
HETEROGENEOUS MULTIPROCESSOR MAPPING

FOR REAL-TIME STREAMING SYSTEMS

Jing Lin, Akshaya Srivasta,

Prof. Andreas Gerstlauer, and Prof. Brian L. Evans

Department of Electrical and Computer Engineering

The University of Texas at Austin

May 27, 2011

Introduction

• Synchronous data flow (SDF) models

• Static schedule: 1-2-3-4-3-4-3-4-5

• Model for many real-time streaming applications, which desire high

throughput and low latency

• Multiprocessor system-on-chips (MPSoCs)

source sink

initial tokens

Intro | Problem Def. | Prior Work | Our Goal | Global Opt. | Heuristic Opt. | Experimental Results

• Mapping SDF models to MPSoCs

• Partition:

• Schedule:

Problem Definition

Intro | Problem Def. | Prior Work | Our Goal | Global Opt. | Heuristic Opt. | Experimental Results

• Mapping SDF models to MPSoCs

• Partition:

• Schedule:

Period = 1 / Throughput

Latency = (End of the n-th exec. of Sink) – (Start of the n-th exec. of Source)

Problem Definition

Intro | Problem Def. | Prior Work | Our Goal | Global Opt. | Heuristic Opt. | Experimental Results

Prior Work

Publication
General

SDF

Processor

Heterogeneity
Objectives

Solution

Form

Main

Approach

[Lee1987] Yes No Throughput Single solution Linear programming

[Bha1996] Yes No Throughput Single solution Linear programming

[Zhu2009] Yes Yes Buffer size Schedule only** Constraint programming

[Bon2010] No* Yes Throughput Single solution Graph-based solution

[Zit2000] Yes No Multiple Pareto front*** Evolutionary algorithm

* Homogeneous SDF graph only

** Partition is assumed to be given

*** A set of points that are Pareto optimal

Intro | Problem Def. | Prior Work | Our Goal | Global Opt. | Heuristic Opt. | Experimental Results

Our Goal

• Mapping general SDF to heterogeneous MPSoCs

• Multi-objective optimization

• Throughput

• Latency

• Processor cost (e.g. price, area)

A multi-objective optimization framework that jointly

optimizes throughput, latency and processor cost for

general multiprocessor SDF mapping.

Intro | Problem Def. | Prior Work | Our Goal | Global Opt. | Heuristic Opt. | Experimental Results

Global Optimization

•

Intro | Problem Def. | Prior Work | Our Goal | Global Opt. | Heuristic Opt. | Experimental Results

•

Global Optimization

Time interval between

Source’s 1st start and Sink’s

1st end in the periodic phase

Difference in

iteration numbers

Intro | Problem Def. | Prior Work | Our Goal | Global Opt. | Heuristic Opt. | Experimental Results

•

Global Optimization

Linearize product terms:

add one variable and

three constraints

Time interval between

Source’s 1st start and Sink’s

1st end in the periodic phase

Difference in

iteration numbers

Express indicator

functions with two

constraints

Intro | Problem Def. | Prior Work | Our Goal | Global Opt. | Heuristic Opt. | Experimental Results

•

Global Optimization

Linearize product terms:

add one variable and

three constraints

NP

hard!

Time interval between

Source’s 1st start and Sink’s

1st end in the periodic phase

Difference in

iteration numbers

Express indicator

functions with two

constraints

Intro | Problem Def. | Prior Work | Our Goal | Global Opt. | Heuristic Opt. | Experimental Results

Critical

processor

Heuristic Optimization

• Maximum throughput partition
• For fixed partition, the best throughput is determined

by the critical processor

• Empirically, the best throughput is achievable given

long enough startup phase and proper scheduling

• Just optimize partitioning for the best throughput and cost

• Two-stage optimization process

• Throughput and cost are prioritized over latency

Intro | Problem Def. | Prior Work | Our Goal | Global Opt. | Heuristic Opt. | Experimental Results

• Two ILPs

• Multi-Objective Evolutionary Algorithm (MOEA)

