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Abstract

Many wireless data communication systems such as LTE, and Wi-Fi, are increasingly facing

interference that is much stronger than thermal noise. Interference may arise due to dense spatial

reuse of spectrum intended to increase user data rates, or from other devices emitting radiation

in the same spectrum, or from electronic circuitry within the communication platform. For a

multi-antenna receiver operating in an interference-limited channel, we evaluate four diversity

combining algorithms in terms of outage probability in the low-outage regime. The contributions

of this paper are (1) derivation of closed-form expressions for the output signal-to-interference

ratio (SIR) statistics of fixed weight, maximal ratio, selection and post-detection combining; (2)

comparison of the relative outage performance of these algorithms; and (3) proposed diversity

combining algorithms to reduce outage probability. Our results can be applied in analyzing the

outage performance and throughput capacity of both centralized and decentralized interference-

limited wireless networks.
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I. INTRODUCTION

Wireless transceivers suffer degradation in communication performance due to interfer-

ence generated by both human-made and natural sources [1]. Human-made sources of

interference include uncoordinated wireless devices operating in the same frequency band

(co-channel interference) [2], devices communicating in adjacent frequency bands (adjacent

channel interference), and computational platform subsystems radiating clock frequencies

and their harmonics [3]. Dense spatial reuse of the available radio spectrum, which is key in

meeting increasing demand in user data rates [4], also causes severe co-channel interference

and may limit communication system performance.

Recent communication standards and research have focused on the use of multiple receive

antennas to increase data rate and communication reliability in wireless networks. Single

input multiple output (SIMO) communication systems can achieve higher data rates with

fewer errors through spatial diversity; i.e., receiving multiple copies of the signal increases

the chance that some of these copies are relatively impairment free. Consequently, wireless

receivers with multiple antennas are increasingly being deployed in network environments

that are rife with interference due to resource reuse [1], [2]. Multi-antenna wireless receivers

have generally been designed and their communication performance analyzed under the

assumption of additive Gaussian noise. While the Gaussian distribution is a good statisti-

cal model for thermal noise at the receiver, interference has predominantly non-Gaussian

statistics. This mismatch between design assumptions and the actual interference statistics

may degrade the communication performance of multi-antenna wireless receivers. Since

communication systems utilizing multiple antennas are being deployed on mobile platforms,

it becomes essential to characterize the relative performance of spatial diversity techniques

in the presence of interference.

In this paper, we analyze the performance of diversity combining techniques in interference-

limited channels; i.e., we assume that the non-Gaussian interference is significantly stronger

than Gaussian noise at the receiver. Interference is modeled via statistical-physical mecha-

nisms of interferer distribution, interference generation, and interference propagation. The

diversity combining receivers under study are the equal gain combiner (EGC), fixed weight
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combiner (FWC), maximum ratio combiner (MRC), selection combiner (SC), and the post-

detection combiner (PDC). A detailed discussion on each of these receivers can be found

in Sections IV and V. Evaluating the performance of these diversity combining algorithms

in interference highlights the relative merits or disadvantages of different algorithms in

different interference environments. We also propose a novel diversity combining algorithm

that improves upon the performance of current diversity combining receivers.

A. Organization

In Section II we discuss the key contributions and limitations of prior work on communi-

cation performance in interference limited systems. Section III details our system model for

interferer location distribution, and interference generation and propagation. In Section IV

we derive the outage probability of pre-detection diversity combining techniques. We derive

closed-form outage probability expressions for fixed weight combining, maximum ratio com-

bining and selection combining. In Section V we derive the outage probability expression for

a post detection combining receiver. Section VI presents numerical simulations to compare

our closed-form outage probability to simulated outage in a multi-antenna receiver located

within a space containing Poisson distributed interferers. In Section VII, two novel diversity

combining receivers are proposed and their communication performance is compared to

existing algorithms studied in Sections IV and V. We conclude with a summary of the key

contributions and insights in Section VIII.

B. Notation

Scalar random variables are represented using lower-case notation, random vectors are

denoted using the boldface lower-case notation, and random matrices are denoted using

the boldface upper-case notation. Deterministic parameters are represented using Greek

alphabet, with the exception of N denoting the number of receive antennas. Ex

�

f (x )
	

denotes the expectation of the function f (x ) with respect to the random variable x , P(·)

denotes the probability of a random event, ‖·‖ denotes the vector 2−norm, and ‖·‖p denotes
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the vector p−norm.
�N

m

�

denotes the number of possible ways of choosing m objects out of

a total of n , which is equal to n !

(n−m )!m !
.

II. PRIOR WORK

Prior work on analyzing communication performance of receiver diversity algorithms in

interference has often focused on bit-error rate (BER) analysis of various reception schemes

in the presence of additive impulsive noise. Typical statistical distributions that model im-

pulsive noise are the spherically invariant symmetric alpha-stable distribution [5], spherically

invariant Middleton Class A distribution [6], and multi-dimensional independent Middleton

Class A noise model [6]. These statistical distributions model two extreme cases of interfer-

ence statistics; i.e, interference is either statistically isotropic across antennas or statistically

independent across receive antennas.

