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Introduction 

• Finite Impulse Response (FIR) model of transmission 
media 
– Signal distortion during transmission  
– Frequency selectivity of communicating medium 
– Multipath and reverberation  
– Typically referred to as ‘channel’ 

 
 

• Channel delay spread 
– Duration of time for which channel impulse response 

contains significant energy 
– Large delay spread may be detrimental to high-speed 

communications  
• Leads to inter-symbol interference [Bingham, 1990] 
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Introduction 

• Discrete Multi-Tone (DMT) Modulation 

– Typically used in high-speed wireline communications (eg. 
ADSL) 

– Data transmission in parallel over multiple carriers 

– Cyclic prefix (CP) is used to combat ISI 
• Effective if channel delay spread shorter than CP length 
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Channel Shortening 

• Signal processing algorithms designed to reduce 
delay spread 

– Equalizer design to reduce delay spread of combined 
channel and shortening filter 
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Channel Shortening Equalizer Design 

• Maximum shortening SNR criterion [Martin et al., 2005]  
– Shortening SNR (SSNR) defined as ratio of channel energy within 

cyclic prefix to channel energy outside cyclic prefix of length 𝐿𝐶𝑃 
– For a discrete time channel 𝐡 

𝐡𝑤𝑖𝑛 = 𝐡(0,1,⋯𝐿𝐶𝑃−1) 
𝐡𝑤𝑎𝑙𝑙 = 𝐡(𝐿𝐶𝑃,𝐿𝐶𝑃+1,⋯∞) 

 
 

SSNR =
𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐸𝑛𝑒𝑟𝑔𝑦

𝐼𝑆𝐼 𝐸𝑛𝑒𝑟𝑔𝑦
=

𝐡𝑤𝑖𝑛
𝐻 𝐡𝑤𝑖𝑛

𝐡𝑤𝑎𝑙𝑙
𝐻 𝐡𝑤𝑎𝑙𝑙

 

 
• Design Problem 

– Design equalizer 𝐰𝑜𝑝𝑡 constrained to length 𝐿 to maximize SSNR 
of 𝐡 ∗ 𝐰𝑜𝑝𝑡 
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Channel Shortening Equalizer Design 

• Optimal solution [Melsa et al., 1996] 

𝐰𝑜𝑝𝑡 = 𝐇𝑤𝑖𝑛
𝐻 𝐇𝑤𝑖𝑛

−𝑇

𝐪𝑚𝑖𝑛 

 

 

– 𝐪𝑚𝑖𝑛 is the eigenvector corresponding to minimum 

eigenvalue of 𝐇𝑤𝑖𝑛
𝐻 𝐇𝑤𝑖𝑛 

−1

 𝐇𝑤𝑎𝑙𝑙
𝐻 𝐇𝑤𝑎𝑙𝑙  𝐇𝑤𝑖𝑛

𝐻 𝐇𝑤𝑖𝑛 

−𝑇

 

 

– 𝐇𝑤𝑖𝑛 and 𝐇𝑤𝑎𝑙𝑙  are Toeplitz matrices corresponding to 
vectors 𝐡𝑤𝑖𝑛 and 𝐡𝑤𝑎𝑙𝑙  respectively 
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• FIR filters with non-consecutive non-zero taps 

– Typically referred to as sparse filters 

– Larger delay spread than dense filters  

– Filtering requires same complexity as dense filter with 
equal number of non-zero taps 

– E.g. RAKE receiver structure in CDMA communications 

 

Sparse Filters 
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Sparse Equalizer Design 

• Design problem 

– Design equalizer 𝐰𝑜𝑝𝑡, constrained to 𝐿 non-zero taps and 

maximum delay of 𝑀, to maximize SSNR of 𝐡 ∗ 𝐰𝑜𝑝𝑡 

 

• Optimal solution (exhaustive search) 
1. Define a set 𝒮 of indexing matrices 𝐏𝑖  

              𝑃𝑖 𝑗, 𝑘 =  
1
0
  if the 𝑗𝑡ℎ non−zero tap of 𝐰 is at sample delay 𝑘

otherwise
 

 

2. Design 𝐰𝑖,𝑜𝑝𝑡 using 𝐇𝑤𝑖𝑛𝐏𝑖
  and 𝐇𝑤𝑎𝑙𝑙𝐏𝑖   ∀ 𝑖 = 1,… 𝒮  

3.  𝐰𝑜𝑝𝑡 is the equalizer 𝐰𝑖,𝑜𝑝𝑡 with highest SSNR ∀ 𝑖 = 1,… 𝒮  

–  𝒮 = 𝑀−1
𝐿−1

 

 

8 Introduction | Channel Shortening | Sparse Equalizer | Complexity Analysis | Results  



Low Complexity Equalizer Design 

• ‘Strongest tap selection’ method 
1. Design large length dense filter and choose a subset of 

strongest taps 

2. Design sparse filter on the selected locations 

 

 

 

 

 

• Features 
– Suboptimal 

– Lower computational complexity than optimal design method 

– Similar approach used in G-RAKE receiver [Fulghum et al.,2009] 
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Computational Complexity Analysis 

• Design + Runtime model of communication 
– Modem performs channel estimation and equalizer design during 

initial training stage 

– Equalizer coefficients are stored and used during data transmission 

– Assumption: Data transmission duration is much longer than training 
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L: NUMBER OF NON-ZERO TAPS  M: MAX FILTER DELAY   R: SAMPLING RATE 

TEQ Stage (Equalizer type) Computational Complexity 
(Multiplications) 

Design (Original) 𝒪(𝐿3) 

Design (Sparse – Exhaustive) 
𝒪 𝐿3  

𝑀 − 1

𝐿 − 1
 

Design (Sparse – Heuristic)  𝒪(𝐿3  +  𝑀3) 

Runtime  𝒪(𝐿𝑅) 



Simulation Parameters 

• Simulate sparse equalizers on Carrier Serving Area Loop 
channel models 
– Typically used in DMT 
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Parameter Value 

Sampling Rate 2.208 MHz 

Symbol Length 512 samples 

Cyclic Prefix Length 32 samples 

Maximum tap delay (M) 10 

Channel Model ADSL Carrier Serving Area Loop 1 



Channel Shortening Performance 
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CHANNEL SHORTENING SNR PERFORMANCE VS. NUMBER OF NON-ZERO EQUALIZER TAPS 
FOR CARRIER SERVING AREA LOOP 1 CHANNEL 
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• Comparison of computational complexity for various 
equalizer design methods 
– Filter Length is number of non-zero taps in equalizer 

– M = 10 for sparse equalizers 

– Design complexity is number of multiplication operations 

– Design + Runtime complexity is multiplication operations required for filter 
design and 1 second of filter operation at R = 2.208 MHz 

 

Computation Complexity 
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Equalizer Type Filter Length Design Complexity Design + Runtime 
Complexity 

Dense 𝐿 =  8 14106  18254016 (100%) 

Sparse – optimal 𝐿 =  6 780192  14460192 (79.22%) 

𝐿 = 4 169344  9289344 (50.89%) 

Sparse – heuristic  𝐿 =  6 32832  13712832 (75.12%) 

𝐿 = 4 28656  9148656 (50.12%) 
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Equalizer Design Tradeoff 
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Summary 

• Sparse shortening equalizer design 
– High computational complexity requirements for design 

– Favorable for few non-zero coefficients 

– Reconcile increased design computation by improved 
communication performance during data transmission 

 

 

 

• Applications 
– Channel shortening equalizers in ADSL systems 

– RAKE receivers in CDMA systems 

– Equalizers in underwater acoustic communications 
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• Thank you! 
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