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Abstract—Powerline distribution networks are increasingly
being employed to support smart grid communication infras-
tructure and in-home LAN connectivity. However, their primary
function of power distribution results in a hostile environment for
communication systems. In particular, asynchronous impulsive
noise, with levels as high as 50 dB above thermal noise, causes
significant degradation in communication performance. Much of
the prior work uses limited empirical measurements to propose
a statistical model for instantaneous statistics of asynchronous
noise. In this paper, we (i) derive a canonical statistical-physical
model of the instantaneous statistics of asynchronous noise based
on the physical properties of the PLC network, and (ii) validate
the distribution using simulated and measured PLC noise data.
The results of this paper can be used to analyze, simulate, and
mitigate the effect of the asynchronous noise on PLC systems.

I. INTRODUCTION

Powerline networks are increasingly employed for commu-
nication purposes. These purposes vary from Internet connec-
tivity inside the house to supporting smart grid applications
such as automatic meter reading, device-specific billing and
smart energy management. These powerline communication
networks (PLC), initially designed for power transfer, result in
a hostile environment for communication systems. Reflections
and temporal variations in the PLC channel and correlated
impulsive noise are the two main impairments for reliable
communication [1]. This paper focuses on noise statistics, and
refers readers interested in channel modeling to [1], [2], [3],
[4], [5]. The non-Gaussian noise in PLC networks can be
categorized into three main categories: generalized background
noise, periodic impulsive noise, and asynchronous impulsive
noise [6]. The first type has an exponentially decaying power
spectral density superimposed with narrowband interference,
while the second consists of broadband impulses occurring
periodically. On the other hand, the asynchronous impulsive
noise consists of random impulses of varying durations. It is
mainly caused by switching transients of various appliances
and devices in individual homes and businesses present on the
network [1], [6]. Additional interference can also be picked up
by the PLC network acting as an antenna for wireless in-band
and aliased signals [1]. This impulsive noise, with levels as
much as 50 dB above thermal noise, is considered the main
cause of errors in PLC communications [1].
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Fig. 1. A system model for a low-voltage powerline communications network
and an in-home PLC LAN with interference sources. Each interference source
can be either on the powerline or from an external wireless source. Each
interferer emits asynchronous impulsive noise at a distance dm from the
receiver for m = 1, . . . ,M .

Frequency domain empirical studies fit the spectrally shaped
background noise to various spectral models [7], [8]. Likewise,
time domain properties of the asynchronous impulsive noise,
such as impulse inter-arrival times, impulse durations, and in-
stantaneous statistics, have been experimentally investigated in
[3], [6], [8], [9]. We refer the reader to [3] and [6] for modeling
the impulse inter-arrival times and impulse durations.

In this paper, we focus on the instantaneous amplitude
statistics of the asynchronous impulsive noise which are
important properties for communication system performance
and simulation [10], [11], [12]. Prior work fits the noise data
to different statistical models such as Middleton’s Class A
[10], Nakagami-m [11], and Rayleigh [9] distributions em-
pirically without considering the underlying physical models
of interference generation. Recent work in [13] supports the
Gaussian mixture and Middleton noise models by filtering
the interference through a PLC channel in a Monte Carlo
simulation and studying the resulting statistics of the simulated
noise. As a follow-up to previous work, we derive an analytical
statistical-physical model of the first-order distribution of
the asynchronous impulsive noise in PLC networks based
on physical models of the PLC channel and the generated
interference. Temporal and higher order statistics are left for
future work. On top of that, we validate our models using



Fig. 2. Superposition of impulses generated by source m: vertical arrows
are illustrations indicating arrivals, km is the number of arrivals within time
duration T , and t = 0 is the reference time.

Monte-Carlo simulations and experimental data collected on
a PLC network.