In [7], the isotropic symmetric alpha-stable noise model was used to evaluate BER under

various diversity combining schemes. This work was extended in [8] to more reception

techniques, but only considered Binary Phase Shift Keying (BPSK) modulation. In [9], the

authors investigated the performance of different diversity combining techniques over fad-

ing channels with impulsive noise modeled using either isotropic or independent multi-

dimensional Middleton Class A distribution. In [10], the authors analyze performance bounds

for optimum and sub-optimum receivers in the presence of Middleton Class A impulsive

noise over non-fading channels. In [11], the authors evaluate performance bounds of 2×2

MIMO communication with Alamouti codes using a generalized statistical-physical inter-

ference model from [12]. In [13] the performance of maximum ratio combining techniques

was investigated in multi-user environments and in presence of receiver channel estimation

error. While the authors did use the notion of statistical-physical interference propagation

mechanisms, they assumed a fixed number and locations of the interference generating

sources. In [14], a statistical-physical model similar to ours was used to study performance

of optimum diversity combining. However, this model also assumed that interference was

isotropic and the optimum receiver was impractical to implement as it required information

about interferer locations at each sampling instant.
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TABLE I

PRIOR WORK ON ANALYSIS OF RECEIVE DIVERSITY PERFORMANCE IN A POISSON FIELD OF INTERFERERS. CONTINUUM REFERS TO A

CONTINUUM BETWEEN ISOTROPIC AND INDEPENDENT. (SAS: SYMMETRIC ALPHA STABLE, MCA: MIDDLETON CLASS A)

Interference Model Diversity Combiner

Paper Type Isotropic Independent Continuum FWC MRC SC PDC MMSE

[8] SAS Ø Ø Ø Ø Ø

[9] MCA Ø Ø Ø Ø Ø Ø

[13] SAS Ø Ø Ø

[14] SAS Ø Ø Ø

this SAS Ø Ø Ø Ø Ø Ø Ø

Table I summarizes interference models and receiver algorithms in [8], [9], [13], [14] and

in this paper. By using impulsive statistical distributions to model interference, performance

analysis in [8], [9], [13] provides a link between communication performance and noise

parameters. On the other hand, by starting from a statistical-physical interference gener-

ation mechanism, performance analysis in [14] provides a link between communication

performance and network parameters such as user density and user distribution.

III. SYSTEM MODEL

A. Network Model

In this section, we describe a interference limited multi-antenna wireless communication

system via the following assumptions:

I ) The communication link comprises of one transmit antenna and N receive antennas.

II ) Interferers are located in a two-dimensional plane around the receiver. This assumption

is used only for ease of analysis. Distributing interferers in a three-dimensional volume

does not alter the nature of any of our results, other than certain parameter values.

III ) At each time snapshot, the active interfering sources are classified into N + 1 inde-

pendent sets S0,S1, · · · ,SN . S0 denotes the set of interferers that cause interference

to every receive antenna. Sn ∀ n = 1, · · · ,N denotes the set of interferers that are

observed by antenna n alone. This is the key assumption in our framework for modeling

spatial dependence in interference observed by a multi-antenna receiver. In prior work,

interference is often modeled as being one of two extremes; i.e, either all interferers
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are observed by every receive antenna, or different receivers observe independent sets

of interferers. Our model generalizes this notion, ensuring that our results are not only

applicable to these two extreme scenarios, but also to a continuum between these two

extremes. A common scenario in which such an interferer environment may arise is

with the deployment of receivers employing sectorized antennas with full frequency

reuse. Sectorized antennas are geographically co-located wireless directional antennas

with radiation patterns shaped as partially overlapping sectors that combine to cover

the entire space around the multi-antenna system [15]. Combining the signals received

by sectorized antennas can provide the advantages of spatial diversity while mitigating

the impairments caused by multipath delay [16]. Interference signals common to all

antennas may arise in overlapping sections; i.e., where all antennas have similar an-

tenna gain, and individual antennas may still see independent interference in sectors

where one antenna exhibits high gain while others exhibit a null. This model also finds

use in multi-dimensional temporal [17] and spatial interference modeling [18].

IV ) At each sampling time instant, the locations of the active interferers in Sn ∀ n = 0, · · · ,N

are distributed according to a homogeneous spatial Poisson Point Process in the two-

dimensional plane around the receiver. The intensity of set Sn is denoted by λn ∀

n = 0, . . . ,N . The Poisson Point Process distribution is usually applied to modeling

the statistical distribution of interfering sources in wireless communication systems

[19]. While non-homogeneous Poisson Point Processes are also used to model certain

wireless networks [20], this paper only studies networks where interfering sources are

modeled as homogeneous Point Processes. A spatial Poisson point process distribu-

tion of interferers allows each interferer set Sn to have potentially infinite number

of interferers. The distance of each interferer from the origin provides an ordering

function, ensuring that the interferers in each set are countable. In other words, the

i th interferer in Sn , located at coordinates Rn ,i , is defined by implicitly assuming

‖Rn ,1‖2 < ‖Rn ,2‖2 < ‖Rn ,3‖2 < · · · .

V ) There are no interferer-free guard-zones around the receiver. In many centralized com-

munication systems, a central authority such as a base station may limit transmissions
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within a radius around an active receiver. Many medium access control protocols can

also enforce such a guard-zone around the receiver [21], [22]. There are well known sta-

tistical distributions that model multi-antenna interference in the presence of interferer

free guard-zones around the receiver [20], [23], and there exists prior work on evaluating

communication performance of diversity combining techniques using such statistical

models [9]. However, the absence of guard-zones is vital to modeling interference in

decentralized ad hoc networks, as well as interference from uncoordinated users in

centralized networks [24].

VI ) As the wireless signal traverses through the environment, its energy decays according

to the power-law path-loss model [25] with a coefficient of γ.

VII ) The fast-fading channel between the transmitting source and receiver, as well as other

interfering sources and the receiver is modeled using a Rayleigh distribution [25].

