l, ()

=0 s=0

beam response (dB re peak)
8
o
T

- AN I
4990 -60 -30 0 30 60 90
angle (degrees)
Fig. 3. Simulated beampattern as generated by the presented beamformer.

and note that this is a circular convolution in space around
the array, followed by convolution in time. The inner circular
convolution is now the same calculation for all beams. This
significantly reduces the number of convolutions that must be
done when calculating all the beams.

Circular convolution can be efficiently implemented with
the Fast Fourier Transform (FFT), allowing all 560 beams to
be calculated at once. The horizontal beamformer performs
FFTs in both the (circular) spatial dimension and the time
dimension. In the time dimension, an FIR filter is being
implemented (in the frequency domain) to weight and delay
the stave inputs. This reduces the algorithm from O(LM?) op-
erations per sample to O(LM log, M) operations per sample.
Matched filtering (replica correlation) is also performed in the
horizontal beamformer simply by convolving the transmitted
waveform replica with the beamforming filters. Overlap-and-
save [9] is used to prevent time aliasing. The steps of the
horizontal beamformer are:

1) 2-D FFT in time and space

2) Multiply by beamforming coefficients
3) Inverse FFT in space

4) Multiply by correlation coefficients
5) Inverse FFT in time

For this system, one horizontal beamforming step (operating
on 8192 complex samples) is 908 million floating point
operations. For a sample rate of 75kHz and an overlap of 2048,
the computational load is 33.2 billion floating point operations
per second for all three horizontal beamformers.

A beampattern is the response of a beamformed array versus
angle. It is typically measured by rotating a point source
around the array and taking the response of a beam at each
angle. Because of the symmetry of this circular array and
circular convolution beamformer, a single-beam pattern can
quickly be approximated by the response of each beam to a
single point source. Fig. 3 shows a simulated beampattern for
the presented system using a point source at zero degrees.
As expected, the beamformer gives a large response in the

FFT

in time
Corner
turn
FFT
in space

Complex
Multiply

Beamformer
Coefficients

Inverse
FFT
in space

Corner
turn

Complex
Multiply

Waveform
Replicas

Inverse
FFT
in time

Fig. 4. Steps of the horizontal beamformer implementation.

direction of the steered beam, while rejecting signals from
other directions. In Fig. 3 there is more than a 25dB difference
between the main lobe and the largest side lobe.

III. IMPLEMENTATION

The algorithm implementations were written in C/C++ using
the x86 streaming SIMD extension (SSE) intrinsics. The outer
loops in the vertical and horizontal kernels were all given
the necessary pragmas for OpenMP. The vertical beamformer
produces all three outputs at once with a single pass over
the input data. The horizontal beamformer implementation
uses the Fastest Fourier Transform in the West [10] (FFTW)
library to perform the FFTs. The FFTs that are not inside
OpenMP loops use the thread support built into FFTW. The
number of threads that the FFTW library uses is the number
of online processors in the machine. The implementation
uses corner turns to gain additional performance by keeping
memory access patterns contiguous. The data sets used in these
algorithms are large enough that the data does not fit into most
processors’ caches. The main memory used in most systems
is optimized for sequential access patterns. The cost of doing
the corner turn was measured to be less than the performance
penalty from using a non-sequential access pattern for this
algorithm.

The horizontal beamformer has eight steps in the implemen-
tation as seen in Fig. 4. First, an FFT in time is executed. Then,

Horizontal Horizontal
Beamformer |— Beamformer
First half Second half
Horizontal Horizontal \
Beamformer |— Beamformer
First half Second half /

Horizontal Horizontal
Beamformer |—| Beamformer
First half Second half

The topology of the CPN beamformer implementation.

Vertical
Source |—|
Beamformer

@)

Fig. 5.

an optimized corner turn is done so that memory accesses
will be sequential for the next three steps. An FFT in space
is performed. Next, the coefficients are multiplied. An inverse
FFT is done in space. Then, the data is corner turned again.
The waveform replica coefficients are multiplied in. Finally,
the inverse FFT in time is performed.

We have two implementations of the full beamformer
system. The first implementation uses only OpenMP. The
OpenMP implementation executes the vertical beamformer,
then each horizontal beamformer sequentially for some num-
ber of samples. We experimented with how to place the
OpenMP statements, and the best was chosen for our ex-
periment. The second implementation uses CPN. The vertical
and horizontal beamformers were placed in separate process
network nodes. The horizontal beamformer was also divided
into two nodes. The first half computes all operations up to
multiplying the coefficients and the second half computes the
remainder. A source node and a sink node were created. All
the nodes were connected together with the CPN framework
in the topology shown in Fig. 5.

Compiling and benchmarking was performed on RedHat
Enterprise Linux 5 using the provided GCC 4.1.2 with
GCC’s OpenMP implementation. The default behavior of
the OpenMP implementation was to use busy waiting for
synchronization, which the OpenMP standard calls “active
waiting policy”. In our tests, we timed both the default
waiting policy and the “passive waiting policy” which uses
calls into the operating system synchronization routines. We
explored these settings because busy waiting can adversely
affect performance on many modern processors with features
like automatic overclocking and hardware threads. For the
“active waiting policy”, the default spin count is to spin
forever. Experimentation with setting the spin count gave the
same results as setting the wait behavior to passive. This is
because all of the parallel sections in this algorithm are longer
than the operating system time slice. The default behavior
always performed poorly on average in all of our tests.

