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ABSTRACT

Drug cocktails formed by mixing multiple drugs at various
doses provide more effective cures than single-drug treat-
ments. However, drugs interact in highly nonlinear ways
making the determination of the optimal combination a dif-
ficult task. The response surface of the drug cocktail has to
be estimated through expensive and time-consuming exper-
imentation. Previous research focused on the use of space-
exploratory heuristics such as genetic algorithms to guide the
search for optimal combinations. While being more efficient
than random sampling, these methods require a consider-
able amount of experiments to converge to good solutions.
In this paper, we propose to use an information-theoretic
active learning approach under the Bayesian framework of
Gaussian processes to adaptively choose what experiments
to perform based on current data points. We show that our
approach is able to reduce the number of required data points
significantly.

Index Terms— Drug Combinations, Active Learning, Exper-
imental Design, Kernel Methods, Gaussian Process

1. INTRODUCTION

In the era of personalized medicine, finding effective drug
combinations is of vital importance. Drug cocktails often pro-
vide more effective cures than single agents for complex dis-
eases such as hypertension and cancer [1]. This is mainly
because such diseases result from biological dysfunction in
complex biological networks, which needs therapeutic inter-
ventions not on a single target but on multiple targets [2]. Tra-
ditionally, combination therapies rely on exhaustive empirical
clinical experience which is expensive, time consuming, and
suboptimal. As a result, an automated closed-loop directed
search for drug combinations is highly desirable. However,
this problem poses the following challenges: 1) the nonlinear
response of drug combinations which is difficult to predict;
and 2) the myriad number of possible drug combinations and
their various doses result in an intractable solution space.
Prior work is based on stochastic search algorithms that guide
the drug exploration in a closed-loop fashion such as the Gur

Game proposed in [3] and a hill climbing-genetic hybrid pro-
posed in [1]. This approach, however, considers combina-
torial drug combinations and is inherently discrete and does
not generalize well when considering continuous doses as de-
sign parameters. Another combinatorial approach, inspired
by communications decoding algorithms, is presented in [2].
In this work, a directed combinatorial search is performed on
the tree of possible drug combinations in the hope of arriv-
ing to a good drug candidate. However, this approach suffers
from high computational complexity and the lack of any guar-
antees on the obtained solution. More importantly, both of
the aforementioned approaches do not take into account the
experimental error (i.e. measurement noise) that is involved
in collecting biological measurements.
As a result, we propose a novel statistical continuous-dose so-
lution to this problem based on the active learning paradigm.
Active learning forms a closed loop by selecting experiments
that optimize the exploration of the solution space, thereby
reducing the number of experiments needed. This offers sig-
nificant savings in time and cost, and has been widely applied
in many fields such as robotics [4].
In this paper, we propose to use an information-theoretic
active learning approach in the framework of Gaussian pro-
cesses to optimize the drug combination design for the epi-
dermal growth factor receptor (EGFR) signaling network [5].
Our method is able to find the optimal drug combination at
a fraction of that required by random sampling and a genetic
algorithm search.

2. PROBLEM STATEMENT

Consider a drug cocktail consisting ofD drug candidates. Let
x = [x1 · · ·xD]T be a vector representing the normalized
dose of each drug; i.e. xi is the dose of drug i in the total
drug combination. Further, let us denote the biological sys-
tem response to a drug cocktail x by f (x). This function is
usually unknown which makes designing drug combinations
that optimize it difficult. Without loss of generality, we as-
sume that it is desired to minimize the response function. In a
given experimental trial n of a drug cocktail xn, we observe
yn given by

yn = f (xn) + εn (1)



where εn ∼ N
(
0, β−1

)
is the experimental error assumed

to be independent and identically distributed (i.i.d.). The ex-
perimental error can be reduced by averaging the result of
multiple experiments at the same xn. We seek to find x∗ such
that

x∗ = arg min
x

f (x) . (2)

However, given that f (·) is unknown, we need to learn it
by experimental exploration in addition to optimizing its re-
sponse. In practice, we seek to find x̂ such that its response
satisfies

|f (x̂)− f (x∗)| < ε (3)

where ε is a specified tolerance.

3. GAUSSIAN PROCESSES FOR REGRESSION

A Gaussian process (GP) is a probability distribution over
functions f(x), where the set of f(x) values evaluated at an
arbitrary set of points x1, · · · ,xN has a joint Gaussian dis-
tribution, which is specified completely by the mean and the
covariance [6]. Here, we put a GP prior on the unknown func-
tion f(x) that we aim to model. In general, with no prior in-
formation about f(x), the mean is assumed to be zero. The
covariance of f(x) evaluated at any two data points xm and
xn is defined by a kernel function k(xm,xn) that can be spec-
ified by some hyperparameters θ. Thus, the GP prior over the
function is given by

P (f |X, θ) = N (f |0,K), (4)

where K is a covariance matrix whose element is k(xm,xn).
Given a data set D = {X,y} where X = {xTn}Nn=1 and the
corresponding targets y = {yn}Nn=1, the joint distribution of
the observations from eq. 1 is