II. SYSTEM MODEL

We consider a power-distribution or an indoor PLC network
in which a randomly located receiver receives a signal of
interest in the presence of interfering signals. A typical system
model for a low-voltage PLC network is given in Fig. 1. In
this model, there are M interferers that are a combination of
various homes connected to a transformer and some wireless
sources such as AM transmissions. The PLC environment
is very dynamic and can exhibit different characteristics on
hourly basis, such as variations in load impedances during
the day period [1], [6], [14]. However, this paper focuses
on deriving instantaneous impulse statistics as observed by a
communication system. As a result, we ignore the large scale
variations in the environment, and assume it to be stationary
on the desired time scale. The interference experienced by a
receiver at a reference time t = 0 due to emissions that arrived
within a time interval of duration T from the reference time
is given by

I (T ) =

M∑
m=1

Im (T ) (1)

where Im (T ) is the interference resulting from interference
source m. Consequently, the interference due to all emissions
that arrived in the past until time t is given by

Ψ = lim
T→∞

I (T ) . (2)

Although taking T → ∞ might contradict the stationarity
assumption mentioned earlier, we will show that this is not
the case and that it holds for the desired time scale as
well. The objective is to find the first-order statistics of this
total interference by calculating the characteristic function of
Im (T ) for each interferer m. Toward this end, we focus
on finding appropriate statistical models for the impulsive
emissions based on experimental studies found in the literature
(typically up to 20MHz).

A. Interference Emissions Modeling

Fig. 2 shows the superposition of impulsive emissions due
to source m. Each impulse i is made up of two parameters:
an arrival time relative to the reference time denoted by τm,i

(indicated by an arrow) and an impulse duration denoted by
TE
m,i. The dynamics of the emissions are captured by the inter-

arrival times between impulses denoted by {4τ i : i ∈ N}.
Various experimental studies investigated the temporal prop-
erties of asynchronous impulsive emissions in PLC networks
[3], [6], [8], [9]. In particular, measurements done in [3] and
[6] showed that the inter-arrival time between two consecutive
impulses fits an exponential distribution; i.e., the inter-arrival
time between impulse i and impulse i + 1 has the following
distribution

4τm,i ∼ Exp (λm)

where λm is the emission rate of source m. Since two
impulses arriving at the same time are indistinguishable (they
add up constructively), the process Λm = {τm,i : i ∈ N}
representing the impulse arrival times for source m is a
counting process with jumps of size one. This combined with
the exponential inter-arrival times, makes it a time Poisson
point process with rate λm. As a result, the interference
emissions in our model are characterized by a set of time
Poisson point processes {Λi (λi) : 1 ≤ i ≤M} corresponding
to each interferer in Fig. 1. This modeling can be generalized
to indoor PLC networks where the interference sources are
individual appliances [3]. On the other hand, the statistics of
the impulse duration TE

m,i have been studied in [6], [8]. It was
found that a typical impulse has a duration ranging from about
10µs to 1ms with a distribution that is loosely exponential and
a typical value of hundreds of µs [6]. The exact distribution
of the impulse duration is not important since the derivation
in this paper depends only on its first moment E

{
TE
m,i

}
.

B. Interference Channel Modeling

The PLC channel properties have been studied extensively
in [2], [4], [5]. In [4], the PLC channel was fitted to a time-
domain pulse model. On the other hand, [2] and [5] exploit
the physical properties of the transmission line. The two-port
network model presented in [2], represents each component
of the PLC network, such as a cable or a transformer, by
its equivalent two-port network description (ABCD or S-
parameters). Then, transmission line (TL) theory is used to
compute the equivalent channels and reflection impedances.
On the other hand, the echo model, presented in [5], is
simplified representation of the channel frequency response
inspired by TL theory. The echo model describes the channel
by the following equation

H (f) =

N∑
j=1

gje
−α(f)dje−j2πfdj/ν (3)

where N is the number of paths, gj is a random variable
representing the reflection coefficient of each propagation path
that depends on the observed load impedance, α (f) is the
attenuation constant of the cables used, dj is the length of
each reflection path needs to travel, and ν is signal propagation
speed through the wire. The impulse response of this channel
has a delay spread τh between 1µs to around 4µs [4], [5].