VIII ) Additive thermal noise is ignored at the receiver. With high user density and frequency

reuse, many communication systems are interference-limited; i.e., interference at the

receiver is much stronger than the thermal noise component. Consequently, our results

are applicable to interference-limited communication scenarios.

IX ) Without loss of generality and to simplify derivations, the receiver is placed at the origin

of the two-dimensional plane. Since the spatial Poisson Point Process is invariant to

translation [26], any derived results remain unchanged by our choice of origin.

Figure 1 illustrates the interferer placement model for a 3-antenna receiver. In this frame-

work, each receive antenna n observes a Poisson distributed interferer field which is the

union of interferer sets S0 and Sn . The common set of interferers in S0 models correlation

between the interferer fields of two antennas. The level of correlation can be tuned by

changing the intensity of S0 relative to the intensities of the other sets, yielding the following

three interference generation scenarios:

Spatially independent interference - Interferer set S0 is empty, i.e., λn>0 and λ0=0. In

this scenario, each receiver is under the influence of an independent set of interferers. The

resulting interference also exhibits independence across the receive antennas.
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Spatially isotropic interference - Interferer sets Sn ∀ n = 1, · · · ,N are empty sets, i.e., λn=0

and λ0>0. All receivers observe the same set of interferers, thereby causing the resulting

interference to have spatial dependence across receive antennas. It has been shown that

the resulting interference follows the isotropic multi-dimensional symmetric alpha-stable

distribution [5].

Spatially dependent interference - All interferer sets are non-empty, i.e., λn>0 and λ0>0.

This models partial correlation in the interferer field observed by each of the receive anten-

nas. The resulting interference exhibits spatial dependence across receive antennas.

B. Signal and interference representation

The received signal in a 1×N SIMO communication system can be denoted in vector

form as

y= hs + z (1)

where y is a complex 1×N vector where each element yn denotes the received signal at n th

of the N receive antennas. The n th receive antenna observes the transmitted signal s after it

has encountered a Rayleigh fading medium hn and additive interference z n . In (1), random

variables hn and z n are stacked to form 1×N vectors h and z, respectively.

In Section III, we classified interfering sources into different sets, such that the n th receive

antenna observes interference from two sets that contain (1) interferers observed by all

antennas, and (2) interferers observed only by the n th antenna, respectively. Following this

system model, the total interference at antenna n , denoted by z n , can be expressed as

z n =
∑

i 0∈S0

x0,i 0
d
−γ/2
0,i 0

g 0,n ,i 0
+
∑

i n∈Sn

xn ,i n
d
−γ/2
n ,i n

g n ,i n
(2)

where xk ,i k
indicates the emission from the i th

k interferer in set Sk , and xk ,i 0
indicates the

emission from the i th
0 interferer in set S0. The emission from each interferer is assumed to

be identically and independently distributed. g k ,i k
is the Rayleigh fading channel between

the i th
k interferer and the k th receive antenna, the other receive antennas do not observe

interferer i k . Since the interferers in set S0 are observed by all receive antennas, the Rayleigh
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fading channel between the interferer and the k th receive antenna is denoted by g 0,k ,i 0
. d n ,i n

denotes the distance between the i n interferer in set Sn and the receiver. γ/2 is the amplitude

path-loss parameter, which means that the power path-loss coefficient is γ.

In the next two sections, we derive the outage performance of various diversity combining

techniques. The expression for the outage probability of each receiver allows us to study the

impact of network parameters such as interferer density, path-loss exponent and interferer

field correlation on outage performance.

IV. OUTAGE PERFORMANCE OF PRE-DETECTION DIVERSITY COMBINING

In this section, we evaluate the outage performance of pre-detection diversity combining

receivers, placed within a field of Poisson distributed interferers as described in Section III.

In pre-detection diversity combining, the signal samples at the multiple receive antennas

are combined before symbol detection. The relevant components of such a receiver are

shown in Figure 2. During diversity combining, the signal output from each antenna n is

multiplied by a corresponding complex scalar weight wn and the result is summed across

all N receive antennas. The key behind different diversity combining schemes lies in the

selection of the weights w i ∀ i = 1,2, . . . ,N , henceforth denoted in vector form as the weight

vector w= [w1 w2 . . . wn ]
T .

For a general weight vector w, the output at the diversity combiner can be expressed as

v =wT y (3)

= s

N
∑

n=1

wn hn +

N
∑

n=1

wn z n (4)

= s

N
∑

n=1

wn hn +

N
∑

n=1

∑

i 0∈S0

x0,i 0
d
−γ/2
0,i 0

wn g 0,n ,i 0
+

N
∑

n=1

∑

i n∈Sn

xn ,i n
d
−γ/2
n ,i n

wn g n ,i n
(5)

= s

N
∑

n=1

wn hn +
∑

i 0∈S0

x0,i 0
d
−γ/2
0,i 0

N
∑

n=1

wn g 0,n ,i 0
+

N
∑

n=1

∑

i n∈Sn

xn ,i n
d
−γ/2
n ,i n

wn g n ,i n
. (6)
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The SIR at combiner output can then be written as

SIRw =

E s

�

�

�

∑N

n=1
wn hn

�

�

�

2

�

�

�

�

∑

i 0∈S0
x0,i 0

d
−γ/2
0,i 0

�

∑N

n=1
wn g 0,n ,i 0

��

+
∑N

n=1

∑

i n∈Sn
xn ,i n

d
−γ/2
n ,i n

wn g n ,i n

�

�

�

2
. (7)

where E s = |s |2. We define the outage probability as

Pout
w
(θ ) =ESIRw

[P (SIRw <θ )] (8)

where θ is the SIR threshold for correct detection. The outage probability can be written as