P (y|X, f) = N
(
y|f , β−1I

)
, (5)

where f = f(X) and I is a N ×N identity matrix. By Bayes
rule, the posterior distribution is given by

P (f |D) = N(fmap,Λ), (6)

where fmap = βΛXTy and Λ−1 = (βXTX + K−1).
We choose to use the following kernel function, since biolog-
ical systems are in general assumed to be smooth:

k(xm,xn) = θ0 exp

[
−θ1

2
||xm − xn||2

]
+ θ2 + θ3x

T
nxm,

(7)
where a point estimate of the the hyperparameters θ =
(θ0, θ1, θ2, θ3) can be set by maximizing the likelihood of
hyperparameters (the so-called evidence) given by

θ̂ = arg max
θ

P (y|X, θ), (8)

= arg max
θ

∫
P (y|X, f)P (f |X, θ)df . (9)

Finally, the predictive distribution P (f∗|D,X∗) at any test
points X∗ is given by (see [6] for the derivation)

P (f∗|D,X∗) ∼ N(µ,Σ), (10)

where µ = K(X,X∗)TC−1N y, (11)

Σ = K(X∗,X∗)−K(X,X∗)TC−1N K(X,X∗). (12)

where CN is the N ×N covariance matrix whose elements
areC(xm,xn) = k(xm,xn)+β−1δmn for n,m = 1, ......, N .
K(X,X∗) and K(X∗,X∗) are matrices evaluated at all pairs
of training and test data points, and at all pairs of test points
respectively.

4. INFORMATION-THEORETIC
ACTIVE LEARNING

To characterize f rapidly from limited data, one can ac-
tively query data using an optimal criterion. Here, we use
an information-theoretic approach that selects the next input
in order to maximize the expected information gain about
f , equivalently, the expected change in entropy of f [7].
Let {x, y} denote a candidate input chosen from a grid of
(evenly-spaced) points defined in the input space, and the
corresponding future output. The criterion is give by:

x∗ = arg max
x

Ep(y|x,Dt)[H(f |Dt)−H(f |Dt,x, y)],

= arg max
x

1
2 log|Σt| − 1

2 log|Σt+1|, (13)

= arg max
x

1
2 log(1 + βuTΣtu). (14)

We obtain eq.13 since the predictive distribution (eq.10) is
Gaussian distributed. Eq.14 is based on the fact that the pos-
terior at t + 1 is proportional to the product of the posterior
at t and the likelihood at t + 1, i.e., Σ−1t+1 = Σ−1t + βuuT ,
where u is a column vector, whose entries are all zeros except
that an entry is 1, where the new input is located. Further, we
obtain log|Σt+1| = −log(1 + βuTΣtu) + log|Σt|, using the
matrix determinant lemma.
Under the GP-Gaussian model, this approach is tantamount
to the D-optimality criterion and uncertainty sampling [8],
where the learner queries the instance which currently has the
highest variance (assuming the same noise β on all measure-
ments). After measuring the output given the selected point,
we compute the posterior mean in order to find the best drug
combination where the function is minimized. The algorithm
is summarized in Algorithm 1.

5. PRIOR WORK: GENETIC ALGORITHM

For comparison purposes, we implemented the genetic algo-
rithm first proposed by Holland (1975). Genetic algorithms
randomly vary combinations of drugs in the first generation.
In the consecutive generations, based on the knowledge from



Algorithm 1 Adaptive sampling using maximum information
gain under a GP-Gaussian model
Repeat

1. Given Dt, estimate θ by maximizing evidence (eq.9)
and update the posterior (eq.10).

2. Given θ, search a new combination xt+1 that has the
largest predictive variance (eq.14), and measure the
corresponding output yt+1.

Until a stopping criterion is satisfied.

the previous generation, the algorithm generates new sam-
ple points in a search space in a way of achieving the max-
imum fitness [9]. Thus, this method is commonly used to ef-
ficiently search enormous solution spaces. However, the pro-
cess sometimes gets stuck in a local maximum of the fitness
function and also it performs poorly under the presence of
noise.

6. SIMULATION RESULTS

6.1. The EGFR signaling network

We tested our algorithm on the epidermal growth factor re-
ceptor (EGFR) network. The EGFR is a type of tyrosine ki-
nase receptor and plays a key role in regulation of cellular
proliferation, differentiation, and survival [5]. The EGFR is
often over-expressed in various tumor cells and the activation
of EGFR hinders chemotherapy and radiation treatment in tu-
mor cells. Thus, inhibiting the EGFR is desired to improve
the activity of anticancer drugs.

Fig. 1. Kinetic scheme for EGFR signaling network (adapted
from [10] and [11]): There are three cycles: Shc cycle, Grb
cycle, and R-PL cycle. These are interconnected via cross-
talk and feedback leading to a highly non-linear interaction.