The effect of this channel on an impulse i due to source m
can be inferred by comparing the typical values of TE

m,i, the
impulse durations presented in Section II-A, to the channel
delay spread τh given above. Since TE

m,i � τh, the response
of channel to the impulsive emission will have only one
resolvable component and the channel will be a flat fading
channel (the signal’s propagation delay is much smaller than
the impulse duration). A similar conclusion can be reached
by looking at the channel’s frequency response given in [4]
and [5]. For an impulsive emission bandwidth between 1kHz
and 100kHz corresponding to the aforementioned TE

m,i, the
channel response is relatively flat. As a result, the discrete
baseband equivalent channel of (3) is given by

h [n] = hejθe−α0dδ [n] (4)

where h is a random amplitude, θ is a random phase uniformly
distributed on [0, 2π] under the uncorrelated fading assump-
tion, e−α0d is the path attenuation, d is the distance between
the interferer and the receiver, and α0 = α (f0) for some f0 in
the frequency band being considered (flat fading). Even if the
channel exhibits frequency selectivity, the resulting multipath
of the interference can be lumped together into one longer
impulse with a different amplitude distribution. The derivation
in this paper depends only on the second order moment of the
channel amplitude and thus can be applied to any channel
distributions. For a wireless interferer, we assume a Rayleigh
flat fading channel with pathloss proportional to d−γ/2, where
d is the distance of the source and γ is the pathloss exponent
[15].

III. STATISTICAL MODELING OF Im (T )

Fig. 2 shows a typical realization of impulse emissions
within a window of duration T resulting from interference
source m. The resulting interference at the receiver at a
reference time t = 0, Im (T ), can be represented as

Im (T ) = γ (dm)

km∑
i=1

hm,ie
jθm,iXm,i (5)

where km is the number of impulses that arrived within a win-
dow of duration T , hm,ie

jθm,i is the flat channel gain (based
on (4)) between the interference source m and the receiver as
seen by impulse i, and γ (dm) is the path attenuation. From
Section II-B, the channel attenuation can be expressed as

γ (dm) =

{
d
−η/2
m if m is a wireless source
e−α0dm if m is a wired source

(6)

where dm is the distance between the source and the receiver.
On the other hand, Xm,i is the random emission due to the
duration of impulse i and can be represented as

Xm,i = Bm,ie
jφm,i1

(
τm,i ≤ TE

m,i

)
(7)

where 1 (·) is the indicator function, and Bie
jφi represents

the result of narrowband filtering of interference emissions
performed at the receiver. The condition inside of the indicator
function guarantees that the emission corresponding to impulse

i is still active at the reference time t = 0 (See Fig. 2).
For example, in Fig. 2 impulse km no longer has an effect
at t = 0 while impulse 1 is still active as reflected in the
indicator function’s condition. Bi is an i.i.d. envelope and
φi is a random phase uniformly distributed on [0, 2π]. This
representation is valid as long as TE

m,i � 1
4fR where 4fR

is the receiver bandwidth [16]. This is the case for the values
of TE

m,i mentioned in Section II-A, especially for broadband
PLC (4fR ≈ 1MHz). Expanding Im (T ) into its complex
form, we obtain

Im (T ) =

km∑
i=1

hm,iBm,i1
(
τm,i ≤ TE

m,i

)
×
[
cos
(
φm,i + θm,i

)
+ j sin

(
φm,i + θm,i

)]
. (8)

From (8), the joint characteristic function of the in-phase
and quadrature-phase components of Im (T ) = I

(I)
m (T ) +

jI
(Q)
m (T ), with implicit dependence on T , is given by

ΦIm (ω) = EIm

{
ejωII

(I)
m +jωQI(Q)

m

}
= E

{
e
j

km∑
i=1

hm,iBm,i1(τm,i≤TEm,i)|ω| cos(φm,i+θm,i+ωφ)
}

where Im =
[
I
(I)
m , I

(Q)
m

]T
and ω = [ωI , ωQ]

T ,

|ω| =
√
ω2
I + ω2

Q, and ωφ = tan−1
(
ωQ
ωI

)
. The

expectation in the above equation is with respect to
km,

{
Bm,i,hm,i, τm,i,φm,i,θm,i,T

E
m,i : 1 ≤ i ≤ km

}
. Tak-

ing the expectation over km, we obtain

ΦIm (ω) =

∞∑
km=0

P (km arrivals in duration T )×

E
{
e
j
km∑
i=1

hm,iBm,i1(τm,i≤TEm,i)|ω| cos(φm,i+θm,i+ωφ)
| km

}
(9)

Since Λm (λm) is a homogeneous Poisson time-point process,
the number of impulse arrivals km in the window of duration
T is Poisson distributed with distribution

km ∼ Pois (λmT ) .

