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ABSTRACT

Image deconvolution aims to recover an image that has been de-

graded by a linear operation such as blurring during image acqui-

sition. Deconvolution based on maximum a-posteriori (MAP) esti-

mation requires the global prior probability of the original image.

Conventional methods usually model the image priors by uniformly

characterizing the statistical properties of either some forward mea-

surements of images or the representation coefficients in frames,

neglecting the local image statistics. In this paper, we adopt lo-

cal sparse representation in image deconvolution. Our contributions

include proposing (1) a joint model of natural images combining

sparse representation of image patches and sparse gradient priors,

and (2) an efficient iterative algorithm to infer the MAP estimate

of image deconvolution using the proposed model. Experiments

indicate that the proposed method can recover the original image

with high peak signal-to-noise ratio (PSNR) and structural similar-

ity (SSIM) index compared with state-of-the-art methods.

Index Terms— sparse representation, image priors, image de-

convolution.

1. INTRODUCTION

Image deconvolution is a kind of inverse problem in image process-

ing that aims to recover the original image X given an observationZ = HX+ n (1)

whereH is the matrix form of the convolution kernel (a linear shift-

invariant operator) for vectorized images and n is additive noise. In

this paper we restrict our discussion to Gaussian noise and assumeH is given. This problem is known as non-blind deconvolution and

the most common way to solve it is to adopt MAP estimation, which

requires the prior probability of X to bias the estimation process to

generate more likely results.

Existing image priors usually model images either in an anal-

ysis way or a synthesis way [1] and in both kinds of priors spar-

sity is widely used. Analysis-based priors model the probability

of various forward measurements of images such as gradients [2],

while synthesis-base priors decompose each image into a sparse lin-

ear combination of atoms in a dictionary and directly model the

probability distribution of combination coefficients [3].

Recent research in visual cortex [4] and signal processing [5]

reveals that image patches can be sparsely represented over a learned

overcomplete dictionary (also known as “sparse coding”) better than

pre-defined frames like wavelets. This particular kind of synthesis-

based priors has been successfully applied in image denoising and
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super-resolution with state-of-the-art PSNR results [6, 7]. In de-

noising, overlapping patches are computed separately, and then the

denoised patches are averaged to reduce boundary artifacts.

However, sparse representation of image patches is not that

straightforward to apply in image deconvolution, for the reason that

the intensity value of a certain pixel in Z depends on many different

patches in X due to the convolution operator H. Therefore, the

coefficients of different patches are coupled and cannot be inferred

independently, which results in a very-large-scale optimization prob-

lem. Besides, in denoising the patches are denoised first and then

averaged, but to directly assume the image is equal to the average of

overlapping patches is questionable since in sparse coding the dic-

tionary is learned from independent patches. This forces us to drop

the overlap among patches, which will cause boundary artifacts.

To solve the above problems and take advantage of sparse coding

in image deconvolution, we develop a joint model of the represen-

tation coefficients of image patches and image gradients, which ac-

tually combines analysis-based priors and synthesis-based priors. In

the new model, the statistical properties of gradients can be used to

regularize the decomposition of image patches and eliminate bound-

ary artifacts. We also propose an efficient iterative algorithm to solve

the formulated problem. As we will show, the MAP estimate can be

obtained in only a few iterations, and in each iteration the coeffi-

cients of patches are decoupled and can be inferred independently.

We demonstrate with experimental results that this algorithm pro-

vides competitive and even better figures of merit compared with

state-of-the-art methods. To the best of our knowledge, this is the

first time that sparse coding of patches is used for globally modeling

of image priors and applied in image deconvolution. [8] also pro-

vides a deconvolution algorithm using sparse coding, but it is still

a localized algorithm and can only handle convolution kernels with

very small support sizes. The code of this paper is available in [9].

2. JOINT PRIOR MODEL

2.1. Local Model Using Sparse Representation

We define a vectorized image patch as x 2 RN�1 . According to [4],x can be represented as a linear combination over an overcomplete

dictionary as x = �w, where � 2 RN�M is the overcomplete dic-

tionary, w 2 RM�1 is the representation coefficient which follows

some sparse distribution. The most frequently employed distribution

is Laplace distribution: p (w) = �2 exp (��kwk1). The dictionary� is universal for all natural image patches and can be learned effi-

ciently through some optimization methods [5, 10].