Figure 1 shows the EGFR signaling network studied in [10]
and [11], which comprises 23 variables (names in each box)

that changes 25 kinetic reactions (nodes) and 50 associated
rate constants (forward and reverse rate constants in each
node are given in appendix A of [11]). The temporal evolu-
tion of this set of variables can be explained by 23 coupled
ordinary differential equations [11]. The three nodes (3),
(6), and (14) are where the tyrosine kinase inhibitors are
applied directly. The inverse inhibition rate is defined as a
pre-multiplier ζi at each node (i = 3, 6, 14) respectively.
Note that ζi = 1 means no inhibition and ζi = 0.1 means
90% inhibition. The effect of the inhibitors is a reduction in
the forward rate constants in the nodes. In this network, the
key variables are the most downstream variables in each of
the pathways, i.e. R-Sh-G-S, R-G-S, R-PLP. For example, the
downstream target of R-Sh-G-S and R-G-S is the membrane-
bound Ras protein which may activate other signaling pro-
teins to relay the signal downstream to other cytoplasmic and
nuclear targets [11].

6.2. Objectives

Here, we wish to attenuate the downstream signals (R-Sh-G-
S, R-G-S, R-PLP) in the EGFR network. In addition to that,
we take the toxicity of doses that may increase therapeutic
benefit into account. Thus, two objectives in this paper are: 1)
lower the key output variables, R-Sh-G-S: t1, R-G-S: t2, and
R-PLP: t3, and 2) lower the toxicity of drug combinations:
t4, by varying the combinations of three inhibitors applied to
nodes (3, 6, 14).

6.3. Key Assumptions

Here are the key simulations assumptions:
1. The variable for the dose of each drug is continuous and
the allowed inhibition is between 1% and 90%(equivalently
0.1 ≤ ζi ≤ 0.99).
2. The target variables t1, t2, t3 are equally important and
thus, without loss of generality, we assume they have been
normalized.
3. The toxicity of each drug is defined as 1− ζi. Thus, the
total toxicity of a combination of three drugs is defined as
t4 = 3−

∑
ζi. We predetermined the toxicity threshold as 2

(this number was randomly chosen, and in practice the user
can choose any number for this constraint). Therefore, any
drug combination whose toxicity is larger than 2 are ignored.
4. The target is a single variable that depends on the input
variables in a highly non-linear fashion. The target variable is
defined as following:

f =

3∑
i=1

exp(ti). (15)

First, we used 50 data points (i.e. 50 experiments) and ex-
amined the performance of genetic algorithms, random sam-
pling, and the adaptive sampling using the maximum infor-
mation gain. In Figure 2, the estimated three target variables,
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Fig. 2. The most downstream variables (R-Sh-G-S, R-G-S,
R-PLP) in the pathways of EGFR signaling network in Fig.
1. The proposed method (red line) achieved the smallest peak
values of three target variables in Fig. 2, which coincides with
the minimum target value in table 1.

Table 1. Input variables and target values in Fig. 2
Method ζ3 ζ6 ζ14 Target
Genetic 0.3324 0.4294 0.4354 6.8852
Random 0.1502 0.5032 0.6196 6.2074
Max Info 0.1000 0.4333 0.6251 4.7006

’R-Sh-G-S’ (t1), ’R-G-S’ (t2), and ’R-PLP’ (t3) are shown.
In GP, 90% of the data (i.e. 45 data points) were used to set
the hyperparameters in the kernel function by the simple gra-
dient method 1 and 5 experiments were done to find the best
combination. Table 1 shows the solutions of the drug doses
by each method and the normalized-combined target values
(eq.15) at the each solution.
Next, we varied the number of samples (experiments) and
checked how the target values change in each method. Fig-
ure 3 shows the simulation results that are the mean of 100
trials at each data point. In each trial, we drew new sam-
ples rather than adding the samples, which is why the graphs
are not monotonically decreasing. Notice that the maximum
information gain criterion outperformed other methods, even
when the limited number of data points are observed. For ini-
tialization of hyperparameters, we drew a coarse grid over
four-dimensional space of hyperparameters, computed evi-
dence at those points, and finally fixed the point maximizing
the evidence to the initial values of hyperparameters. Genetic
algorithm performed even worse than random sampling under
the existence of noise.

7. CONCLUSION

In this paper, we proposed to use an information-theoretic ac-
tive learning paradigm to find the best drug combination while

1The derivative expression of the log marginal likelihood is given by [12]

∂

∂θi
lnP (y|X, θ) = −

1

2
Tr

(
C−1

N

∂C−1
N

∂θi

)
+

1

2
yTC−1

N
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Fig. 3. Target value change with the increasing samples. Note
that the proposed method even with a very small amount of
data (e.g., 10 data points) outperformed the other two meth-
ods.

using the least number of experiments as possible. We tested
our algorithm on an EGFR network and showed that our ap-
proach requires significantly less data than other methods.
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