Furthermore, given km, the impulse arrival times
{τm,i : 1 ≤ i ≤ km} are mutually independent and uniformly
distributed on [0, T ]; thus

τm,i | km ∼ U (0, T ) for 1 ≤ i ≤ km. (10)

Assuming
{
Bm,i,hm,i,φm,i,θm,i,T

E
m,i | km : 1 ≤ i ≤ km

}
are all i.i.d. (i.e. statistically identical emissions for each
impulse i ), we can drop the index i and write (9) as

ΦIm (ω) =

∞∑
km=0

e−λmT (λmT )
km

km!

×
(
E
{
ej|ω|hmBm1(τm≤TEm) cos(φm+θm+ωφ)

})km
= e

λmT

(
E
{
e
j|ω|hmBm1(τm≤TEm) cos(φm+θm+ωφ)

}
−1

)
(11)



Denoting the expectation in (11) by ψIm (ω), we obtain

ψIm (ω) , E
{
ej|ω|hmBm1(τm≤TEm) cos(φm+θm+ωφ)

}
(a)
= E

{(
1− TE

m

T

)
e0 +

TE
m

T
ej|ω|hmBm cos(φm+θm+ωφ)

}
(b)
= 1− µm

T
+
µm
T

E
{
ej|ω|hmBm cos(φm+θm+ωφ)

}
(12)

where step (a) follows from taking the expectation over τm,
and step (b) from taking the expectation over TE

m with the
notation µm = E

{
TE
m

}
. In step (a), we made the implicit

assumption that T > TE
m (ω) ,∀ω ∈ Ω where Ω is the

probability space. This assumption is valid since in practice
TE
m, the impulse duration, is bounded and follows a truncated

distribution [6]. Further, (2) shows that we are interested in
the limit as T →∞ which justifies our assumption. By using
the identity

eja cos(θ) =
∞∑
k=0

jkεkJk (a) cos (kθ) (13)

where Jk is the Bessel function of the k-th order, ε0 = 1 and
εk = 2 for k ≥ 1, (12) can be written as

ψIm (ω) = 1− µm
T

+
µm
T

E
{ ∞∑
k=0

jkεkJk (|ω|hmBm)

× cos (k (φm + θm + ωφ))

}
. (14)

Since φm and θm are uniformly distributed on [0, 2π],
Eφm,θm {cos (k (φm + θm + ωφ))} = 0 for k ≥ 1, and (14)
reduces to

ψIm (ω) = 1− µm
T

+
µm
T

Ehm,Bm {J0 (|ω|hmBm)} . (15)

An approximation for the expectation term in (15) is given by

Ehm,Bm {J0 (|ω|hmBm)} = e
−|ω|E{h2

mB2
m}

4

(
1 + Θ

(
|ω|4

))
(16)

where Θ
(
|ω|4

)
denotes a correction term with the lowest

power of |ω| being four [16]. Fourier analysis shows that the
behavior of the characteristic function in the neighborhood
of zero governs the tail probabilities of the random variable.
As a result, Θ

(
|w|4

)
� 1 for |w| → 0, and can be ignored

from (16) for modeling tail probabilities. For hmBm Rayleigh
distributed, Θ

(
|w|4

)
= 0 and the following result is exact.

Substituting (16) into (15) and then into (11), we obtain

ΦIm (ω) = e
λmµm

−1+e

−|w|2E{h2
mB2

m}
4



= e−λmµm
∞∑
k=0

(λmµm)
k

k!
e
−k|w|2E{h2

mB2
m}

4 (17)

where the second step follows from the Taylor expansion of
the exponential function. Two important observations can be
made about (17): 1) there is no dependence on T , and (2) it is

the characteristic function of a Middleton Class A distribution
with parameters given by

Am = λmµm = λmE
{
TE
m

}
(18)

Ωm =
Am × E

{
h2
mB2

m

}
2

=
Amγ (dm)E

{
g2
mB2

m

}
2

(19)

where Am is the overlap index that indicates the amount of
impulsiveness of the interference originating from source m,
and Ωm is its mean intensity. The independence of (17) from T
is important for deriving the statistics of the total interference
and is discussed in the following section.