Pout
w
(θ ) =E









P









E s

�

�

�

∑N

n=1
wn hn

�

�

�

2

�

�

�

�

∑

i 0∈S0
x0,i 0

d
−γ/2
0,i 0

�

∑N

n=1
wn g 0,n ,i 0

��

+
∑N

n=1

∑

i n∈Sn
xn ,i n

d
−γ/2
n ,i n

wn g n ,i n

�

�

�

2
<θ

















(9)

=E









P









�

�

�

�

�

∑

i∈US0

x0,i 0
‖r0,i 0
‖−γ/2

N
∑

n=1

wn g 0,n ,i 0
+

N
∑

n=1

∑

i n∈Sn

xn ,i n
‖rn ,i n
‖−γ/2 g n ,i n

�

�

�

�

�

>

p

E s

�

�

�

∑N

n=1
wn hn

�

�

�

p
θ

















.

(10)

As the union of independent Poisson point processes is another Poisson point process with

intensity equal to the sum of intensities of the constituent processes [27], we write (10) as

Pout
w
(θ ) =E









P









�

�

�

�

�

�

∑

i∈∪N
n=0Sn

x ′
i
(d ′

i
)−γ/2 g ′

i

�

�

�

�

�

�

>

p

E s

�

�

�

∑N

n=1
wn hn

�

�

�

p
θ

















(11)

where d ′i is the distance from origin of each point (indexed by i ) in the combined process.

x ′i is a single random variable indicating the emissions from all interferers. g ′i is a N + 1

term complex Gaussian mixture random variable with variances ‖w‖2σ2, |w1|2σ2, |w2|2σ2,

. . . |wN |2σ2, and mixing probabilities λ0
∑N

n=0λn
, λ1
∑N

n=0λn
, . . . λn

∑N
n=0λn

, respectively. Theorem 1.4.2 in

[28] shows that a random variable of the form
∑

i∈∪N
n=0Sn

x ′i‖r ′i ‖−γ/2 g ′i follows the symmetric

alpha-stable distribution with stability parameter α= 4

γ
and scale parameter pσ =C−1

α
E [g ′αi ]

1
α ,
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where Cα is a constant defined as

Cα =







1−α
2Γ(2−α)cos(πα/2)

if α 6= 1

2

π
if α= 1

. (12)

Property 1.2.15 in [28] states that the complementary cumulative distribution function (ccdf)

for an alpha-stable distributed random variable R with stability parameter 0 < α < 2 and

scale parameter pσ > 0 and a threshold T >> 0, the following approximation holds well

lim
T→∞
P{R > T }=Cαpσ

αT −α. (13)

Using Theorem 1.4.2 from [28], (12), and (13), we express (11) as

Pout
w
(θ )≈π

 

N
∑

n=0

λn

!

E

�

(x ′
0
)α
�

E

�

(g ′
0
)α
�

E



















p

E s

�

�

�

∑N

n=1
wn hn

�

�

�

p
θ









−α










(14)

where α = 4

γ
, and Γ(·) is the well-known Gamma function [29]. Note that 14 is applicable

only when α > 1, consequently, our analysis is applicable only for pathloss γ > 4. The ccdf

result used in (14) is also an approximate result and matches the true ccdf closely when θ is

small, consequently, our results are useful in low-outage regimes. In section III, we assume

that the fast-fading channel between transmitter and receiver, and interferer and receiver

is a complex Gaussian random variable; i.e., the random variables g ′
0

and hn ∀ n = 1, · · · ,N

follow the Gaussian distribution. Taking expectation with respect to g ′
0

and hn ∀ n = 1, · · · ,N

in (14), we get

Pout
w
(θ )≈π2

α
2 Γ(

1+α

2
)E [X α]

  

N
∑

n=1

λn |wn |ασαI

!

+λ0‖w‖α2σ
α
I

!

E



















p

E s

�

�

�

∑N

n=1
wn hn

�

�

�

p
θ









−α










(15)

=πΓ(1−α/2)E−
α
2

s σ
−α
S
σα

I
Γ(

1+α

2
)E [X α]

∑N

n=1
λn |wn |α+λ0‖w‖α2
‖w‖α

2

θ
α
2 . (16)

From (16) we can make intuitively satisfying observations such as the outage probability is di-

rectly proportional to the detection SIR threshold θ , and interferer density λn (n = 0,1, . . . ,N ),
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whereas it is inversely proportional to the signal power E s . The following subsections analyze

the outage probability for some typical diversity combining receivers.

A. Fixed Weight Combining

The outage probability for a receiver using a weight vector w is provided in (16). In fixed

weight diversity combining, w remains constant and independent from the received signal.

In a special case of fixed weight combining, known as equal gain combining, every element

of the weight vector is equal. The outage performance of such a scheme is given as

Pout
EGC
(θ )≈πE

− α
2

s σ
−α
S
σα

I
Γ(

1+α

2
)Γ(1−α/2)E [X α]

∑N

n=1
λn +λ0N

α
2

N
α
2

θ
α
2 . (17)

We consider a reasonable scenario where the intensity of each of the interferer sets Sn ∀

n = 1, . . . ,N is equal to λe . Applying to (17), we get

Pout
EGC
(θ )≈πE

− α
2

s σ
−α
S
σα

I
Γ(1+α/2)Γ(1−α/2)E [X α] (λe N 1− α

2 +λ0)θ
α
2 . (18)

From (18) we can deduce that the common set of interferers does not provide any diversity

gain in outage performance, while the independent set of interferers actually worsens outage

performance upon increasing the number of receive antennas. This reduction in outage

performance is due to interference diversity where increasing the number of receive antennas

increases the chances that one of them might be suffering from an impulsive interference

event which corrupts the entire combiner output. Also note that when interference statistics

are close to Gaussian distribution the N 1− α
2 term disappears and the equal gain combiner

has no diversity gain or loss, a well-known fact [30] that helps validate our results.

