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Introduction

• Synchronous data flow (SDF) models

• Static schedule: 1-2-3-4-3-4-3-4-5

• Model for many real-time streaming applications, which desire high 

throughput and low latency

• Multiprocessor system-on-chips (MPSoCs)

source sink

initial tokens
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• Mapping SDF models to MPSoCs

• Partition:

• Schedule:

Problem Definition

Intro | Problem Def. | Prior Work | Our Goal | Global Opt. | Heuristic Opt. | Experimental Results



• Mapping SDF models to MPSoCs

• Partition:

• Schedule:

Period   = 1 / Throughput

Latency = (End of the n-th exec. of Sink) – (Start of the n-th exec. of Source)

Problem Definition
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Prior Work

Publication
General

SDF

Processor

Heterogeneity
Objectives

Solution 

Form

Main 

Approach

[Lee1987] Yes No Throughput Single solution Linear programming

[Bha1996] Yes No Throughput Single solution Linear programming

[Zhu2009] Yes Yes Buffer size Schedule only** Constraint programming

[Bon2010] No* Yes Throughput Single solution Graph-based solution

[Zit2000] Yes No Multiple Pareto front*** Evolutionary algorithm

*    Homogeneous SDF graph only

**   Partition is assumed to be given

*** A  set of points that are Pareto optimal 
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Our Goal

• Mapping general SDF to heterogeneous MPSoCs

• Multi-objective optimization

• Throughput

• Latency

• Processor cost (e.g. price, area)

A multi-objective optimization framework that jointly 

optimizes throughput, latency and processor cost for 

general multiprocessor SDF mapping.
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Global Optimization

•
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•

Global Optimization

Time interval between 

Source’s 1st start and Sink’s 

1st end in the periodic phase

Difference in 

iteration numbers
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•

Global Optimization

Linearize product terms: 

add one variable and 

three constraints

Time interval between 

Source’s 1st start and Sink’s 

1st end in the periodic phase

Difference in 

iteration numbers

Express indicator 

functions with two 

constraints
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•

Global Optimization

Linearize product terms: 

add one variable and 

three constraints

NP 

hard!

Time interval between 

Source’s 1st start and Sink’s 

1st end in the periodic phase

Difference in 

iteration numbers

Express indicator 

functions with two 

constraints
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Critical 

processor

Heuristic Optimization

• Maximum throughput partition
• For fixed partition, the best throughput is determined 

by the critical processor

• Empirically, the best throughput is achievable given 

long enough startup phase and proper scheduling

• Just optimize partitioning for the best throughput and cost

• Two-stage optimization process

• Throughput and cost are prioritized over latency
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• Two ILPs

• Multi-Objective Evolutionary Algorithm (MOEA)

• The population consists of a subset of all possible partitions

• Converge to a set of multi-objective optimal partitions, i.e. Pareto front

Heuristic Optimization
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Generate a single solution Generate a Pareto front

Heuristic Optimization

• MOEA with Scheduling ILP
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Global vs. Heuristic Optimization

Global Optimization Heuristic Optimization

Optimality Global optimal Sub-optimal

Computational 

Complexity
NP hard

Design Space 

Exploration

Generate a single mapping;

Generate a Pareto-front by 

fine tuning the weights

Generate a single mapping 

or a three-objective Pareto front

*    M is the population size 
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• Programming Tools
• ILP: CPLEX Concert Technology for C++

• MOEA: MOGALib framework in C++

• Run-time comparison
• random cyclic/acyclic SDF graphs mapped to 3 processors

Experimental Results
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Experimental Results

• Design space exploration for an MP3 decoder

• Convergence to Pareto front

• ~1 hour execution time
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Conclusion

• Mapping SDF models onto heterogeneous MPSoCs

• Global ILP

• Heuristics by MOEA

• Generate a single mapping or a Pareto front
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Thank you for your attention!