IV. STATISTICAL MODELING OF THE TOTAL
INTERFERENCE Ψ

The total interference as seen by the receiver is the super-
position of impulses resulting from all available interference
sources. Further, it should encompass the contribution of the
impulse durations potentially spanning infinitely in the past.
This is reflected in (2). However, as seen from (17), the
statistics of the total interference Ψ depend only on the
impulses that arrived within the maximum impulse duration
which is finite. This has a simple intuitive explanation: any
impulse that arrived before the maximum impulse duration
would have died out by the reference time t = 0. On top
of that, the maximum impulse duration is on the order of
milliseconds (only 1% of total impulses exhibit a duration
exceeding 1ms [6]). This duration is much lower than the rate
of variation in the PLC enviroment characteristic which are on
the order of hours and days [14]. This justifies the stationarity
assumption mentioned in Section II.

Let ξ = max
{
TE
m (ω) : ω ∈ Ω, 1 ≤ m ≤M

}
, then (2) can

be expressed as

Ψ = lim
T→∞

I (T ) = I (ξ) =

M∑
m=1

Im (ξ) . (20)

Assuming that impulses from different interference sources are
independent and using the result from (17), we can express the
characteristic function of the total interference as

ΦΨ (ω) = e−
∑M
m=1 λmµ

E
m

∞∑
k1=0

· · ·
∞∑

kM=0

M∏
m=0

(
µEmλm

)km
km!

× e−|ω|
2∑M

m=1 kmγ(dm)E{g2
mB2

m}/4. (21)

This is the characteristic function of a Gaussian mixture
distribution. Truncating the each infinite summation into N
terms, (21) can be simplified into the more familiar form

ΦΨ (ω) =

NM∑
i=1

πie
−|ω|2σ2

i (22)

where

π =


λ0
1e
−µ1λ1

0!
...

λN1 e
−µ1λ1

N !

⊗ · · · ⊗

λ0
Me
−µMλM

0!
...

λNMe
−µMλM

N !





TABLE I
STATISTICAL-PHYSICAL MODELING OF ASYNCHRONOUS IMPULSIVE

NOISE IN DIFFERENT PLC NETWORKS. FOR EACH INTERFERING SOURCE
m, λm IS THE EMISSION RATE, µm IS THE MEAN, AND dm IS THE

DISTANCE TO THE RECEIVER. THERE ARE M INTERFERING SOURCES.

Scenario Model

General PLC network Gaussian Mixture
{λm, µm, dm : 1 ≤ m ≤M} π, σ2 in (22)

One Dominant Interference Source Middleton’s Class A

λ, µ, d A = λµ,Ω =
Aγ(d)E{h2B2}

2

Homogeneous PLC network Middleton’s Class A

λm = λ, µm = µ, γ (dm) = γ A = Mλµ,Ω =
λµγE{h2B2}

2

∀m ∈ {1, · · · ,M}

and

σ2 =
1

4

 0 · E
{
h2

1B
2
1

}
...

N · E
{
h2

1B
2
1

}
⊕ · · · ⊕

 0 · E
{
h2
MB2

M

}
...

N · E
{
h2
MB2

M

}


where π =
[
π1 · · · πNM

]
and σ2 =

[
σ2

1 · · · σ2
NM

]
.

The operations ⊗ and ⊕ denote the Kronecker multiplication
and sum respectively. These equations can be made arbitrary
accurate by increasing N ; however, 2 to 3 terms are usually
sufficient in practice [17]. The amplitude distribution of the
total interference can be deduced from (22) and written as

f|Ψ| (ζ) =

NM∑
i=1

πie
−|ω|2σ2

i
ζ

σ2
i

e−ζ
2/σ2

i

which is a sum of Rayleigh distributions.

V. DISCUSSION

Eq. (21) and (22) describe the interference statistics un-
der the general conditions given in Fig. 1. These equations
can be further simplified by assuming more homogeneous
environments with similar properties such as emission rates
and channel and emission’s amplitudes statistics. For exam-
ple, environments with one dominant interference source will
follow a Middleton Class A model with parameters given in
(18) and (19). Environments with interference sources having
similar rates, channel and emission statistics would also have a
Middleton Class A statistics. To see this, assume that λm = λ,
µm = µ, γ (dm) = γ and E

{
g2
mB2

m

}
= k ∀m ∈ 1, · · · ,M .