Assuming that the receiver has knowledge of interference statistics, we can choose w to

minimize the outage probability as

Pout
FWC
(θ ) =πE

− α
2

s σ
−α
S
σα

I
Γ(

1+α

2
)Γ(1−α/2)E [X α]θ α2 min

w∈RN

(
∑N

n=1
λn |wn |α+λ0‖w‖α2
‖w‖α

2

)

. (19)

(19) attains its minimum value when the receiver selects the antenna with the minimum

average interference power. Since interference power is directly proportional to the intensity,
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we can write (19) as

Pout
FWC
(θ ) =πE

− α
2

s σ
−α
S
σα

I
Γ(

1+α

2
)Γ(1−α/2)E [X α]θ α2 min

n=1,...,N
{λn +λ0}. (20)

B. Maximum Ratio Combining

In this diversity combining technique, the receiver chooses a weight vector directly pro-

portional to the channel conjugate and inversely proportional to the interference power

[30]. Assuming i.i.d. interferer emissions and i.i.d. fading between interferer and receiver,

the interference power at each antenna would be proportional to λ0 + λn . Thus the n th

element of the combining weight vector wn would be given by wn =
h∗n
λ0+λn

. Again assuming

that λn = λe ∀ n , and inserting the MRC weight vector into (15), the outage probability of

MRC combining can be expressed as

Pout
MRC
(θ )≈πE

− α
2

s σ
α
I

2
α
2 Γ(1/2+α/2)E [X α]E





∑N

n=1
λn |hn |α+λ0‖h‖α2
‖h‖2α

2



θ
α
2 (21)

=πE
− α

2
s σ

α
I

2
α
2 Γ(1/2+α/2)E [X α]E





∑N

n=1
λn |hn |α

‖h‖2α
2

+
λ0

‖h‖α
2



θ
α
2 . (22)

For the special case where intensities of the independent set of interferers λn (n =

1,2, . . . ,N ) are all equal to λe , we can simplify (21) to

Pout
MRC
(θ )≈πE

− α
2

s σ
α
I

2
α
2 Γ(1/2+α/2)E [X α]E

�

λe‖h‖αα
‖h‖2α

2

+
λ0

‖h‖α
2

�

θ
α
2 (23)

Note that channel diversity does provide some improvement in outage performance,

especially in the case of isotropic interference.

C. Selection Combining

Selection combining is a receive diversity technique where the receiver chooses to decode

the signal from one antenna [30]. The advantages of selection combining are that no gain

and phase multiplication block is needed in the receiver hardware, at the cost of negatively

impacting the communication performance since the signal energy from other antennas

is not used. In the pre-detection diversity combining setting, we study the sub-optimal
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selection combiner which selects the receive antenna with the strongest channel. In this

combiner, the weight vector has value 1.0 at the antenna with the strongest channel and

value 0 for the rest. Consequently, we can write the output of the diversity combiner as

v =wT y (24)

= s
|hn |2

λ0+λn

+
hn z n

λ0+λn

(25)

= s hm + z m (26)

where index m indicates the index of the receiver with the strongest channel; i.e., |hm |2 ≥ |hn |2

∀n = 1,2, . . . ,N . The outage probability can then be written as

Pout
SC
(θ )≈πE

− α
2

s σ
α
I
Γ(1/2+α/2)E [X α]

 

N
∑

n=0

λn +λ0

N

!

E
�

|hm |−α
�

θ
α
2 (27)

=πΓ(1−α/2)
 

σI
p

E sσS

!α

Γ(1/2+α/2)E [X α]

 

N
∑

n=0

λn +λ0

N

! 

N
∑

m=0

(−1)m+1

�N

m

�

m α

!

θ
α
2 . (28)

V. OUTAGE PROBABILITY OF POST-DETECTION COMBINING

In Section IV, we evaluated outage performance for receivers implementing a weighted

combiner, as shown in Figure 2. In this section, we evaluate the outage performance for a

receiver that implements selection combining after performing detection. The block diagram

for this receiver is shown in Figure 3. This receiver has a higher computational complexity

since it implements a detection block for each antenna as opposed to the receiver in

Figure 2 which implements only one detection block. Such a receiver attempts to detect

the transmitted signal individually at each antenna and then selects the output based on

the decoded signals. This may be accomplished by taking a majority vote among receivers,

estimating the SIR at each decoded output, or by using a error-checking code. We assume

a scenario in which the receiver can successfully decode, if at least one of the antennas

signals exhibits SIR greater than the detection threshold. This receiver may not be practical

to implement in some wireless systems, but the analysis provides us with a lower bound on

outage performance. Under these conditions, such a receiver would be in outage only if the

per-antenna SIR is below the detection threshold at every antenna. The probability of this
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event can be expressed as

Pout
PDC
= P{SIR1 <θ ,SIR2 <θ , . . . ,SIRn <θ }

=E











P







E s |h1|2
�

�

�

�

∑

i 0∈S0
x0,i 0

d
−γ/2
0,i 0

h0,1,i 0

�

+
∑

i 1∈S1
x1,i 1

d
−γ/2
1,i 1

h1,i 1

�

�

�

2
<θ , . . .

