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Noise in Powerline Communications 
Background Noise Periodic and 

Cyclostationary Noise 

Asynchronous 

Impulsive Noise 

 

 

 

 

 

 

 

• colored noise 

• superposition of lower-

intensity sources 

• decreases with frequency 

• includes narrowband 

interference 

• modulated periodic signal 

• cylostationary in time and 

frequency 

• synchronous and 

asynchronous wrt AC mains 

• Sources: rectified and 

switched power supplies 

• dominant in 3-500kHz 

• Caused by switching 

transients 

• Duration: micro to 

millisecond 

• arbitrary inter-arrival time 

• 50db above background 

noise 

• present 0.2-20MHz 

[Zimmermann02] [Zimmermann02],[Corripio06], 

[Reiken11],[Nassar12] 

[Zimmermann02],[DiBert11] 
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Prior Work on Asynchronous Noise 

• Empirical Measurements [Zimmermann, Dostert 2002] 

 

 

 

 

 

 

 

• Empirical Fitting and Modeling 
• Hidden Markov Models [Zimmermann,Dostert2002] 

• Middleton’s class-A [Umehara,Yamaguchi,Morihiro 2004] 

• Gaussian Mixture [Di Bert,Caldera, Schwingshackl,Tonello 2011] 

• Rayleigh [Chan,Donaldson 1989 ] 

• Nakagami-m [Meng,Guan,Chen 2005] 
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Statistical Models 
• Gaussian Mixture 

• Probability Density Function: 𝑝 𝑧 =  𝜋𝑖𝑁(0, 𝜎𝑖
2)𝐾

𝑖=1  

 

 

 

 

 

• Middleton’s Class A [Middleton 1977] 

• Statistical Physical Model for Spatio-Temporal Interference  

• Probability Density Function: 𝑝 𝑧 =   
𝑒−𝐴𝐴𝑖

𝑖!
∞
𝑖=0 𝑁(

0,2𝑖Ω

𝐴
)  
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Parameter Description 

𝐾 Number of Gaussian components 

𝜋𝑖 Mixing probabilities 

𝜎𝑖
2 Component variances (power) 

Parameter Description 

𝐴 Overlap index (indicates impulsiveness) 

Ω Mean intensity 



Powerline Communication Networks 
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Objective: Statistical-Physical model for interference at the 

receiver from M sources 

Interference from source i 

Sources of Asynchronous 

Noise: 

Bursty Wireless Transmissions 

Uncoordinated users 

(coexistence issues) 

Switching Transients  



Interference from a Single Source i  (      ) 
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reference  

time t=0 

Ψ𝑖 

∆𝜏1 𝑇𝑘𝑖
𝐸  

window of duration T with ki impulses 

=  lim
𝑇→∞

𝐼𝑖 𝑇  

∆𝜏𝑙~ Exp 𝜆𝑖  : inter-arrival time  

𝜆𝑖 : impulse rate 

𝜏2 

𝜏𝑙~𝑃𝑃𝑃 𝜆𝑖 : impulse arrivals  

𝑇𝑙
𝐸 : impulse duration 
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Emission Duration 

 Impulse duration is bounded i.e. 

 Result depends only on 𝐸[𝑇𝑙
𝐸]                    

Flat Fading Channel 

 Impulse duration larger than channel delay spread 

 Memoryless channel 𝒉 

 Result depends only on 𝐸 𝒉  

Resulting Interference  
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𝑇𝑙
𝐸 ≫ 𝜏ℎ 

𝑇𝑙
𝐸 < 𝑇𝑚𝑎𝑥 , ∀𝑙 

pathloss Channel experienced 

by impulse l 
Amplitude of 

impulse l at t=0 

Is impulse l active 

at t=0? 

Assumptions and System Model 

=  lim
𝑇→∞

𝐼𝑖 𝑇  Ψ𝑖 



Summary of Statistical Modeling 

• Total Interference : 

 

 

 

• After messy calculations, the characteristic function is: 

 

 

 

 

• Aggregate for multiple Interfering sources 
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Middleton’s Class-A 



Modeling Results 
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Dominant Interference Source 

Homogeneous PLC Network 

General PLC Network 

Impulse rate: 𝝀 

mean duration: 𝝁 

𝑑 

𝝀𝒊 = 𝝀 

𝝁𝒊 = 𝝁 

𝜸 𝒅𝒊 = 𝜸 

𝝀𝒊, 𝝁𝒊, 𝒅𝒊 

Middleton’s Class A 

𝐴 = 𝜆𝜇, 

Ω =
𝐴𝛾 𝑑 𝐸[ℎ2𝐵2]

2
 

Middleton’s Class A 

𝐴 = 𝑀𝜆𝜇, 

Ω =
𝜆𝜇𝛾𝐸[ℎ2𝐵2]
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Gaussian Mixture 

𝜋 and 𝜎2 (refer to 

paper) 



Simulation Results (Tail Probabilities) 
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General PLC Network Homogenous PLC Network 

As expected, larger networks have higher interference 

power. 



Some Measurements of PLC Noise 
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Collected in the 3-

500kHz range 

indoors 

 

Gaussian Mixture 

provide a good fit 

as well 



Thank you 

Questions? 
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