In global modeling of natural images, it is unreasonable to di-

rectly assume the image to be the average of overlapping patches

that can be sparsely decomposed in the learned dictionary �, since

the dictionary is only learned from isolated image patches. Thus



intuitively we can only model the entire image X 2 RL�1 asPiRi�wi, where fwig are representation coefficients of nonover-

lapping patches, Ri is a L � N matrix that maps the ith patch to

its corresponding position in the image. Applying this model in the

MAP estimation of image deconvolution, we havefŵig = argminfwig 12�2 kZ�H Xi Ri�wi! k22 + �Xi kwik1
(2)

where the right hand side denotes � log p(wjZ) and �2 is the vari-

ance of the Gaussian noise. Coefficients of different patches will af-

fect each other and thus have to be estimated simultaneously, which

makes the number of variables up to millions (the number of image

pixels times the overcomplete factor). Moreover, lacking smooth-

ness constraints between nonoverlapping patches can easily cause

severe artifacts along the boundaries of patches.

2.2. Joint model of image and representation coefficients

To take advantage of learned sparse coding of image patches and

settle the mentioned problems above at the same time, we propose a

joint model that consists of both the image and its representation co-

efficients in the learned dictionary. Many learned sparse coding and

synthesis-based prior models assume that any image is equivalent

to a linear combination of elements in a certain dictionary (possi-

bly plus an estimation error term) [1]. This equivalence restricts the

prior model on statistical properties of the representation coefficients

only.

In our joint model, we drop this equivalence and introduce some

other analysis-based priors of images to further regularize the model.

In fact, we can consider the traditional synthesis-based models as a

directed graphical model, in which the image is determined by the

representation coefficients in some dictionary. Our joint model is

an undirected model, so the image and its representation coefficients

cannot determine each other. In other words, the representation co-

efficients are fundamental elements of an image, not just auxiliary

variables to model the image. The negative log-prior probability of

an image and its representation coefficients in learned sparse coding

is defined as� log p (X; fwig) = L (X) + �Xi kwik1 + C (X; fwig ) (3)

where the first term is an analysis-based prior of the image, the sec-

ond term is the sparse prior of the representation coefficients and

the third term is the compatibility term that relaxes the equivalence

relationship between the image and the linear combination. The

analysis-based prior term is introduced to settle the aforementioned

problems of learned sparse coding of patches. Considering the sim-

plicity of the model and the fact that the patches do not overlap, we

use a sparse gradient prior:L (X) = �Xj j (rX)j j2=3: (4)

Here rX indicates the spatial gradients of the image in both verti-

cal and horizontal directions, � is a regularization parameter control-

ling the weight of this term and j is the vector index. This gradient

prior assumes a hyper-Laplacian distribution on the gradients [2] and

thus enforces smoothness between neighboring pixels, eliminating

boundary artifacts. The compatibility term is defined as a Euclidean

distance C (X; fwig ) = �kX�PiRi�wik22 and thus we obtain

the joint prior as� log p (X; fwig) = �Xj j (rX)j j2=3 + �Xi kwik1 (5)+�kX�Xi Ri�wik22:
The model in (5) accepts the difference between the image and the

sparse linear combination, and characterize statistical properties for

both of them. The analysis-based gradient prior is widely used alone

as an effective prior for image deconvolution, but usually over-

smoothes the deconvolution results. The sparse coding of patches,

based on the learned overcomplete dictionary, happens to be able to

keep textures well in deconvolution.

2.3. Image deconvolution using the joint model

Applying the proposed model (5) in image deconvolution (1) and

using MAP estimation, we haveX̂; fŵig = argminX;fwig 12�2 kZ�HXk22 + �Xj j (rX)j j2=3 (6)+�Xi kwk1 + �kX�Xi Ri�wik22:
The three weighting parameters �, � and � can be fixed for all nat-

ural images or tuned carefully to obtain the best results. Compared

with (2), although the number of variables becomes even larger, an

efficient iterative algorithm will guarantee that the MAP estimation

converges fast. Furthermore, as we will show in next section, the

image itself serves as an intermediate layer that decouples the repre-

sentation coefficients of different patches in each iteration.