. . . ,
E s |hn |2

�

�

�

�

∑

i 0∈S0
x0,i 0

d
−γ/2
0,i 0

h0,n ,i 0

�

+
∑

i n∈Sn
xn ,i n

d
−γ/2
n ,i n

hn ,i n

�

�

�

2
<θ

















(29)

=E











P







|h1|2 <
θ

�

�

�

�

∑

i 0∈S0
x0,i 0

d
−γ/2
0,i 0

h0,1,i 0

�

+
∑

i 1∈S1
x1,i 1

d
−γ/2
1,i 1

h1,i 1

�

�

�

2

E s

, . . .

. . . , |hn |2 <
θ

�

�

�

�

∑

i 0∈S0
x0,i 0

d
−γ/2
0,i 0

h0,n ,i 0

�

+
∑

i n∈Sn
xn ,i n

d
−γ/2
n ,i n

hn ,i n

�

�

�

2

E s

















(30)

=E





N
∏

n=1

 

1− e
θ

Es σ
2
H

�

�

�

∑

i 0∈S0
x0,i 0 d

−γ/2
0,i 0

h0,n ,i 0+
∑

i n∈Sn
xn ,i n d

−γ/2
n ,i n

hn ,i n

�

�

�

2
!

 (31)

≈E




N
∏

n=1

�

1− e
θ

Es σ
2
H

∑

i 0∈S0
|x0,i 0 |2d

−γ
0,i 0
|h0,n ,i 0 |2+

∑

i n∈Sn |xn ,i n |2d
−γ
n ,i n |hn ,i n |2

�



 . (32)

We proceed by setting the number of receive antennas, N = 2, in order to facilitate brevity

and comprehension of this derivation. Later, we will provide the outage probability for any

number of receive antennas. Assuming N = 2 , we can expand (31) as

Pout
PDC
= 1−E

�

e
θ

Es σ
2
H

�

∑

i 0∈S0
|x0,i 0 |2d

−2γ
0,i 0
|g 0,1,i 0 |2+

∑

i 1∈Sn |x1,i 1 |2d
−γ
1,i 1
|g 1,i 1 |2

��

−E
�

e
θ

Es σ
2
H

�

∑

i 0∈S0
|x0,i 0 |2d

−γ
0,i 0
|g 0,2,i 0 |2+

∑

i 2∈S2
|x2,i 2 |2d

−γ
2,i 2
|g 2,i 2 |2

��

+E

�

e
θ

Es σ
2
H

�

∑

i 0∈S0
|x0,i 0 |2d

−γ
0,i 0
(|g 0,1,i 0 |2+|g 0,2,i 0 |2)+

∑

i 1∈Sn |x1,i 1 |2d
−γ
1,i 1
|g 1,i 1 |2+

∑

i 2∈S2
|x2,i 2 |2d

−γ
2,i 2
|g 2,i 2 |2

��

. (33)
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Taking expectation over g , we get

Pout
PDC
= 1−E





∏

i 0∈S0

�

1+
σ2

IθX 2

E sσ2
H

�

�x0,i 0

�

�

2
d
−γ
0,i 0

�−1
∏

i 1∈Sn

�

1+
σ2

IθX 2

E sσ2
H

�

�x1,i 1

�

�

2
d
−γ
1,i 1

�−1




−E




∏

i 0∈S0

�

1+
σ2

IθX 2

E sσ2
H

�

�x0,i 0

�

�

2
d
−γ
0,i 0

�−1
∏

i 2∈S2

�

1+
σ2

IθX 2

E sσ2
H

�

�x2,i 2

�

�

2
d
−γ
2,i 2

�−1




+E





∏

i 0∈S0

�

1+
σ2

IθX 2

E sσ2
H

�

�x0,i 0

�

�

2
d
−γ
0,i 0

�−2
∏

i 1∈Sn

�

1+
σ2

IθX 2

E sσ2
H

�

�x1,i 1

�

�

2
d
−γ
1,i 1

�−1

×

∏

i 2∈S2

�

1+
σ2

IθX 2

E sσ2
H

�

�x2,i 2

�

�

2
d
−γ
2,i 2

�−1


 . (34)

Using the point generating functional property of Poisson point processes [31], we can write

the outage probability Pout
PDC as

Pout
PDC
=E






1− e

(λ0+λ1)
∫

t∈R
1−
�

1+
σ2

I
θX2

Es σ
2
H

‖t ‖−γ
�−1

d t

− e
(λ0+λ2)

∫

t∈R
1−
�

1+
σ2

I
θX2

Es σ
2
H

‖t ‖−γ
�−1

d t

+e
λ1

∫

t∈R
1−
�

1+
σ2

I
θX2

Es σ
2
H

‖t ‖−γ
�−1

d t

e
λ2

∫

t∈R
1−
�

1+
σ2

I
θX2

Es σ
2
H

‖t ‖−γ
�−1

d t

e
λ0

∫

t∈R
1−
�

1+
σ2

I
θX2

Es σ
2
H

‖t ‖−γ
�−2

d t






. (35)

After integration, subsequent simplification, and noting that in a low outage regime, the

operand in the exponential is close to 0, we approximate the outage probability as

Pout
PDC
≈ (1+α/2)απ

2

sin(απ)

�

σIE[X ]

E sσH

�α

λ0θ
α/2+

�

απ2

4 sin(απ)

�2

λ1λ2

�

σIE[X ]

E sσH

�2α

θ α (36)

(36) shows the contribution to the outage probability from the interferer set S0 and the

interferer sets Sn for n = 1, . . . ,N . Extending this result to an N antenna receiver leads to a

more involved outage probability expression comprising of a summation of terms containing

θ kα/2 with k = 1, . . . ,N . The θ α/2 term is the outage component purely due to interferers from

S0, the θNα/2 term is purely due to interferers from Sn for n = 1, . . . ,N , and the θ kα2 terms

are due to interference from all the sets Sn for n = 0, . . . ,N . We approximate the outage

probability by keeping only the θ α/2 and θNα/2 terms and ignoring the rest. The justification

is that when λ0 6= 0, the θ α/2 term (outage from isotropic interference) dominates the overall

sum, and when λ0 = 0, the outage probability reduces to contain only the θNα/2 term (outage
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TABLE II

PARAMETER VALUES USED IN SIMULATIONS.