• The population consists of a subset of all possible partitions

• Converge to a set of multi-objective optimal partitions, i.e. Pareto front

Heuristic Optimization

Intro | Problem Def. | Prior Work | Our Goal | Global Opt. | Heuristic Opt. | Experimental Results

Generate a single solution Generate a Pareto front

Heuristic Optimization

• MOEA with Scheduling ILP

Intro | Problem Def. | Prior Work | Our Goal | Global Opt. | Heuristic Opt. | Experimental Results

Global vs. Heuristic Optimization

Global Optimization Heuristic Optimization

Optimality Global optimal Sub-optimal

Computational

Complexity
NP hard

Design Space

Exploration

Generate a single mapping;

Generate a Pareto-front by

fine tuning the weights

Generate a single mapping

or a three-objective Pareto front

* M is the population size

Intro | Problem Def. | Prior Work | Our Goal | Global Opt. | Heuristic Opt. | Experimental Results

• Programming Tools
• ILP: CPLEX Concert Technology for C++

• MOEA: MOGALib framework in C++

• Run-time comparison
• random cyclic/acyclic SDF graphs mapped to 3 processors

Experimental Results

Intro | Problem Def. | Prior Work | Our Goal | Global Opt. | Heuristic Opt. | Experimental Results

Experimental Results

• Design space exploration for an MP3 decoder

• Convergence to Pareto front

• ~1 hour execution time

Intro | Problem Def. | Prior Work | Our Goal | Global Opt. | Heuristic Opt. | Experimental Results

Conclusion

• Mapping SDF models onto heterogeneous MPSoCs

• Global ILP

• Heuristics by MOEA

• Generate a single mapping or a Pareto front

References
[1] S.S. Bhattacharyya, P.K. Murthy, and E.A. Lee, Software synthesis from dataflow graphs, Springer, 1996.

[2] E.A. Lee and D.G. Messerschmitt, “Static scheduling of synchronous data flow programs for digital signal processing,” IEEE

Trans. on Computers, vol. 36, no. 1, pp. 24–35, 1987.

[3] J.L. Pino, T.M. Parks, and E.A. Lee, “Automatic code generation for heterogeneous multiprocessors,” in Proc. IEEE Int. Conf.

on Acoustics, Speech and Signal Processing, 1994, pp. 445–448.

[4] J. Zhu, I. Sander, and A. Jantsch, “Buffer minimization of realtime streaming applications scheduling on hybrid CPU/FPGA

architectures,” in Proc. IEEE Conf. on Design, Automation and Test in Europe, 2009, pp. 1506–1511.

[5] A. Bonfietti, L. Benini, M. Lombardi, and M. Milano, “An efficient and complete approach for throughput-maximal SDF

allocation and scheduling on multi-core platforms,” in Proc. IEEE Conf. on Design, Automation and Test in Europe, 2010, pp.

897–902.

[6] N. Aslam, T. Arslan, and A. Erdogan, “Algorithmic level design space exploration tool for creation of highly optimized

synthesizable circuits,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2007, vol. 2.

[7] E. Zitzler, J. Teich, and S.S. Bhattacharyya, “Evolutionary algorithms for the synthesis of embedded software,” IEEE Trans. on

VLSI Systems, vol. 8, no. 4, pp. 452–455, 2000.

[8] F. Glover, “Improved linear integer programming formulations of nonlinear integer problems,” Management Science, pp. 455–

460, 1975.

[9] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength Pareto evolutionary algorithm,” in Eurogen, 2001,

vol. 3242.

[10] S. Stuijk, M. Geilen, and T. Basten, “SDFˆ3: SDF For Free,” in Proc. IEEE Int. Conf. on Application of Concurrency to

System Design, 2006, pp. 276–278.

[11] J.T. Alander, “On optimal population size of genetic algorithms,” in Proc. IEEE Int. Conf. on Comp. Sys. and Software Eng.,

2002, pp. 65–70.

Thank you for your attention!