Substituting these values into (18) and (19) we get, for each
interference source m ∈ {1, · · · ,M},

Am = λµ Ωm = λµ×γk
2

. (23)

Thus, the total interference Ψ is the sum of M independent
Class A distributed random variables with parameters given
by (23). Consequently, Ψ is also Class A distributed with the
following parameters [17]

AΨ = MAm ΩΨ = Ωm . (24)

The variance of the noise is also multiplied by M . The
assumption that γ(dm) is independent of dm is especially valid
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Fig. 3. For M different interfering sources, empirical tail probabilities from
Monte-Carlo simulations and the predicted tail probabilities from the Gaussian
mixture model given in (22) are shown. In both cases, the curves match exactly
for a wide range of ζ values.

in lower frequency PLC networks (order of 100kHz) since for
wired sources

γ (dm) = e−α(f0)dm = e−(a0+a1f
k
0 )dm ≈ 1

where the last equality follows by substituting some measured
values of the given parameters: a0 = 0, a1 = 7.8 × 10−10,
f0 = 100kHz, k = 1 and dm having typical PLC network
dimensions (20m ≤ dm ≤ 500m) [5]. In this range the
transmission line effects are negligible and lumped discrete
models can be used. These cases are summarized in Table I.

VI. SIMULATION AND EXPERIMENTAL RESULTS

We verify our derived models by using Monte-Carlo sim-
ulations of the system given in Fig. 1. In particular, for each
interferer source m we choose a rate λm and distance dm
such that λm ∼ U (λmin, λmax) and dm ∼ U (dmin, dmax).
We choose λmin = 50/sec and λmax = 1000/sec based on
empirical measurements [6], [1]. Also, we choose to simulate
a medium-sized PLC network with dmin = 50m, dmax = 500m,
and α0 = 10−4 with the number of interference sources
M = 5, 15. The mean impulse duration E

{
TE
m

}
was chosen

to be 150µsec ∀m [6]. The accuracy of the statistical models
is established by comparing the empirical tail probabilities
based on the Monte-Carlo simulated data and analytical tail
probabilities predicted by our derived models. The tail prob-
ability characterizes the impulsiveness of a given distribution
and is given by P (|Y | > y). The comparison between the
two tail probabilities for the general cases where the number
of interference sources is 5 and 15 is given in Fig. 3. The
empirical tail probability curve and the model predicted tail
probability curve are exact matches with little deviation at the
higher amplitudes due to the limited number of data points
generated in that range. Moreover, the curves corresponding
to the case with 15 interference sources is higher than that of 5
sources because the variance (power) is higher for the former.
On the other hand, Fig. 4 shows the tail probabilities for the
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Fig. 4. For M homogeneous interfering sources with similar statistics,
empirical tail probabilities from Monte-Carlo simulations and the predicted
tail probabilities from the Middleton Class A model given in (24) are shown.
In both cases, the curves match exactly for a wide range of ζ values.

homogeneous network described in Section V. This network
can be an appropriate approximation for low-frequency PLC
networks and results in interference that is Middleton Class
A distributed with parameters given in (24). Again, it can be
seen that there is a good fit between the simulated data and
the derived model.

In order to validate the above model, we captured real
PLC network interference samples in an apartment building
in Austin, TX. The noise was sampled in the 45 − 90 kHz
band at 1MSample/sec. We used the EM algorithm to fit the
gathered data in chunks of 14 ms to the proposed models. The
results, given by the tail probabilities, are shown in Fig. 5. The
Gaussian mixture model provides the best fit in accordance
with our derived model. The Class A model does not fit well
in this particular case indicating that the interference sources
had different emission properties. As expected, the Gaussian
model provided the worst fit because it does not take into
consideration the heavy tails of the interference distribution.

VII. CONCLUSION

This papers derives canonical statistical-physical models for
the first order pdfs of the asynchronous impulsive noise present
in general PLC networks. The derivation is based on the
physical models of the PLC channel and the temporal models
of the interarrival and duration of interference impulses. These
models are then validated using simulated and experimental
data. In conclusion, these models can be used to analyze,
simulate and evaluate the performance of various PLC systems
for different applications and study the properties and nature
of asynchronous interference in PLC networks.
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