Parameter Description Value

λt ot Per-antenna total intensity of interferers 0.001

γ Power path-loss exponent 6

E[X ] Mean amplitude of interferer emissions 1.0

σH
Variance of in-phase and quadrature

1.0
components of the fading channel

τ Threshold parameter for hard-limiting combiner 1.0

η Decay parameter for soft-limiting combiner 2.0

from independent interference). Thus, by continuing the derivation from (31) for N > 2 and

keeping only the two significant terms, we get the outage probability as

Pout
PDC
≈
 

N
∑

m=1

�

N

m

�

(−1)m+1(m −1+α/2)!π2

4(m −1)! sin(απ)

!

λ0

�

σIE[X ]

E sσH

�α

θ α/2

+

�

απ2

4 sin(απ)

�N
 

N
∏

n=1

λn

!

�

σIE[X ]

E sσH

�Nα

θNα/2. (37)

It is important to note that we get a full diversity order if there are no common interfer-

ers. Full diversity order denotes that the outage probability decreases exponentially as the

number of receive antenna increases. However, when interference is spherically isotropic,

increasing the number of receiver antennas does not lead to an exponential decrease in

outage probability of PDC .

VI. OUTAGE PERFORMANCE COMPARISON OF DIVERSITY COMBINING SCHEMES

To validate our outage probability derivations, we numerically simulate a multi-antenna

receiver located within a field of Poisson distributed interferers. We transmit a 16−QAM

signal and interference is simulated according to the system model described in Section

III. The SINR threshold is set to 3dB. Based on the average signal energy and modulation

index, any desired SIR threshold for correct detection can be calculated and plugged into

the derived outage probability expressions to compare with simulated results. Table II lists

the various parameter values used in simulations.

Figure 4 shows the impact of spatial dependence on outage probability of the various
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diversity combining receivers. In Figure 4, the interferer sets observable by a single antenna

have intensities λi (i = 1, . . . ,N ) set to the same value, denoted by λe . λ0+λe is also set to a

fixed value 0.001, so that the total interference observed by each antenna has the same power.

Varying λ0 from 0.0 to 0.001 essentially changes the interference statistics from spatially

independent to spherically isotropic. Increasing spatial dependence in interference negatively

impacts the communication performance of all receiver algorithms. In interference with low

spatial dependence, PDC receiver has the best performance, while the other pre-detection

receivers still exhibit poor performance. This shows that exploiting channel diversity in

conventional multi-antenna receivers may not compensate for impulsive interference.

Figures 5, 6, and 7 show the impact of receive antennas on outage probability. In Figure

5, we simulate spatially independent interference by setting λ0 = 0 and λe = 0.001. In Figure

6, we set λe = 0 and λ0 = 0.001 to simulate spherically isotropic interference. It is interesting

to see that the diversity gain is lost in all algorithms in the presence of spherically isotropic

interference. In Figure 7 we simulate partial spatial dependence by setting λ0 = 5× 10−5

and λe = 9.5× 10−4. Even a low amount of spatial dependence in interference can severely

reduce the diversity gain of these receivers. In all of these figures, we see that the theoretical

expressions derived in Sections IV and V match very well to the simulated receiver. The

theoretical expressions are useful as they allow us to analyze the impact of parameters such

as γ, on the diversity performance of typical multi-antenna receivers.

VII. NOVEL DIVERSITY COMBINING ALGORITHMS TO MITIGATE IMPULSIVE INTERFERENCE

In Section V, we observe that the post-detection combining receiver outperforms pre-

detection diversity combining algorithms in the presence of impulsive interference, especially

when interference exhibits low spatial dependence across receive antennas. However, this

improvement comes at the cost of deploying multiple signal decoding blocks in the receiver

hardware as shown in Figure 3. In this section, we propose alternative pre-detection diversity

combining algorithms designed with the knowledge that interference is impulsive in nature.
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A. Hard-limiting combiner

Pre-detection combiners do not distinguish between an antenna suffering from an impul-

sive interference event, and an antenna not observing impulsive interference. Our proposed

hard-limiting receiver attempts to detect if an antenna is observing an impulsive event, and

if so, removes that antenna from the combining block. Its weight vector can be written as

w H L
n
=







h∗
n

if ‖yn −median(y)‖ ≤ τ

0 if ‖yn −median(y)‖ ≥ τ
. (38)

The receiver assumes that an impulsive interference event has occurred if the antenna signal

significantly deviates from the median of the all the receive antenna samples. In impulsive

random variables, the median is often used as a metric to denote the typical value of a signal

[32]. Only antennas deemed to exhibit non-impulsive interference are used to combine the

received signals using the MRC algorithm

B. Soft-limiting combiner

The hard-limiting combiner completely removes an antenna from the diversity combina-

tion process if it detects the presence of an interference impulse event. The soft-limiting

combiner, on the other hand, gradually reduces the weighting of an antenna if it estimates

an impulse event at the antenna. The soft-limiting weight vector is given as

w SL
n
= e−η‖yn−median(y)‖h∗

n
. (39)

Here the MRC algorithm is modified to reduce the weight of an antenna if its received

signal deviates highly from the signals at other antennas. Unlike hard-limiting combining,

the weight is gradually reduced as deviation increases. Both these proposed algorithms are

modifications to the MRC receiver. These combiners are non-linear in nature and their

outage probability expressions are mathematically intractable. We choose values of τ and η

that show improved performance compared to pre-detection diversity combining schemes.