3. AN ITERATIVE ALGORITHM FOR IMAGE

DECONVOLUTION

The formulated problem (6) is not convex due to the compatibility

term and the hyper-Laplacian gradient prior. We solve (6) by al-

ternately optimizing with respect to X or fwig while holding the

other fixed. Experiments show that a local optimal solution can be

reached quickly and serves well as a deconvolved result. Details of

the algorithm are derived next.

3.1. w sub-problem

WhileX is fixed, we need to solve a problem of the formminfwig�kX�Xi Ri�wik22 + �Xi kwik1 (7)

which further decomposes into smaller problems for each patch:minwi �kXi ��wik22 + �kwik1 (8)

where Xi denotes the ith patch of the image. As shown in (8), for

each patch we only need to solve an `1 regularized square loss min-

imization problem with a very small scale. Algorithms to solve this

kind of problems have been extensively investigated [11].



3.2. X sub-problem

Given a fixed value ofw, to find the optimalX needs solving a more

complicated non-convex problem:minX 12�2 kZ�HXk22+�kX�Xi Ri�wik22+�Xj j (rX)j j2=3:
(9)

To solve (9) we apply the half-quadratic splitting method which, as

demonstrated in [2], can efficiently deconvolve images with hyper-

Laplacian gradient priors. We introduce an auxiliary variableY that

separates the derivative operator r and the `2=3 pseudo-norm:minX;Y 12�2 kZ�HXk22 + �kX�Xi Ri�wik22 (10)+�krX�Yk22 + �Xj j (Y)j j2=3:
Here, the weighting parameter � will be increased during optimiza-

tion and the solution to (10) will converge to that of (9) as � ! 1.� can be initialized as some �min and gradually increased by a scale

factor k until it is larger than an upperbound �max. For a fixed �,

we can minimize (10) by alternating between updating X and Y
while fixing the other. In practice, it is not necessary to achieve

convergence for each fixed � and one iteration of updating will be

sufficient.

Given a fixed Y and �, the optimal X satisfies� 12�2HTH+ �I+ �rTr�X = 12�2HTZ+ �U+ �rTY
(11)

where U =PiRi�wi and I is a unit matrix. There is no need to

directly solve the linear equation (11). In fact, since both H and r
are matrix form of 2D convolution operators, they can be diagonal-

ized by 2D Fast Fourier Transform (FFT). If we define ~x; ~y; ~u as the

2D form of vectors X;Y;U and h;d as the 2D convolution kernel

corresponding to H;r, we have~x = F�1 12�2F (h)� Æ F (~z) + �F (~u) + �F (d)� Æ F (~y)12�2F (h)� Æ F (h) + � + �F (d)� Æ F (d) !
(12)

where F (�) is 2D FFT operator, � and Æ denotes complex conjugate

and component-wise multiplication. Thus, updatingX only involves

2D FFT and component-wise multiplication (the division in (12) is

also component-wise).

WhenX and � are fixed, the optimalY can be found by solving

the following problem for each component:min(Y)j �k (rX)j � (Y)j k22 + �j (Y)j j2=3: (13)

The solution to (13) can be obtained analytically by just solving a

quartic function according to [2].

3.3. Summary of algorithm

We describe the proposed deconvolution method in Algorithm 1. To

solve the `1-`2 optimization in (8) we apply the Least Angle Regres-

sion (LARS) method [11]. In practice we set �min = 1, k = 2p2
and �max = 220 . When X is initialized by a Wiener estimate [3],

the algorithm will converge within very few iterations. Our exper-

iments show that the algorithm is very robust to a wide range of

possible initializations, including the blurred images themselves.

Algorithm 1 Image deconvolution based on our joint model

INPUT: blurred image Z, updating parameters �; �; �
parameters regarding to �: �min; �max; k

Initialize X.

repeat

Update the coefficients for each patch wi according to (8).� = �min .

while � < �max do

Update Y according to (13) analytically according to [2].