IV. RESULTS

For each implementation, the average throughput in samples
per second was measured. Fig. 6 shows the measured results
for several implementations versus the number of processors.
Both implementations were run on a machine with two 4-
core Nehalem processors [11] with Hyper-Threading. Hyper-
Threading gives each core two hardware threads. This means

45000

40000

350001

300001

250001

200001

15000

M

Throughput (samples/second)

BN \ /
AR N]

10000 A A RN ;
\ // \\ — - OpenMP with active
sooof £ \ K AN — OpenMP with passive ||
\ P A CPN with active
T CPN with passive
0 L L L L L T T
0 2 4 6 8 10 12 14 16
Number of CPUs enabled
Fig. 6. Graph of throughput versus number of processors enabled for the

CPN and OpenMP implementations.

that from the software’s perspective there are 16-cores. When
running the tests, the processors were turned on and off so
that, first, only one hardware thread was active per hardware
core. Then, only when all hardware cores had a hardware
thread assigned, additional hardware threads were assigned to
each hardware core. This is immediately apparent in Fig. 6,
because there are only eight hardware cores and the graph
starts to plateau at eight cores. Changing the order the cores
are turned on, moves the plateaus in the graph. The small
increase in the plateaus represent the increase in performance
gained by adding a second hardware thread to a core. The CPN
version continues to increase in throughput until all hardware
cores have one hardware thread and then continues to increase
much more slowly as all hardware threads are assigned. The
OpenMP version increases much less than the CPN version.
At eight cores, the CPN version is over twice as fast as the
OpenMP with default settings. The CPN version with passive
is 13% faster than the OpenMP with passive. When the second
hardware thread in each core is enabled, the OpenMP version’s
performance starts to suffer.

Also, note that the versions that used the default active
waiting policy have much lower performance with more than
one hardware thread per core. This is because resources are
shared between hardware threads and if one thread spins it
uses functional units in the core which could be used by other
threads to advance.

To take the measurement in Fig. 6, we ran the beamformer
on 8192 samples 100 times, computing the throughput for
each time and then computing the average throughput. For the
measurements for CPN, the data generating node kept track
of the time it took to enqueue 8192 data points 100 times,
then computed the throughput based on this time. Each test
was run with the default “active wait policy” for the OpenMP
implementation and also with the policy set to passive. As can
be seen from Fig. 6, the default OpenMP settings perform very
poorly.

The theoretical maximum speed on the benchmark com-
puter is 118.7kHz, when we consider only the floating point
operations. This is approximately three times the maximum
speed seen in the tests. Most of this time is spend not
doing calculations, but moving data. The working set for one
horizontal beamformer is approximately 32 MB. The cache
size of the processor used is only 8 MB. This means the best
that can be done without completely redesigning the algorithm
is to have memory access patterns that ensure the most cache
hits. A vertical kernel alone performed near the theoretical
limit on the benchmark machine with an average throughput
of 320 ksamples/s. A horizontal kernel alone performed near
24% of the theoretical maximum on the benchmark machine
with an average throughput of 12.4 ksamples/s. The time spent
in the horizontal kernel is dominated by the FFTW library.

V. CONCLUSION

Beamforming is a high computational load which can be
described as embarrassingly parallel. We show how a simple
implementation of a beamformer can be made much more
scalable with CPN. The original implementation only used
OpenMP and was only moderately scalable. We used process
networks as an additional model of parallelism. The addition of
a different model of parallelism increased the scalability of the
implementation. Most of the additional parallelism captured
with CPN is pipelining parallelism, which is difficult to capture
with OpenMP. Pipelining parallelism can be easily added
with the CPN framework. Also, CPN can easily distribute
a process network across a cluster of machines. The CPN

framework increased performance of the beamformer by 13%
on the benchmark machine. We have shown how the process
network model increased the performance and scalability of
the beamforming algorithm on multi-core processors.

REFERENCES

[1] (2008) OpenMP application program interface. [Online]. Available:
http://www.openmp.org/mp-documents/spec30.pdf

[2] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proc. IFIP Congress on Information Processing, J. L. Rosen-
feld, Ed. New York, NY: North-Holland, 1974, pp. 471-475.

[3] (2010, Feb.) Computational process networks. [Online]. Available:
http://webspace.utexas.edu/gallen/CPN/

[4] T. M. Parks, Bounded scheduling of process networks.
USA: University of California at Berkeley, 1995.

[5]1 G. E. Allen, P. E. Zucknick, and B. L. Evans, “A distributed deadlock
detection and resolution algorithm for process networks,” in Proc. IEEE
Int. Conf. on Acoustics, Speech and Signal Processing, vol. 2, 2007, pp.
33-36.

[6] G. Allen and B. Evans, “Real-time sonar beamforming on workstations
using process networks and posix threads,” IEEE Transactions on Signal
Processing, vol. 48, no. 3, pp. 921-926, Mar. 2000.

[71 D. R. Farrier, T. S. Durrani, and J. M. Nightingale, “Fast beamforming
techniques for circular arrays,” The Journal of the Acoustical Society
of America, vol. 58, no. 4, pp. 920-922, 1975. [Online]. Available:
http://link.aip.org/link/?JAS/58/920/1

[8] S.-H. Yu and J.-S. Hu, “Optimal synthesis of a fractional delay FIR filter
in a reproducing kernel Hilbert space,” IEEE Signal Processing Letters,
vol. &, no. 6, pp. 160 —162, Jun. 2001.

[91 A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal
processing (2nd ed.). Prentice-Hall, Inc., 1999.

[10] M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proc. of the IEEE, vol. 93, no. 2, pp. 216-231, 2005.

[11] (2010) Nehalem (microarchitecture). [Online]. Available:
http://en.wikipedia.org/wiki/Nehalem_(microarchitecture)

Berkeley, CA,