Subsequently, evaluating the optimal value of parameters τ and η, or adaptively tuning these

parameters depending on noise statistics are interesting avenues of future work.
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Using the parameters from Table II, we show the outage performance of our proposed

algorithms in Figure 8 and 9. At low spatial dependence in interference, our proposed algo-

rithms outperform conventional pre-detection diversity combining receivers, while providing

a trade-off between communication performance and computational complexity. Figure 10

shows that the outage performance of these algorithms in Gaussian distributed interference

matches the performance of MRC receiver. The variance of Gaussian distributed interference

is chosen as 0.05, so that the outage probabilities are in the same range as other figures.

VIII. CONCLUSION

In this paper, we derive outage probability expressions for various diversity receivers in the

presence of interference, such as equal gain combining, fixed weight combining, maximum

ratio combining, selection combining, and post-detection combining. We use a generalized

framework to model spatially dependent wireless interference with joint statistics in a con-

tinuum from spatially independent to spherically isotropic. While this framework can model

interference in common scenarios which usually fall at either extreme of this continuum, it

proves advantageous when modeling scenarios which fall within the continuum.

The post-detection diversity combiner exhibits significantly better outage performance

compared to the pre-detection diversity combining receivers. In spatially independent in-

terference, the post-detection combiner achieves full diversity order in outage performance.

This diversity order is quickly lost upon increasing spatial dependence in interference ob-

served across receive antennas. The post-detection combiner suffers from high computa-

tional complexity requirements as it requires a symbol decoding block for each receive

antenna, compared to the pre-detection combiner which requires one symbol decoding

block regardless of the number of receive antennas. We propose two novel diversity com-

bining algorithms which improve upon the outage performance of pre-detection diversity

combining receivers, while using the same amount of computational complexity. Our results

can inform analysis of communication performance vs. computational complexity tradeoffs

of multi-antennas receivers designed to operate in the presence of impulsive interference.
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Fig. 1. System model of a 3−antenna receiver located in a field of randomly distributed interferers. The interferers are

classified according to the receive antenna impacted by their emissions.
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Fig. 2. Block diagram of a receiver in which diversity combining is performed before symbol detection.
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Fig. 3. Block diagram of a receiver in which diversity combining is performed after symbol detection.
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Fig. 4. Outage probability vs. λ0 for equal gain combining (EGC), maximal ratio combining (MRC), selection combining

(SC), and post-detection combining (PDC) in a 3−antenna receiver. The symbols indicate the theoretical outage probability

(’Expr’), whereas the lines indicate the simulated outage probability (’Sim’). λe = 10−3 −λ0.
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Fig. 5. Outage probability vs. number of receive antennas for for equal gain combining (EGC), maximal ratio combining

(MRC), selection combining (SC), and post-detection combining (PDC) in presence of spatially independent interference.

The symbols indicate the theoretical outage probability (’Expr’), whereas the lines indicate the simulated outage probability

(’Sim’). Parameter values λ0 = 0,λe = 10−3 are used in simulations.
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Fig. 6. Outage probability vs. number of receive antennas for for equal gain combining (EGC), maximal ratio combining

(MRC), selection combining (SC), and post-detection combining (PDC) in presence of spherically isotropic interference.

The symbols indicate the theoretical outage probability (’Expr’), whereas the lines indicate the simulated outage probability

(’Sim’). Parameter values λ0 = 10−3,λe = 0 are used in simulations.
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Fig. 7. Outage probability vs. number of receive antennas for equal gain combining (EGC), maximal ratio combining (MRC),

selection combining (SC), and post-detection combining (PDC) in presence of partially spatially dependent interference.

The symbols indicate the theoretical outage probability (’Expr’), whereas the lines indicate the simulated outage probability

(’Sim’). λ0 = 5×10−5 ,λe = 9.5×10−4 are used in simulations.
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Fig. 8. Outage probability vs. λ0 for maximal ratio combining (MRC), post-detection combining (PDC), and the novel

hard-limiting (HL) and soft-limiting (SL) combiners in a 3−antenna receiver. λe = 10−3 −λ0, τ = 1.0, and η= 2.0. Outage

probability of MRC and PDC combining is evaluated using theoretical expressions.
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Fig. 9. Outage probability vs. number of receive antennas for maximal ratio combining (MRC), post-detection combining

(PDC), and the novel hard-limiting (HL) and soft-limiting (SL) combiners in presence of partially spatially dependent

interference. λ0 = 5×10−5 ,λe = 9.5×10−4 , τ= 1.0, and η= 2.0 are used in simulations. Outage probability of MRC and PDC

combining is evaluated using theoretical expressions.
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Fig. 10. Outage probability vs. number of receive antennas for maximal ratio combining (MRC), post-detection combining

(PDC), and the novel hard-limiting (HL) and soft-limiting (SL) combiners in presence of Gaussian distributed interference.

The variance of Gaussian interference is 0.05, τ = 1.0, and η = 2.0. Outage probability of MRC and PDC combining is

evaluated using numerical simulations.