Update X according to (12).� = k�.

end while

until convergence

OUTPUT: deconvolved image X
Table 1. Experiment settings with different blur kernels and different

values of noise variance �2 for pixel values in [0; 255].
Test Blur kernel h �2

1 Uniform 9� 9 kernel 0.308

2 hi;j = �1 + i2 + j2��1
, for i; j = �7; � � � ; 7 2

3 hi;j = �1 + i2 + j2��1
, for i; j = �7; � � � ; 7 8

4 Separable kernel with weights [1; 4; 6; 4; 1] =16 49

in both directions

4. EXPERIMENTAL RESULTS

In the experiments, we work on gray-scale images with intensity val-

ues normalized to the range [0; 1]. We set the patch sizeN = 12�12
and tune the parameters as � = 2:5, � = 2:5, � = 200 empirically

for the best average performance. The corresponding dictionary� is

learned from randomly extracted patches from the Berkeley Segmen-

tation database [12] using the online dictionary learning algorithm in

[10]. We compare the proposed method with two state-of-the-art al-

gorithms in standard test settings for deconvolution. [13] is based

on `0 sparse optimization in tight frames, while [2] applies only

sparse gradient priors. The test settings are shown in Table 1. Table

2 shows the comparison of our test results on two frequently used

test images House 256 � 256 and Cameraman 256 � 256 against

the other two state-of-the-art methods in terms of ISNR (increment

in PSNR) and SSIM (structural similarity) index of the restored im-

age. We also run the three algorithms on 100 images randomly ex-

tracted from the PASCAL Visual Object Classes Challenge (VOC)

2007 database to compare the average deconvolution performance.

Note that the parameters in the three methods are uniformly tuned for

all of the images and fixed during the experiments, and not adapted

to any particular test image.

In our experiments, our method outperforms both [2] and [13]

in terms of SSIM values in all cases. Our method also outperforms

[13] in ISNR for the VOC 2007 database. Compared with [2] that

only uses the sparse gradient priors, the proposed algorithm obtains

better deconvolution results by combining the sparse gradient priors

with learned sparse coding of image patches. In MATLAB sim-

ulation, the proposed method takes an average time of 16s for a256 � 256 image with an Intel Core2 Duo CPU @ 2.26GHz and

4GB RAM, while [13] and [2] take 15s and 2s respectively on av-

erage.

Fig.1 shows a visual comparison between the proposed method

and the method in [13] on House image in test setting 1. Although

our method provides a slightly lower ISNR value, it keeps more brick



Table 2. The ISNR (in dB) and SSIM index of different methods in

the 4 standard test settings as described in Table 1256 � 256 House

[2] [13] Proposed

Test 1 ISNR 10.06 10.74 10.57

SSIM 0.8894 0.8918 0.8934

Test 2 ISNR 7.82 8.40 8.49

SSIM 0.8701 0.8737 0.8799

Test 3 ISNR 6.77 7.12 7.11

SSIM 0.8582 0.8566 0.8606

Test 4 ISNR 4.34 4.55 4.57

SSIM 0.8619 0.8588 0.8620256� 256 Cameraman

[2] [13] Proposed

Test 1 ISNR 8.65 9.10 8.98

SSIM 0.8812 0.8797 0.8871

Test 2 ISNR 7.55 7.70 7.76

SSIM 0.8772 0.8724 0.8851

Test 3 ISNR 5.37 5.55 5.43

SSIM 0.8438 0.8371 0.8464

Test 4 ISNR 2.59 2.94 2.71

SSIM 0.8454 0.8408 0.8484

the VOC 2007 database

[2] [13] Proposed

Test 1 ISNR 7.50 7.72 7.79

SSIM 0.8614 0.8634 0.8657

Test 2 ISNR 6.69 6.80 7.12

SSIM 0.8799 0.8837 0.8860

Test 3 ISNR 5.11 5.12 5.23

SSIM 0.8343 0.8321 0.8353

Test 4 ISNR 2.67 2.58 2.77

SSIM 0.8425 0.8440 0.8441

textures on the wall of the house, by benefiting from the learned over-

complete dictionary for image patches (the difference might only be

observed in electronic copy when zoomed in).

5. CONCLUSIONS

We have proposed a method to globally model image priors based on

the sparse representation of small patches over a learned overcom-

plete dictionary and the sparse distribution of spatial gradients. The

sparse representation of image patches provides well matching with

various textures, while the sparse gradient prior guarantees smooth-

ness of the image. We also developed an iterative algorithm for im-

age deconvolution with the proposed joint model, with convergence

in only a few iterations. In our experiments, our method generally

outperforms the best existing deconvolution algorithms. The pro-

posed model and algorithm can be extended to more general image

restoration problems like denoising and super-resolution.
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